Soft Pre^{*}-Generalized Continuous Functions in Soft Topological Spaces

C. Reena¹ M. Karthika²

Abstract

The aim of this paper is to define a new class of generalized continuous functions called soft pre^* -generalized continuous functions and soft pre^* -generalized irresolute functions in soft topological spaces. We discuss several characterizations of soft pre^* -generalized continuous and irresolute functions and also investigate their relationship with other soft continuous functions.

Keywords: soft *pre*^{*}-generalized continuous functions and soft *pre*^{*}-generalized irresolute functions.

2010 AMS subject classification: 54A05, 54A10³

¹Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Thoothukudi-1, TamilNadu, India. Mail Id: reenastephany@gmail.com

²Research Scholar, Reg.No. 21112212092004, Department of Mathematics, St. Mary's College (Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Thoothukudi-1, TamilNadu, India. Mail Id: karthikamarimuthu97@gmail.com

³Received on June 21st, 2022. Accepted on Aug 10th, 2022. Published on Nov30th, 2022. doi: 10.23755/rm.v44i0.901. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY license agreement.

C. Reena and M. Karthika

1. Introduction

In 1999 Molostsov [6] initiated the study of soft set theory as a new mathematical tool to deal with uncertainties. Muhammad Shabir [7] and Munazza Naz (2011) introduced soft topological spaces which are defined over an initial universe with a fixed set of parameters. Athar Kharal [2] and Ahmad introduced the concept of soft mapping. Aras [1] and Sonmez discussed the properties of soft continuous mappings. Akdag M [5] and Ozkan introduced soft pre-continuity in soft topological space. The authors [8] of this paper introduced a new glass of generalized closed set called soft pre^* -generalized closed sets in soft topological spaces. In this paper, we introduce soft topological spaces. We investigate its fundamental properties and find its relation with other soft continuous functions.

2. Preliminaries

Throughout this paper, $(X, \tilde{\tau}, A)$, $(Y, \tilde{\sigma}, B)$ and $(Z, \tilde{\mu}, C)$ are soft topological spaces. Let (F, A) be a subset of a soft topological space. Then $S_t cl(F, A)$, $S_t int(F, A)$, $S_t cl^*(F, A)$ and $S_t int^*(F, A)$ denote the soft closure, soft interior, soft generalized closure and soft generalized interior respectively.

Definition 2.1: [6] Let X be an initial universe, E be a set of parameters, P(X) denote the power set of X and A be a non-empty set of E. A pair (F, A) is called **soft set** over X, where F is a mapping given by $F: A \to P(X)$.

Definition 2.2: [7] Let $\tilde{\tau}$ be a collection of soft sets over X. Then $\tilde{\tau}$ is called a **soft topology** on X if

i. $\widetilde{\emptyset}, \widetilde{X}$ belons to $\widetilde{\tau}$.

ii. The union of any number of soft sets in $\tilde{\tau}$ belongs to $\tilde{\tau}$.

iii. The intersection of any two soft sets in $\tilde{\tau}$ belongs to $\tilde{\tau}$.

The triplet $(X, \tilde{\tau}, A)$ is called soft topological space over X. The members of $\tilde{\tau}$ are called **soft open** and their complements are called **soft closed.**

Definition 2.3. A function $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ is said to be **soft continuous [1]** (respectively **soft semi continuous [4]**, **soft semi*continuous**, **soft \alpha continuous [5]**, **soft regular continuous [3]**, **soft generalized continuous [9]**, **soft generalized** α **continuous** and **soft generalized pre continuous**) if inverse image of every soft closed set in $(Y, \tilde{\sigma}, B)$ is soft closed (respectively soft semi-closed, soft *semi**-closed, soft α closed and soft generalized pre closed) in $(X, \tilde{\tau}, A)$.

Definition 2.4. [8] A subset (F, A) of a soft topological space $(X, \tilde{\tau}, A)$ is said to be soft *pre*^{*}- generalized closed if $S_t pcl(F, A) \cong (U, A)$ whenever $(F, A) \cong (U, A)$ and (U, A)

Soft Pre^{*}-Generalized Continuous Functions in Soft Topological Spaces

is soft *pre**-open. The complement of soft *pre**-generalized closed is called **soft** *pre**-generalized open.

Theorem 2.5. [8] In any topological space $(X, \tilde{\tau}, A)$,

i. Every soft closed set is soft *pre**-generalized closed.

ii. Every soft regular-closed set is soft pre*-generalized closed.

iii. Every soft α -closed set is soft *pre*^{*}-generalized closed.

iv. Every soft generalized α -closed set is soft *pre*^{*}-generalized closed.

v. Every soft generalized pre-closed set is soft pre*-generalized closed.

Remark 2.6: The above theorem is true for soft *pre**-generalized open.

3. Soft PRE*-Generalized Continuous Functions

Definition 3.1. Let $(X, \tilde{\tau}, A)$ and $(Y, \tilde{\sigma}, B)$ be soft topological spaces. Let $u: X \to Y$ and $p: A \to B$ be mappings. The function $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ is said tobe soft *pre*^{*}-generalized continuous function if the inverse image of every soft closed set in $(Y, \tilde{\sigma}, B)$ is soft *pre*^{*}-generalized closed in $(X, \tilde{\tau}, A)$.

The following soft sets are used in all the examples:

Let $X = \{a, b\}$ and $A = \{e_1, e_2\}$. Then the soft sets are

 $F_1 = \{(e_1, \{\emptyset\}), (e_2, \{\emptyset\})\} = \widetilde{\emptyset}$ $F_2 = \{(e_1, \{\emptyset\}), (e_2, \{a\})\}$ $F_3 = \{(e_1, \{\emptyset\}), (e_2, \{b\})\}$ $F_4 = \{(e_1, \{\emptyset\}), (e_2, \{a, b\})\}$ $F_5 = \{(e_1, \{a\}), (e_2, \{\emptyset\})\}$ $F_6 = \{(e_1, \{a\}), (e_2, \{a\})\}$ $F_7 = \{(e_1, \{a\}), (e_2, \{b\})\}$ $F_8 = \{(e_1, \{a\}), (e_2, \{a, b\})\}$ $F_9 = \{(e_1, \{b\}), (e_2, \{\emptyset\})\}$ $F_{10} = \{(e_1, \{b\}), (e_2, \{a\})\}$ $F_{11} = \{(e_1, \{b\}), (e_2, \{b\})\}$ $F_{12} = \{(e_1, \{b\}), (e_2, \{a, b\})\}$ $F_{13} = \{(e_1, \{a, b\}), (e_2, \{\emptyset\})\}$ $F_{14} = \{(e_1, \{a, b\}), (e_2, \{a\})\}$ $F_{16} = \{(e_1, \{a, b\}), (e_2, \{a, b\})\} = \tilde{X}$ $F_{15} = \{(e_1, \{a, b\}), (e_2, \{b\})\}$

Similarly, let $Y = \{x, y\}$ and $B = \{k_1, k_2\}$ then the soft sets $G_1, G_2, ..., G_{16}$ are obtained by replacing a, b, e_1 and e_2 by x, y, k_1 and k_2 respectively in the above sets.

Example 3.2. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = x, u(b) = y, $p(e_1) = k_1$ and $p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_2, F_8, F_{10}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_4, G_8, G_{12}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_4) = F_4$ and $\tilde{f}^{-1}(G_8) = F_8$ and $\tilde{f}^{-1}(G_{12}) = F_{12}$ are soft *pre**- generalized closed, \tilde{f} is soft *pre**-generalized continuous.

Theorem 3.3. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft continuous function. Then \tilde{f} is soft *pre*^{*}-generalized continuous.

Proof: Let (G, B) be a soft closed set in Y. Since \tilde{f} is soft continuous, $\tilde{f}^{-1}(G, B)$ is soft closed. Then by theorem 2.5(i), $\tilde{f}^{-1}(G, B)$ is soft *pre*^{*}-generalized closed. Hence \tilde{f} is soft *pre*^{*}-generalized continuous.

Remark 3.4. The converse of the above theorem need not be true as shown in the following example.

Example 3.5. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = x, u(b) = y, $p(e_1) = k_1$ and $p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_5, F_8, F_{13}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_9, G_{12}, G_{13}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_9) = F_5$, $\tilde{f}^{-1}(G_{12}) = F_8$ and $\tilde{f}^{-1}(G_{13}) = F_{13}$ are soft *pre**-generalized closed but not soft closed, \tilde{f} is soft *pre**-generalized continuous.

Theorem 3.6. Let \tilde{f} : $(X, \tilde{\tau}, A) \rightarrow (Y, \tilde{\sigma}, B)$ be a soft function.

i. If \tilde{f} is soft regular continuous, then \tilde{f} is soft pre^* -generalized continuous.

ii. If \tilde{f} is soft α continuous, then \tilde{f} is soft pre^* -generalized continuous.

iii. If \tilde{f} is soft generalized α continuous, then \tilde{f} is soft pre^* -generalized continuous.

iv. If \tilde{f} is soft generalized pre continuous, then \tilde{f} is soft pre^* -generalized continuous. **Proof:** The proofs are similar to theorem 3.3.

Remark 3.7. The converse of each of the statements in above theorem need not be true.

Example 3. 8. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = x, u(b) = y, $p(e_1) = k_2$ and $p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_5, F_9, F_{13}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_3, G_8, G_{11}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_3) = F_9$, $\tilde{f}^{-1}(G_8) = F_{14}$ and $\tilde{f}^{-1}(G_{11}) = F_{11}$ are soft pre^* -generalized closed but not soft regular closed, \tilde{f} is soft pre*-generalized continuous.

Example 3.9. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = x, u(b) = y, $p(e_1) = k_2$ and $p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_6, F_8, F_{14}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_3, G_{11}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_3) = F_9$ and $\tilde{f}^{-1}(G_{11}) = F_{11}$ are soft pre^* -generalized closed but not soft α -closed, \tilde{f} is soft pre^* -generalized continuous.

Example 3.10. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = x, u(b) = y, $p(e_1) = k_2$ and $p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_9, F_{10}, F_{12}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_5, G_9, G_{13}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_5) = F_2$, $\tilde{f}^{-1}(G_9) = F_3$ and $\tilde{f}^{-1}(G_{13}) = F_4$ are soft pre^* -generalized closed but not soft generalized α -closed, \tilde{f} is soft pre^* -generalized continuous but not soft generalized α continuous.

Example 3.11. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = y, u(b) = x, $p(e_1) = k_1$ and $p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_4, F_8, F_{12}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_{14}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_{14}) = F_{15}$ is soft *pre**-generalized closed but not soft generalized pre-closed, \tilde{f} is soft *pre**-generalized continuous but not soft generalized pre-closed.

Remark 3.12. The concept of soft *pre*^{*}-generalized continuity and soft generalized continuity are independent as shown in the following example.

Example 3.13. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = x, u(b) = y, $p(e_1) = k_1$, $p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_2, F_3, F_4, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_5, G_6, G_8, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_5) = F_5$ and $\tilde{f}^{-1}(G_6) = F_6$ are soft *pre**-generalized closed but not soft generalized closed, \tilde{f} is soft *pre**-generalized continuous but not soft generalized continuous.

Example 3.14. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = x, u(b) = y, $p(e_1) = k_2$, $p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_3, F_{11}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_{14}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_{14}) = F_8$ is soft generalized closed but not soft *pre**-generalized closed, \tilde{f} is soft generalized continuous but not soft *pre**-generalized closed.

Remark 3.15. The concept of soft *pre**-generalized continuity and soft *semi**-continuity are independent as shown in the following example.

Example 3.16. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = x, u(b) = y, $p(e_1) = k_2$, $p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_5, F_9, F_{13}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_4, G_8, G_{12}, G_{16}\}$.Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_8) = F_{14}$ and $\tilde{f}^{-1}(G_{12}) = F_{15}$ are soft *pre**-generalized closed but not soft *semi**-closed, \tilde{f} is soft *pre**-generalized continuous.

Example 3.17. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = y, u(b) = x, $p(e_1) = k_1$, $p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_5, F_8, F_{13}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_4, G_9, G_{12}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_4) = F_4$ is soft semi*-generalized closed but not soft pre^* -generalized closed, \tilde{f} is soft semi*-generalized continuous but not soft pre^* -generalized continuous.

Remark 3.18. The concept of soft *pre*^{*}-generalized continuity and soft semi continuity are independent as shown in the following example.

C. Reena and M. Karthika

Example 3.19. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = y, u(b) = x, $p(e_1) = k_1$, $p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_3, F_8, F_{11}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_2, G_9, G_{10}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_9) = F_5$ and $\tilde{f}^{-1}(G_{10}) = F_7$ are soft *pre**-generalized closed but not soft semi closed, \tilde{f} is soft *pre**-generalized continuous.

Example 3.20. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = y, u(b) = x, $p(e_1) = k_1$, $p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_6, F_8, F_{14}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_9, G_{10}, G_{12}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_{10}) = F_7$ is semi-closed but not soft pre^* -generalized closed, \tilde{f} is soft semi continuous but not soft pre^* -generalized closed.

From the above discussion we have the following diagram:

Theorem 3.21. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a function. Then the following are equivalent.

- i. \tilde{f} is soft pre^* -generalized continuous.
- ii. The inverse image of every soft open set in $(Y, \tilde{\sigma}, B)$ is soft *pre*^{*}-generalized closed in $(X, \tilde{\tau}, A)$.
- iii. For every subset (G, B) of Y, $S_t p^* gcl\left(\tilde{f}^{-1}(G, B)\right) \cong \tilde{f}^{-1}(S_t cl(G, B))$.

iv. For every subset (F, A) of X, $\tilde{f}(S_t p^* gcl(F, A)) \cong S_t cl(\tilde{f}(F, A))$.

Proof: (i) \Rightarrow (ii): Let $\tilde{f}: (X, \tilde{\tau}, A) \rightarrow (Y, \tilde{\sigma}, B)$ be soft *pre*^{*}-generalized continuous and (G, B) be a soft open set in Y. Then $Y \setminus (G, B)$ is soft closed in Y. Since \tilde{f} is soft *pre*^{*}-

generalized continuous $\tilde{f}^{-1}(Y \setminus (G, B))$ is soft pre^{*}-generalized closed in X. But $\tilde{f}^{-1}(Y \setminus (G, B) = X \setminus \tilde{f}^{-1}(G, B)$. Hence $\tilde{f}^{-1}(G, B)$ is soft *pre*^{*}-generalized open in X. (ii) \Rightarrow (i): Suppose the inverse image of every soft open set in Y is soft pre^{*}-generalized open in X. Let (G, B) be soft closed in Y. Then $Y \setminus (G, B)$ is open in Y. By assumption $\tilde{f}^{-1}(Y \setminus (G, B))$ is soft pre^{*}-generalized open. $\tilde{f}^{-1}(Y \setminus (G, B)) = X \setminus \tilde{f}^{-1}(G, B)$. Therefore $\tilde{f}^{-1}(G,B)$ is soft pre^{*}-generalized closed in X. Hence \tilde{f} is soft pre^{*}generalized continuous.

(i) \Rightarrow (iii): Let (G, B) be a subset of Y. Since \tilde{f} is soft pre^* -generalized continuous, $\tilde{f}^{-1}(S_t cl(G,B))$ is soft pre^* -generalized closed in Χ. Then $S_t p^* gcl\left(\tilde{f}^{-1}(S_t cl(G, B))\right) = \tilde{f}^{-1}(S_t cl(G, B)).$

 $\operatorname{Now} S_t p^* gcl\left(\tilde{f}^{-1}(G,B)\right) \cong S_t p^* gcl\left(\tilde{f}^{-1}(S_t cl(G,B))\right) = \tilde{f}^{-1}(S_t cl(G,B)).$ This proves (ii).

(iii) \Rightarrow (iv): Let (F, A) be a subset of X. Then $\tilde{f}(F, A)$ is a subset of Y. By our assumption, $S_t p^* gcl\left(\tilde{f}^{-1}\left(\tilde{f}(F,A)\right)\right) \cong \tilde{f}^{-1}\left(S_t cl\left(\tilde{f}(F,A)\right)\right)$. But $\left(S_t p^* gcl(F,A)\right) \cong S_t p^* gcl\left(\tilde{f}^{-1}\left(\tilde{f}(F,A)\right)\right)$.

$$\left(S_t p^* gcl(F, A)\right) \cong S_t p^* gcl\left(\tilde{f}^{-1}\left(\tilde{f}(F, A)\right)\right)$$

Thus $S_t p^* gcl(F, A) \cong \tilde{f}^{-1} \left(S_t cl\left(\tilde{f}(F, A)\right) \right)$. Hence $\tilde{f}(S_t p^* gcl(F, A) \cong S_t cl(F, A)$. This proves (iii).

(iv) \Rightarrow (i): Let (F, A) be soft subset of X. Then $\tilde{f}^{-1}(F, A) = \tilde{f}^{-1}(S_t cl(F, A))$. By (iii) $\tilde{f}(S_t p^* gcl(F, A)) \cong S_t cl(\tilde{f}(F, A)) \cong S_t cl(F, A) = (F, A).$ That implies $S_t p^* gcl\left(\tilde{f}^{-1}(F,A)\right) \cong \tilde{f}^{-1}(F,A)$. But $\tilde{f}^{-1}(F,A) \cong S_t p^* gcl\left(\tilde{f}^{-1}(F,A)\right)$. Thus $S_t p^* gcl(\tilde{f}^{-1}(F,A)) = \tilde{f}^{-1}(F,A)$ and so $\tilde{f}^{-1}(F,A)$ is soft pre^* -generalized

closed. Hence \tilde{f} is soft *pre*^{*}-generalized continuous.

Remark 3.22. The composition of two soft *pre*^{*}-generalized continuous functions need not be soft *pre*^{*}-generalized continuous as shown in the following example.

Example 3.23. Let $X = \{a, b\}, Y = \{x, y\}, Z = \{m, n\}, \tilde{\tau}^{\tilde{c}} = \{F_1, F_5, F_6, F_{15}, F_{16}\}, T = \{x, y\}, Z = \{m, n\}, \tilde{\tau}^{\tilde{c}} = \{F_1, F_5, F_6, F_{15}, F_{16}\}, T = \{x, y\}, T = \{x, y\}$ $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_3, G_8, G_{11}, G_{16}\} \text{ and } \tilde{\mu}^{\tilde{c}} = \{H_1, H_4, H_{16}\} \text{ where} H_4 = \{(l_1, \emptyset), (l_2, (m, n))\}.$ Define $u_1: X \to Y$ and $p_1: A \to B$ as $u_1(a) = y$, $u_2(b) = x$, $p_1(e_1) = k_2$, $p_2(e_2) = k_1$. Then the soft mapping $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ is soft pre^* -generalized continuous. Also, define $u_2: Y \to Z$ and $p_2: B \to C$ as $u_1(x) = m$, $u_2(y) = n$, $p_1(k_1) = l_2$, $p_2(k_2) = l_1$. Then the soft mapping $\tilde{g}: (Y, \tilde{\sigma}, B) \to (Z, \tilde{\mu}, L)$ is soft pre^* -generalized continuous. Now let $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, A) \to (Z, \tilde{\mu}, L)$ be the composition of two soft pre^* functions. Since $(\tilde{g} \circ \tilde{f})^{-1}(H_4) = \tilde{f}^{-1}(\tilde{g}^{-1}(H_4)) =$ generalized continuous $\tilde{f}^{-1}(G_{13}) = F_4$ is not soft *pre*^{*}-generalized closed, $\tilde{g} \circ \tilde{f}$ is not soft *pre*^{*}-generalized continuous.

Theorem 3.24. If $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ is soft pre^* -generalized continuous and $\tilde{g}: (Y, \tilde{\sigma}, B) \to (Z, \tilde{\mu}, C)$ is soft continuous then their composition $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, A) \to (Z, \tilde{\mu}, C)$ is also soft pre^* -generalized continuous.

Proof: Let (H, C) be soft closed set in Z. Since g is soft continuous, $\tilde{g}^{-1}(H, C)$ is closed in Y and since \tilde{f} is soft pre^{*}-generalized continuous, $\tilde{f}^{-1}(\tilde{g}^{-1}(H, C))$ is soft pre^{*}-generalized closed in X. This implies $(\tilde{g} \circ \tilde{f})^{-1}(H, C)$ is soft pre^{*}-generalized closed in X. Thus $(\tilde{g} \circ \tilde{f})^{-1}$ is soft pre^{*}-generalized closed in X for every soft closed subset (H, C) of Z. Hence $\tilde{g} \circ \tilde{f}$ is soft pre^{*}-generalized continuous.

4. Soft Pre^{*}-Generalized Irresolute Functions

Definition 4.1. A function $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ is said to be soft *pre**-generalized irresolute if $\tilde{f}^{-1}(G, B)$ is soft *pre**-generalized closed in $(X, \tilde{\tau}, A)$ for every soft *pre**-generalized closed set in $(Y, \tilde{\sigma}, B)$.

Example 4.2. Let $X = \{a, b\}$, $Y = \{x, y\}$, $A = \{e_1, e_2\}$ and $B = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: A \to B$ as u(a) = y, u(b) = x, $p(e_1) = k_1$ and $p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau}^{\tilde{c}} = \{F_1, F_2, F_8, F_{10}, F_{16}\}$ and $\tilde{\sigma}^{\tilde{c}} = \{G_1, G_4, G_8, G_{12}, G_{16}\}$. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a soft mapping. Since $\tilde{f}^{-1}(G_4) = F_4$ and $\tilde{f}^{-1}(G_8) = F_{12}$ and $\tilde{f}^{-1}(G_{12}) = F_8$ are soft *pre*^{*}-generalized closed, \tilde{f} is soft *pre*^{*}-generalized irresolute.

Theorem 4.3. If $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ is a soft *pre*^{*}-generalized irresolute function then \tilde{f} is soft *pre*^{*}-generalized continuous.

Proof: Let (G,B) be soft closed in Y. By theorem 2.10(i), (G,B) is soft pre^* -generalized closed. Since \tilde{f} is soft pre^* -generalized irresolute function, $\tilde{f}^{-1}(G,B)$ is soft pre^* -generalized closed in X.Hence \tilde{f} is soft pre^* -generalized continuous.

Theorem 4.4. If $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ and $\tilde{g}: (Y, \tilde{\sigma}, B) \to (Z, \tilde{\mu}, C)$ are soft pre^* -generalized irresolute functions then $\tilde{g} \circ \tilde{f}$ is soft pre^* -generalized irresolute.

Proof: Let (H, C) be soft pre^* -generalized closed in Z. Since \tilde{g} is soft pre^* -generalized irresolute, $\tilde{g}^{-1}(H, C)$ is soft pre^* -generalized closed in Y. Also, since \tilde{f} is soft pre^* -generalized irresolute, $\tilde{f}^{-1}(\tilde{g}^{-1}(H, C)) = (\tilde{g} \circ \tilde{f})^{-1}(H, C)$ is soft pre^* -generalized closed in X. Hence $\tilde{g} \circ \tilde{f}$ is soft pre^* -generalized irresolute.

Theorem 4.5. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ is soft pre^* -generalized irresolute and $\tilde{g}: (Y, \tilde{\sigma}, B) \to (Z, \tilde{\mu}, C)$ is soft pre^* -generalized continuous. Then $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, A) \to (Z, \tilde{\mu}, C)$ is soft pre^* -generalized continuous.

Proof: Let (H, C) be soft closed set in Z. Since \tilde{g} is soft pre^* -generalized continuous, $\tilde{g}^{-1}(H, C)$ is soft pre^* -generalized closed in Y. Also, since \tilde{f} is soft pre^* -generalized irresolute, $\tilde{f}^{-1}(\tilde{g}^{-1}(H, C)) = (\tilde{g} \circ \tilde{f})^{-1}(H, C)$ is soft pre^* -generalized closed in X.Hence $\tilde{g} \circ \tilde{f}$ is soft pre^* -generalized continuous.

Theorem 4.6. Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be a function. Then the following are equivalent.

- i. \tilde{f} is soft *pre*^{*}-generalized irresolute.
- ii. The inverse image of every soft pre^* -generalized open set in $(Y, \tilde{\sigma}, B)$ is soft pre^* -generalized open in $(X, \tilde{\tau}, A)$.
- iii. $S_t p^* gcl(\tilde{f}^{-1}(G,B)) \cong \tilde{f}^{-1}(S_t p^* gcl(G,B))$ for every subset (G,B) of Y.

iv. $\tilde{f}(S_t p^* gcl(F, A)) \cong S_t p^* gcl(\tilde{f}(F, A))$ for every subset (F, A) of X.

Proof: The proof is similar to theorem 3.21.

Theorem 4.7. A function $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ is soft pre^* -generalized iresolute if and only if $\tilde{f}^{-1}(S_t p^*gint(G, B)) \cong S_t p^*gint(\tilde{f}^{-1}(G, B))$ for every subset (G, B) of Y.

Proof: Let $\tilde{f}: (X, \tilde{\tau}, A) \to (Y, \tilde{\sigma}, B)$ be soft pre^* -generalized irresolute. Let (G, B) be a subset of Y. Then $S_t p^*gint(G, B)$ is soft pre^* -generalized open in Y. Since \tilde{f} is soft pre^* -generalized irresolute, $\tilde{f}^{-1}(S_t p^*gint(G, B))$ is soft pre^* -gene-ralized open in X. Then

$$\tilde{f}^{-1}(S_t p^* gint(G,B)) = S_t p^* gint\left(\tilde{f}^{-1}(S_t p^* gint(G,B))\right) \cong S_t p^* gint\left(\tilde{f}^{-1}(G,B)\right).$$

Thus $\tilde{f}^{-1}(S_t p^* gint(G,B)) \cong S_t p^* gint\left(\tilde{f}^{-1}(G,B)\right).$

Conversely, let (G, B) be soft pre^* -generalized open in Y. Then by (iv), $\tilde{f}^{-1}(G, B) = \tilde{f}^{-1}(S_t p^* gint(G, B)) \cong S_t p^* gint(\tilde{f}^{-1}(G, B))$.But $S_t p^* gint(\tilde{f}^{-1}(G, B)) \cong \tilde{f}^{-1}(G, B)$. Therefore $S_t p^* gint(\tilde{f}^{-1}(G, B)) = \tilde{f}^{-1}(G, B)$ and so $\tilde{f}^{-1}(G, B)$ is soft pre^* -generalized open. Hence \tilde{f} is soft pre^* -generalized irresolute.

References

[1] Aras C.G and Sonmez A, On Soft Mappings, arXiv: 1305.4545, (2013).

[2] Athar Kharal and Ahmad. B, Mappings on Soft Classes, *New Math. Nat. Comput.* 7(3), 471-481 (2011)

[3] Janaki C and Jeyanthi V, On Soft πGr -Continuous in Soft Topological Spaces, *International Journal of Engineering Research and Technology*, ISSN:2278-0181, vol 3, (2014).

[4] Mahanta J and Das P.K., On Soft Topological Space Via Semiopen and Semiclosed Soft Sets, arXiv:1203.4133v1 (math.GN), (2012).

[5] Metin Akdag and Alkan Ozkan, Soft Alpha-Open Sets and Soft Alpha-Continuous Functions, *Hindawi Publishing Corporation, Abstract and Applied Analysis*, 2014, 7 pages.

C. Reena and M. Karthika

[6] Molodtsov D.A., Soft Set Theory-First Results, *Computers and Mathematics with Applications* 37 (1999) 19-31.

[7] Muhammad Shabir and Munazza Naz, On Soft Topological Spaces, *Computers and Mathematics with Applications* volume 61, Issue 7, April 2011, 1786-1799.

[8] Reena C and Karthika M, A New Class of Generalized Closed Sets In Soft Topological Spaces, *paper presented in the International Virtual Conference on Current Scenario in Modern Mathematics* (ICCSMM-2022).

[9] Sattar Hameed Hamzah and Samer Adnan Jubair, On Soft Generalized Continuous Mappings, *Journal of Al-Qadisiyah for Computer Science and Mathematics*, 8(1) 83-92, (2016).