The Upper and Forcing Fault Tolerant Geodetic Number of a Graph

T. Jeba Raj ${ }^{1}$
K. Bensiger ${ }^{2}$

Abstract

A fault tolerant geodetic $S \subseteq V$ is said to be minimal fault tolerant geodetic set of G if no proper subset of S is a fault tolerant geodetic set of G is called the upper fault tolerant geodetic number of G is denoted by $\gamma_{g f t}^{+}(G)$. Some general properties satisfied by this concept are studied. For connected graphs of order $n \geq 3$ with $\gamma_{g f t}^{+}(G)$ to be $n-1$ is given. It is shown that for every pair of a, b with $5 \leq a<b$, there exists a connected graph G such that $\gamma_{g f t}(G)=a$ and $\gamma_{g f t}^{+}(G)=b$, where $\gamma_{g f t}(G)$ is the fault tolerant geodetic number of G and $\gamma_{g f t}^{+}(G)$ is the upper fault tolerant geodetic number of a graph. Let S be a $g f t$-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique $g f t$-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing fault tolerant geodetic number of S, denoted by $f_{g f t}(S)$, is the cardinality of a minimum forcing subset of S. The forcing fault tolerant geodetic number of G, denoted by $f_{g f t}(G)$, is $f_{g f t}(G)=\min \left\{f_{g f t}(S)\right\}$, where the minimum is taken over all $f_{g f t}$-sets in G. The forcing fault tolerant geodetic number of some standard graphs are determined. Some of its general properties are studied. It is shown that for every pair of positive integers a and b with $0 \leq a \leq b, b \geq 2$ and $b \geq 2 a$, there exists a connected graph G such that $f_{g f t}(G)=a \operatorname{and} g_{f t}(G)=b$.

Keywords: tolerant geodetic, connected graphs, minimum cardinality.
2010 AMS subject classification:05C12, 05C69 ${ }^{3}$

[^0]
T. Jeba Raj \& K. Bensiger

1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [9]. Two vertices u and v of said to be adjacent in G if $u v \in E(G)$. The neighborhood $N(v)$ of the vertex v in G is the set of vertices adjacent to v. The degree of the vertex v is $\operatorname{deg}(v)=|N(v)|$. If $e=\{u, v\}$ is an edge of a graph G with $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)>1$, then we call e an end edge, u a leaf and v a support vertex. For any connected graph G, a vertex $v \in V(G)$ is called a cut vertex of G if $V(G)-v$ is disconnected. The subgraph induced by set S of vertices of a graph G is denoted by $\langle S\rangle$ with $V(\langle S\rangle)=S$ and $E(\langle S\rangle)=\{u v \in E(G): u, v \in$ $S\}$. A vertex v is called an extreme vertex of G if $\langle N(v)\rangle$ is complete.

A vertex x is an internal vertex of an $u-v$ path P if x is a vertex of P and $x \neq$ u, v. An edge e of G is an internal edge of an $u-v$ path P if e is an edge of P with both of its ends or in P. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an u-vgeodesic. A vertex x is said to lie on an $u-v$ geodesic P if x isa vertex of P including the vertices u and v. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad}(G)$ and the maximum eccentricity is its diameter, $\operatorname{diam}(G)$. We denote $\operatorname{rad}(G)$ by r and $\operatorname{diam}(G)$ by d. The closed interval $I[u, v]$ consists of u, v and all vertices lying on some $u-v$ geodesic of G. For a non-empty set $S \subseteq V(G)$, the set $I[S]=\cup_{u, v \in S} I[u, v]$ is the closure of S. A set $S \subseteq V(G)$ is called a geodetic set if $I[S]=V(G)$. Thus every vertex of G is contained in a geodesic joining some pair of vertices in S. The minimum cardinality of a geodetic set of G is called the geodetic number of G and is denoted by $g(G)$. A geodetic set of minimum cardinalities is called g-set of G. For references on geodetic parameters in graphs see [4, 5, 6, 7, 10]. Let S be a geodetic set of G. W be the set of extreme vertices of G. Then S is said to be a fault tolerant geodetic set of G, if $S-\{v\}$ is also a geodetic set of G for every $v \in$ $S \backslash W$. The minimum cardinality of a fault tolerant geodetic set is called fault tolerant geodetic number and is denoted by $g_{f t}(G)$. The minimum fault tolerant geodetic dominating set of G is denoted by $g_{f t}$-set of G.The following theorem is used in the sequel.

Theorem 1.1. [6] Each extreme vertex of a connected graph G belongs to every geodetic set of G.

2.The Upper Fault Tolerant Geodetic Number of a Graph

Definition 2.1. A fault tolerant geodetic $S \subseteq V$ is said to be minimal fault tolerant geodetic set of G if no proper subset of S is a fault tolerant geodetic set of G is called the upper fault tolerant geodetic number of G is denoted by $\gamma_{g f t}^{+}(G)$.

Example 2.2. For the graph G given in Figure 2.1, $S_{1}=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ is a $\gamma_{g f t}$-setof G so that $\gamma_{g f t}(G)=5$. Let $S_{1}=\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$. Then S_{1} is a minimal faulttolerant geodetic set of G and so $\gamma_{g f t}^{+}(G) \geq 6$. It is easily verified that there is no faulttolerant geodetic set of G with cardinality more than six. Therefore $\gamma_{g f t}^{+}(G)=6$.

Figure 2.1
Observation 2.3. (i) For a connected graph of order $n \geq 2,2 \leq \gamma_{g f t}(G) \leq \gamma_{g f t}^{+}(G) \leq$ n.
(ii) No cut vertex of G belongs to any minimal fault tolerant geodetic set of G.
(iii) Each extreme vertex of G belong to any minimal fault tolerant geodetic set of G.

Theorem 2.4. For the complete graph $G=K_{n} n \geq 2, \gamma_{g f t}^{+}(G)=n$.
Proof: This follows from Observation 2.3(iii).
Theorem 2.5. For any non-trivial tree, $\gamma_{g f t}^{+}(G)=$ number of end vertices
Proof: This follows from Observation 2.3(ii) and (iii).
Theorem 2.6. For the cycle $G=C_{n}(n \geq 4), \gamma_{g f t}^{+}(G)=\left\{\begin{array}{l}4 \text { ifnisodd } \\ 5 \text { ifniseven }\end{array}\right.$
Proof: Let n be even. Let v be the antipodal vertex of u and y be the antipodal vertex of x, where $u \neq x$. Then $S=\{u, v, x, y\}$ is a minimal fault tolerant geodetic set of G and so $\gamma_{g f t}^{+}(G) \geq 4$. We prove that $\gamma_{g f t}^{+}(G)=4$. On the contrary, suppose that $\gamma_{g f t}^{+}(G) \geq 5$.

T. Jeba Raj \& K. Bensiger

Then there exists a geodetic set S^{\prime} such that $\left|S^{\prime}\right| \geq 5$. Then there exist at least two pair of antipodal vertices of G. Hence it follows that $S \subset S^{\prime}$, which is a contradiction. Therefore $\gamma_{g f t}^{+}(G)=4$.
Let n be odd. Let u and x be two adjacent vertices of G. Let v and w be antipodal vertices of u,wand y be two antipodal vertices of x. Then $M=\{u, v, w, x, y\}$ is a minimal fault tolerant geodetic set of G and so $\gamma_{g f t}^{+}(G) \geq 5$. We prove that $\gamma_{g f t}^{+}(G)=5$. On the contrary, suppose that $\gamma_{g f t}^{+}(G) \geq 6$. Then there exists a fault tolerant geodetic set M^{\prime} of G such that $\left|M^{\prime}\right| \geq 6$.Then M^{\prime} contains two pair of antipodal vertices. Which implies $M \subset M^{\prime}$, which is a contradiction. Therefore $\gamma_{g f t}^{+}(G)=5$.

Theorem 2.7. Let G be the complete bipartite graph $K_{r, s},(2 \leq r \leq s), \gamma_{g f t}^{+}(G)$ $=s+2$.
Proof: Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the two bipartite sets of G.
Let $S=Y \cup\left\{x_{i}, x_{j}\right\}$, where $2 \leq i \neq j \leq r$ is a fault tolerant geodetic set of G and so $\gamma_{g f t}^{+}(G) \geq s+2$. We prove that $\gamma_{g f t}^{+}(G)=s+2$. On the contrary, suppose that $\gamma_{g f t}^{+}(G) \geq s+3$. Then there exists a fault tolerant geodetic set of G such that $\left|S^{\prime}\right| \geq$ $s+3$. Which implies $S \subseteq S^{\prime}$, which is a contradiction. Therefore $\gamma_{g f t}^{+}(G)=s+2$.

Theorem 2.8. For every pair of a, b with $5 \leq a<b$, there exists a connected graph G such that $\gamma_{g f t}(G)=a$ and $\gamma_{g f t}^{+}(G)=b$.
Proof: Let $P: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be a path on five vertices and $V\left(K_{b-a-2}\right)=$ $\left\{z_{1}, z_{2}, \ldots, z_{b-a-2}\right\}$. Let H be a graph obtained from P and $V\left(K_{b-a-2}\right)$ by joining each $z_{i}(1 \leq i \leq b-a+2)$ with v_{1} and v_{5}. Let G be the graph obtained from H by introducing the vertices $h_{1}, h_{2}, \ldots, h_{a-4}$ and join each $h_{i}(1 \leq i \leq a-4)$ with v_{3}. The graph G is shown in Figure 2.2.
First, we prove that $\gamma_{g f t}(G)=a$. Let $X=\left\{h_{1}, h_{2}, \ldots, h_{a-4}\right\}$ be the set of end vertices of G. By Observation 2.3(iii), X is a subset of every fault tolerant geodetic set of G. It is easily verified that there is no fault tolerant geodetic set of cardinality less than a and so $\gamma_{g f t}(G) \geq a$. Let $S=X \cup\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ is a fault tolerant geodetic set of G so that $\gamma_{g f t}(G)=a$.
Next, we prove that $\gamma_{g f t}^{+}(G)=b$. Let $M=X \cup\left\{z_{1}, z_{2}, \ldots, z_{b-a-2}, v_{1}, v_{4}\right\}$. Then M is a minimal fault tolerant geodetic set of G and so $\gamma_{g f t}^{+}(G) \geq b$. We prove that $\gamma_{g f t}^{+}(G)=$ b. On the contrary, suppose that $\gamma_{g f t}^{+}(G) \geq b+1$. Then there existsa fault tolerant geodetic set M^{\prime} of G such that $\left|M^{\prime}\right| \geq b+1$. Since $v_{3} \notin M^{\prime}$ and $|V(G)|=b+3$, it follows that either $S \subset M^{\prime}$ or $M \subset M^{\prime}$, which is a contradiction. Therefore $\gamma_{g f t}^{+}(G)=$ b.

3. The Forcing Fault Tolerant Geodetic Number of a Graph

Definition 3.1. Let S be a $g_{f t}$-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique $f_{g f t}$-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing fault tolerant geodetic number of S, denoted by $f_{g f t}(S)$, is the cardinality of a minimum forcing subset of S. The forcing fault tolerant geodetic number of G, denoted by $f_{g f t}(G)$, is $f_{g f t}(G)=\min \left\{f_{g f t}(S)\right\}$, where the minimum is taken over all $f_{g f t^{-}}$sets in G.

Example 3.2. For the graph G given in Figure 3.1, $S_{1}=\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\right\}, S_{2}=$ $\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{7}\right\}$ are the only two $g_{f t}$-sets of G so that $f_{g f t}\left(S_{1}\right)=f_{g f t}\left(S_{2}\right)=1$ so that $g_{f t}(G)=1$ and $f_{g f t}(G)=1$.

Figure 3.1

The next theorem follows immediately from the definition of the forcing fault tolerant geodetic number of the graph.

T. Jeba Raj \& K. Bensiger

Theorem 3.3. For any connected graph $G, 0 \leq f_{g f t}(G) \leq g_{f t}(G)$.
In the following we determine the forcing fault tolerant geodetic number of some standard graphs.

Theorem 3.4. For a non-trivial tree $T, f_{g f t}(G)=0$.
Proof: Since for a tree T, the set of end vertices of G is the unique $g_{f t}$-set of G. Hence it follows that $f_{g f t}(G)=0$.

Theorem 3.5. For the complete graph $G=K_{n}(n \geq 3), f_{g f t}(G)=0$.
Proof: Since $S=V(G)$ is the unique $g_{f t}$-set of $G, f_{g f t}(G)=0$.
Theorem 3.6. For the cycle $G=C_{n}(n \geq 4), f_{g f t}(G)=\left\{\begin{array}{l}0 \quad \text { ifn }=4 \text { or } 5 \\ 1 \text { ifnisevenand } \geq 6 \\ 3 \text { ifnisoddand } \geq 7\end{array}\right.$
Proof: Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right\}$.
Case 1. Let n is even. For $n=4, S=V(G)$ is the unique $g_{f t}$-set of G so that $f_{g f t}(G)$ $=0$. So, let $n \geq 6$. letn $=2 k(k \geq 3)$. Let $S_{1}=\{x, y, u, v\}$ be a $g_{f t}$-set of G, where y is the antipodal vertex of x and u is the antipodal vertex of u. Since $n \geq 6, g_{f t}$-set of G is not unique and so $f_{g f t}(G)=1$. Since S_{1} is the unique $g_{f t}$-set of G containing S_{1}, $f_{g f t}\left(S_{1}\right)=1$ so that $f_{g f t}(G)=1$.
Case 2. Let n is odd. For $n=5, S=V(G)$ is the unique $g_{f t}$-set of G so that $f_{g f t}(G)=$ 0 . So, let $n \geq 7$. letn $=2 k+1(k \geq 3)$. Then it is easily verified that no singleton or two element subsets of a $g_{f t}$-set S_{1} is not a forcing subset of S_{2}. Let $S_{2}=$ $\left\{v_{1}, v_{k+1}, v_{k+2}\right\} \cup\left\{v_{2}, v_{k+3}\right\}$. Then S_{2} is the $g_{f t}$-set of G containing $\left\{v_{1}, v_{k+1}, v_{k+2}\right\}$. Therefore $f_{g f t}(G)=3$.

Theorem 3.7. For the fan graph $G=K_{1}+P_{n-1}(n \geq 4), f_{g f t}(G)=0$.
Proof: Let $V\left(K_{1}\right)=\{x\}$ and $S=V(G)-\{x\}$ is the unique $g_{f t}$-set of G so that $f_{g f t}(G)=0$.

Theorem 3.8. For the wheel graph $G=K_{1}+C_{n-1}(n \geq 4), f_{g f t}(G)=0$.
Proof: Let $V\left(K_{1}\right)=\{x\}$ and $S=V(G)-\{x\}$ is the unique $g_{f t}$-set of G so that $f_{g f t}(G)=0$.

Theorem 3.9. For the complete bipartite graph $G=K_{m, n}(2 \leq r \geq s)$,
$f_{g f t}(G)=\left\{\begin{array}{cc}0 & 2 \leq r \leq s \leq 3 \\ 3 & r=3, s \geq 4 \\ 4 & 4 \leq r \leq s\end{array}\right.$
Proof: Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the two partite sets of G.
Let $S=2$. Then $G=C_{4}$. By Theorem, $f_{g f t}(G)=0$.

For $r=2$ and $s \geq 3$. Then $S=V(G)$ is the unique $g_{f t}$-set of G so that $f_{g f t}(G)=0$. So let $r=3, s=3$. Then $S=V(G)$ is the unique $g_{f t}$-set of G so that $f_{g f t}(G)=$ 0 .Forr $=3, s \geq 4$, let S be a $g_{f t}$-set of G. Then any two element subsets of S is a forcing subset of G and so $f_{g f t}(G) \geq 3$. Let $S=\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$. Then $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is a forcing subset of S so that $f_{g f t}(G)=3$. Since this is true for al $g_{f t^{-}}$ set of $G, f_{g f t}(G)=3$. Let $m \geq 4$ and $n \geq 4$. Let S be a $g_{f t}$-set of G. Then one or two or three element subsets of S is a forcing subset of S and so $f_{g f t}(G) \geq 4$. Let $S=$ $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$. Then $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is a forcing subset of S so that $f_{g f t}(G)=4$. Since this is true for all $g_{f t}$-set $\operatorname{Sof} G, f_{g f t}(G)=4$.

Theorem 3.10. For every pair of positive integers a and b with $0 \leq a \leq b, b \geq 2$ and $b \geq 2 a$, there exists a connected graph G such that $f_{g f t}(G)=a$ and $g_{f t}(G)=b$.
Proof: Let $P: x, y, z$ be a path on three vertices. Let $P_{i}: u_{i}, v_{i}, w_{i}(1 \leq i \leq a)$ be a copy of path on three vertices. Let G be the graph obtained from P and $P_{i}(1 \leq i \leq a)$ by adding new vertices $z_{1}, z_{2}, \ldots, z_{b-2 a}$ and introducing the edges $x x_{i}(1 \leq i \leq$ $a), z v_{i}(1 \leq i \leq a)$ and $z z_{i}(1 \leq i \leq b-2 a)$. The graph is shown in Figure 3.2.
First, we prove that $g_{f t}(G)=b$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{b-2 a}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then Z is a subset of every $g_{f t}$-set of G. Let $H_{i}=\left\{u_{i}, w_{i}\right\}(1 \leq i \leq a)$. Then every $g_{f t}$-set of G contains at least one vertex from each $H_{i}(1 \leq i \leq a)$ and so $g_{f t}(G) \geq b-2 a+a+$ $a=b$. Let $S=Z \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then S is a $g_{f t}$-set of G so that $g_{f t}(G)=\mathrm{b}$.
Next, we prove that $f_{g f t}(G)=a$. By Theorem $f_{g f t}(G) \leq g_{f t}(G)-|Z|=b-(b-$ $a)=a$. Now since every Z is a subset of every $g_{f t}$-set of G and every $g_{f t}$-set contains at least one vertex from each $H_{i}(1 \leq i \leq a)$, every $g_{f t}$-set S is of the form $S=Z \cup$ $\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq a)$. Let T be a forcing subset with $|T|<a$. Then there exists H_{i} for some i such that $T \cap H_{i}=\phi$. Therefore $f_{g f t}(G)=a$.

Figure 3.2

T. Jeba Raj \& K. Bensiger

References

[1] H.A. Ahangar, S. Kosari, S.M. Sheikholeslami and L. Volkmann, Graphs with large geodetic number, Filomat, 29:6 (2015), 1361 - 1368.
[2] H. AbdollahzadehAhangar, V. Samodivkin, S. M. Sheikholeslami and Abdollah Khodkar, The restrained geodetic number of a graph, Bulletin of the Malaysian Mathematical Sciences Society, 38(3), (2015), 1143-1155.
[3] H. Abdollahzadeh Ahangar, Fujie-Okamoto, F. and Samodivkin, V., On the forcing connected geodetic number and the connected geodetic number of a graph, Ars Combinatoria, 126, (2016), 323-335.
[4] H. AbdollahzadehAhangar and Maryam Najimi, Total Restrained Geodetic Number of Graphs, Iranian Journal of Science and Technology, Transactions A: Science, 41, (2017), 473-480.
[5] F. Buckley and F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, (1990).
[6] G. Chartrand, P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19 (1999), 45-58.
[7] G. Chartrand, F. Harary and P. Zhang, "On the geodetic number of a graph", Networks, 39(1), (2002), 1-6.
[8] H. Escaudro, R. Gera, A. Hansberg, N. Jafari Rad and L. Volkmann," Geodetic domination in graphs", Journal of Combinatorial Mathematics and Combinatorial Computing, 77, (2011), 88-101.
[9] T.W. Hayes, P.J. Slater and S.T. Hedetniemi, Fundamentals of domination in graphs, Boca Raton, CA: CRC Press, (1998).
[10] A. Hansberg and L. Volkmann, On the geodetic and geodetic domination numbers of a graph, Discrete Mathematics, 310, (2010), 2140-2146.
[11] Mitre C. Dourado, Fabio Protti, Dieter Rautenbach and Jayme L. Szwarcfiter, Some remarks on the geodetic number of a graph, Discrete Mathematics,310, (2010), 832-837.
[12] H.M. Nuenay and F.P. Jamil," On minimal geodetic domination in graphs", Discussiones Mathematicae graph Theory, 35, (3), (2015), 403-418.

[^0]: ${ }^{1}$ Assistant Professor, Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliyakkavilai - 629 153, India, Email: jebaraj ${ }_{\text {math }}$ @ gmail.com
 ${ }^{2}$ Register Number. 20123082091004, Research Scholar, Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliyakkavilai - 629 153, India. Email: bensigerkm83@gmail.com
 (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.)
 ${ }^{3}$ Received on June23rd, 2022. Accepted on Aug 10 ${ }^{\text {th }}$, 2022. Published on Nov30th, 2022.doi: $10.23755 / \mathrm{rm} . \mathrm{v} 44 \mathrm{i} 0.903$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY license agreement.

