Soft Semi^{*} δ -continuity in Soft Topological Spaces

Reena C^{*} Yaamini K S[†]

Abstract

In this paper, we introduce the concept of soft semi* δ -continuous functions and soft semi* δ -irresolute functions in soft topological spaces. Also, we investigate its properties and study its relation with other soft continuous functions.

Keywords: soft semi* δ -open, soft semi* δ -closed, soft semi* δ -continuous, soft semi* δ -irresolute.

2010 AMS subject classification: 54C05[‡]

^{*}Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Thoothukudi-1, Tamil Nadu, India; reenastephany@gmail.com

[†]Research Scholar, Reg. No. 21212212092002, Department of Mathematics, St. Mary's College (Autonomous), (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Thoothukudi-1, Tamil Nadu, India; ksyaamini@gmail.com

[‡]Received on January 12th, 2022. Accepted on May 12th, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.898. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

1. Introduction

The concept of soft set theory was first introduced by Molotov [8] in 1999 to deal with uncertainty. According to him, a soft set over the universe is a parameterized family of subsets of the universe. In 2011, Muhammad Shabir and Munazza Naz [10] introduced soft topological spaces which are defined over an initial universe with a fixed set of parameters. Meanwhile, in 2010, Athar Kharal and B. Ahmad [4] defined the notion of soft mappings on soft classes. Later, in 2013, Aras and Sonmez[2] introduced and studied soft continuous mappings. Further, many authors defined and studied various forms of soft functions. Recently, the authors[12] of this paper introduced a new class of soft sets namely soft semi* δ -continuous functions and soft semi* δ -continuous functions and soft semi* δ -irresolute functions in soft topological spaces. We also investigate its properties and study its relation with other soft continuous functions.

2. Preliminaries

Throughout this work, $(X, \tilde{\tau}, E)$, $(Y, \tilde{\sigma}, K)$ and $(Z, \tilde{\mu}, L)$ are soft topological spaces. $S_t cl(F, A)$, $S_t int(F, A)$, $S_t cl^*(F, A)$ and $S_t int^*(F, A)$ denote soft closure, soft interior, soft generalized closure and soft generalized interior of (F, A) respectively.

Definition 2.1. [10] Let X be an initial universe and E be a set of parameters. Let P(X) denote the power set of X and A be a non – empty subset of E. A pair (F, A) is called a *soft set* over X where F is a mapping given by $F: A \to P(X)$.

The collection of all soft sets over X is called a soft class and denoted by $S_t(X, E)$.

Definition 2.2. [10] Let $\tilde{\tau}$ be the collection of soft set over *X*. Then $\tilde{\tau}$ is said to be a *soft topology* on *X* if

- 1) $\tilde{\phi}$, \tilde{X} belongs to $\tilde{\tau}$
- 2) The union of any number of soft sets in $\tilde{\tau}$ belongs to $\tilde{\tau}$
- 3) The intersection of any two soft sets in $\tilde{\tau}$ belongs to $\tilde{\tau}$.

The triplet $(X, \tilde{\tau}, E)$ is called a soft topological space. The members of $\tilde{\tau}$ are called soft open and its complements are called soft closed.

Definition 2.3. [4] Let $S_t(X, E)$ and $S_t(Y, K)$ be soft classes. Let $u: X \to Y$ and $p: E \to K$ be mappings. Then a mapping $\tilde{f}: S_t(X, E) \to S_t(Y, K)$ is defined as: for a soft set (F, A) in $S_t(X, E), (\tilde{f}(F, A), B), B = p(A) \subseteq K$ is a soft set in $S_t(Y, K)$ given by

$$\tilde{f}(F,A)(\beta) = \begin{cases} u \left(\bigcup_{\alpha \in p^{-1}(\beta) \cap A} F(\alpha) \right), & \text{if } p^{-1}(\beta) \cap A \neq \phi \\ \phi & \text{otherwise} \end{cases}$$

for $\beta \in B \subseteq K$. $(\tilde{f}(F,A), B)$ is called *soft image* of a soft set (F,A). If B = K, then $(\tilde{f}(F,A), K)$ is written as $\tilde{f}(F,A)$.

Definition 2.4. [4] Let $\tilde{f}: S_t(X, E) \to S_t(Y, K)$ be a mapping from a soft class $S_t(X, E)$ to $S_t(Y, K)$ and (G, C) be a soft set in $S_t(Y, K)$ where $C \subseteq K$. Let $u: X \to Y$ and $p: E \to K$ be mappings. Then $(\tilde{f}^{-1}(G, C), D), D = p^{-1}(C)$ is a soft set in $S_t(X, E)$ defined as

 $\tilde{f}^{-1}(G,C)(\alpha) = \begin{cases} u^{-1}(G(p(\alpha)), & \text{if } p(\alpha) \in C \\ \phi & \text{otherwise} \end{cases}$ for $\alpha \in D \subseteq E$. $(\tilde{f}^{-1}(G,C),D)$ is called a *soft inverse image* of (G,C). We shall write $(\tilde{f}^{-1}(G,C),E)$ as $\tilde{f}^{-1}(G,C)$.

Definition 2.5. Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be soft topological spaces. A soft function $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is soft continuous[2] (respectively soft semi-continuous[5], soft pre-continuous[9], soft α -continuous[6], soft β -continuous [14], soft b-continuous[7], soft regular continuous[3], soft δ -continuous [11], soft generalized continuous[13], soft semi*-continuous, soft pre*-continuous, soft β^* -continuous [1]) if $\tilde{f}^{-1}(G, B)$ is soft open (respectively soft semi-open, soft pre-open, soft α -open, soft β -open, soft b-open, soft regular open, soft δ -open, soft generalized open, soft semi*-open, soft pre*-open, soft β^* -open) in $(X, \tilde{\tau}, E)$ for every soft open set (G, B) in $(Y, \tilde{\sigma}, K)$.

Definition 2.6.[12] A subset (F, A) of a soft topological space $(X, \tilde{\tau}, E)$ is called *soft semi** δ *-open set* if there exists a soft δ *-open set* (O, A) such that $(O, A) \cong (F, A) \cong S_t cl^*(O, A)$. The complement of soft semi* δ *-open set* is called soft semi* δ *-closed*. The class of soft semi* δ *-open sets in* $(X, \tilde{\tau}, E)$ is denoted by $S_t S^* \delta O(X, \tilde{\tau}, E)$.

Theorem 2.7.[12] In any soft topological space $(X, \tilde{\tau}, E)$,

- (i) Every soft δ -open set is soft semi* δ -open.
- (ii) Every soft regular open set is soft semi* δ -open.
- (iii) Every soft semi* δ -open set is soft semi-open.
- (iv) Every soft semi* δ -open set is soft semi*-open.
- (v) Every soft semi* δ -open set is soft β -open.
- (vi) Every soft semi* δ -open set is soft β *-open.
- (vii) Every soft semi* δ -open set is soft b-open.

Remark 2.8:[12] The above theorem is also true for soft semi* δ -closed sets.

3. Soft semi* δ -continuous functions

Definition 3.1. Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be soft topological spaces. Let $u: X \to Y$ and $p: E \to K$ be mappings. Then the soft function $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be soft semi* δ -

continuous if $\tilde{f}^{-1}(G,B)$ is soft semi* δ -open in $(X, \tilde{\tau}, E)$ for every soft open set (G, B) in $(Y, \tilde{\sigma}, K)$.

The following soft sets are used in all examples Let $X = \{a, b\}$ and $E = \{e_1, e_2\}$. Then the soft sets are $F_1 = \{(e_1, \{\phi\}), (e_2, \{\phi\})\} = \widetilde{\phi}$ $F_9 = \{(e_1, \{b\}), (e_2, \{\phi\})\}$ $F_2 = \{(e_1, \{\phi\}), (e_2, \{a\})\}$ $F_{10} = \{(e_1, \{b\}), (e_2, \{a\})\}$ $F_3 = \{(e_1, \{\phi\}), (e_2, \{b\})\}$ $F_{11} = \{(e_1, \{b\}), (e_2, \{b\})\}$ $F_4 = \{(e_1, \{\phi\}), (e_2, \{a, b\})\}$ $F_{12} = \{(e_1, \{b\}), (e_2, \{a, b\})\}$ $F_{13} = \{(e_1, \{a, b\}), (e_2, \{\phi\})\}$ $F_5 = \{(e_1, \{a\}), (e_2, \{\phi\})\}$ $F_{14} = \{(e_1, \{a, b\}), (e_2, \{a\})\}$ $F_6 = \{(e_1, \{a\}), (e_2, \{a\})\}$ $F_7 = \{(e_1, \{a\}), (e_2, \{b\})\}$ $F_{15} = \{(e_1, \{a, b\}), (e_2, \{b\})\}$ $F_8 = \{(e_1, \{a\}), (e_2, \{a, b\})\}$ $F_{16} = \{(e_1, \{a, b\}), (e_2, \{a, b\})\} = \tilde{X}$

Similarly, let $Y = \{x, y\}$ and $K = \{k_1, k_2\}$. Then the soft sets $G_1, G_2, ..., G_{16}$ are obtained by replacing a, b, e_1 and e_2 by x, y, k_1 and k_2 respectively in the above sets.

Example 3.2. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as $u(a) = x, u(b) = y, p(e_1) = k_2, p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_4, F_5, F_8\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_2, G_{13}, G_{14}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Then, $\tilde{f}^{-1}(G_2) = F_5, \tilde{f}^{-1}(G_{13}) = F_4$ and $\tilde{f}^{-1}(G_{14}) = F_8$. Here, F_4, F_5, F_8 are soft semi* δ -open. Hence \tilde{f} is soft semi* δ -continuous.

Theorem 3.3. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft δ -continuous function. Then \tilde{f} is soft semi* δ -continuous.

Proof: Let (G, B) be a soft open set in Y. Since \tilde{f} is soft δ -continuous, $\tilde{f}^{-1}(G, B)$ is soft δ -open in X. Then by theorem 2.7(i), $\tilde{f}^{-1}(G, B)$ is soft semi* δ -open. Hence \tilde{f} is soft semi* δ -continuous.

Remark 3.4. The converse of the above theorem need not be true.

Example 3.5. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as $u(a) = x, u(b) = y, p(e_1) = k_1, p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_2, F_{11}, F_{12}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_6, G_{11}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_6) = F_6$ is soft semi* δ -open but not soft δ -open, \tilde{f} is soft semi* δ -continuous but not soft δ -continuous.

Theorem 3.6. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft regular continuous function. Then \tilde{f} is soft semi* δ -continuous.

Proof. Similar to theorem 3.3, the proof follows from theorem 2.7(ii).

Remark 3.7. The converse of the above theorem need not be true.

Example 3.8. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as $u(a) = x, u(b) = y, p(e_1) = k_2, p(e_2) = k_1$. Consider the soft

topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_5, F_9, F_{13}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_2, G_3, G_4\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_4) = F_{13}$ is soft semi* δ -open but not soft regular open, \tilde{f} is soft semi* δ -continuous but not soft regular continuous.

Theorem 3.9. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft function.

- (i) If \tilde{f} is soft semi* δ -continuous, then \tilde{f} is soft semi-continuous.
- (ii) If \tilde{f} is soft semi* δ -continuous, then \tilde{f} is soft semi*-continuous.
- (iii) If \tilde{f} is soft semi* δ -continuous, then \tilde{f} is soft β -continuous.
- (iv) If \tilde{f} is soft semi* δ -continuous, then \tilde{f} is soft β *-continuous.
- (v) If \tilde{f} is soft semi* δ -continuous, then \tilde{f} is soft b-continuous.

Proof. (i) Let (G, B) be a soft open set in Y. Since \tilde{f} is soft semi* δ -continuous, $\tilde{f}^{-1}(G,B)$ is soft semi* δ -open in X. Then by theorem 2.7(iii), $\tilde{f}^{-1}(G,B)$ is soft semiopen. Hence \tilde{f} is soft semi-continuous. The other proofs are similar.

Remark 3.10. The converse of each of the statements in above theorem need not be true.

Example 3.11. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as $u(a) = x, u(b) = y, p(e_1) = k_2, p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau} = {\tilde{X}, \tilde{\phi}, F_5, F_9, F_{13}}$ and $\tilde{\sigma} = {\tilde{Y}, \tilde{\phi}, G_6, G_{14}}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_6) = F_6$ and $\tilde{f}^{-1}(G_{14}) = F_8$ are soft semi-open but not soft semi* δ -open, \tilde{f} is soft semi-continuous but not soft semi* δ -continuous.

Example 3.12. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as $u(a) = y, u(b) = x, p(e_1) = k_1, p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_6, F_{14}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_{11}, G_{15}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_{11}) = F_6$ and $\tilde{f}^{-1}(G_{15}) = F_{14}$ are soft semi*-open but not soft semi* δ -open, \tilde{f} is soft semi*-continuous but not soft semi* δ -continuous.

Example 3.13. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as $u(a) = x, u(b) = y, p(e_1) = k_1, p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_4, F_9, F_{12}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_2, G_6, G_{10}, G_{14}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \rightarrow \tilde{f}: (X, \tilde{\tau}, E)$ $(Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_2) = F_2, \tilde{f}^{-1}(G_6) = F_6, \tilde{f}^{-1}(G_{10}) = F_{10}$ and $\tilde{f}^{-1}(G_{14}) = F_{14}$ are both soft β -open and soft β^* -open but not soft semi* δ -open, \tilde{f} is both soft β -continuous and soft β^* -continuous but not soft semi* δ -continuous.

Example 3.14. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as $u(a) = y, u(b) = x, p(e_1) = k_1, p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_3, F_9, F_{11}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_2, G_4, G_6, G_8\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to \tilde{f}: (X, \tilde{\tau}, E)$ $(Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_4) = F_4$ and $\tilde{f}^{-1}(G_8) = F_{12}$ are soft b-open but not soft semi* δ -open, \tilde{f} is soft b-continuous but not soft semi* δ -continuous.

Remark 3.15. The concept of soft semi* δ -continuity and soft continuity are independent as shown in the following example.

Example 3.16. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as $u(a) = x, u(b) = y, p(e_1) = k_2, p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_4, F_5, F_8\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_{15}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_{15}) = F_{12}$ is soft semi* δ -open but not soft open, \tilde{f} is soft semi* δ -continuous but not soft continuous. Now, consider the soft topology $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_4, F_8, F_{12}\}$ on X. Here, since $\tilde{f}^{-1}(G_{15}) = F_{12}$ is soft open but not soft semi* δ -open, \tilde{f} is soft continuous but not soft semi* δ -continuous.

Remark 3.17. The concept of soft semi* δ -continuity and soft generalized continuity are independent as shown in the following example.

Example 3.18. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as u(a) = x, u(b) = y, $p(e_1) = k_1, p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_6, F_9, F_{14}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_6, G_{11}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_{11}) = F_{11}$ is soft semi* δ -open but not soft generalized open, \tilde{f} is soft semi* δ -continuous but not soft generalized continuous. Now, consider the soft topology $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_{13}\}$ on Y. Here, since $\tilde{f}^{-1}(G_{13}) = F_{13}$ is soft generalized open but not soft semi* δ -open, \tilde{f} is soft generalized continuous but not soft semi* δ continuous.

Remark 3.19. The concept of soft semi* δ -continuity and soft pre-continuity are independent as shown in the following example.

Example 3.20. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as u(a) = x, u(b) = y, $p(e_1) = k_2, p(e_2) = k_1$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_2, F_{11}, F_{12}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_5, G_6, G_{15}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_6) = F_6$ is soft semi* δ -open but not soft preopen, \tilde{f} is soft semi* δ -continuous but not soft pre-continuous. Now, consider the mapping $u(a) = y, u(b) = x, p(e_1) = k_2, p(e_2) = k_1$. Here, since $\tilde{f}^{-1}(G_5) = F_3$ and $\tilde{f}^{-1}(G_{15}) = F_8$ are soft pre-open but not soft semi* δ -open, \tilde{f} is soft pre-continuous but not soft semi* δ -continuous.

Remark 3.21. The concept of soft semi* δ -continuity and soft pre*-continuity are independent as shown in the following example.

Example 3.22. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as u(a) = y, u(b) = x, $p(e_1) = k_1, p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_6, F_9, F_{14}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_{11}, G_{12}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$

be a soft mapping. Since $\tilde{f}^{-1}(G_{12}) = F_8$ is soft semi* δ -open but not soft pre*-open, \tilde{f} is soft semi* δ -continuous but not soft pre*-continuous. Now, consider the soft topology $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_3, G_9, G_{11}\}$. Here, since $\tilde{f}^{-1}(G_3) = F_2$ and $\tilde{f}^{-1}(G_9) = F_5$ are soft pre*-open but not soft semi* δ -continuous.

Remark 3.23. The concept of soft semi* δ -continuity and soft α -continuity are independent as shown in the following example.

Example 3.24. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as u(a) = y, u(b) = x, $p(e_1) = k_1, p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_4, F_9, F_{12}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_4, G_8, G_{12}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Since $\tilde{f}^{-1}(G_{12}) = F_8$ is soft semi* δ -open but not soft α -open, \tilde{f} is soft semi* δ -continuous but not soft α -continuous. Now, consider the soft topology $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_4, F_8, F_{12}\}$ on X. Here, since $\tilde{f}^{-1}(G_4) = F_4$, $\tilde{f}^{-1}(G_8) = F_{12}$ and $\tilde{f}^{-1}(G_{12}) = F_8$ are soft α -open but not soft semi* δ -open, \tilde{f} is soft α -continuous but not soft semi* δ -continuous but not soft semi* δ -open.

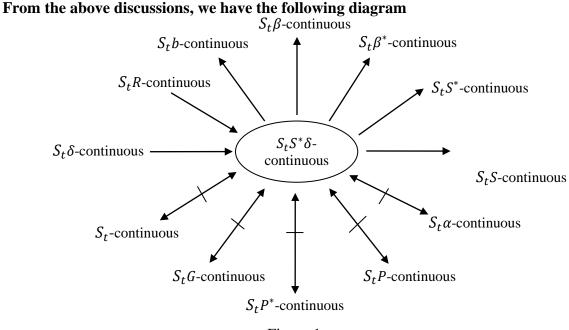


Figure 1

Theorem 3.25. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft function. Then the following statements are equivalent:

- (i) \tilde{f} is soft semi* δ -continuous.
- (ii) The inverse image of every soft closed set in $(Y, \tilde{\sigma}, K)$ is soft semi* δ -closed in $(X, \tilde{\tau}, E)$.
- (iii) $\tilde{f}(S_t s^* \delta cl(F, A)) \cong S_t cl(\tilde{f}(F, A))$ for every soft set (F, A) over X.

(iv) $S_t s^* \delta cl(\tilde{f}^{-1}(G,B)) \cong \tilde{f}^{-1}(S_t cl(G,B))$ for every soft set (G,B) over *Y*. **Proof.**

(i) \Rightarrow (ii) Let \tilde{f} be a soft semi* δ -continuous function and (H, B) be a soft closed set in Y. Then $(H, B)^{\tilde{c}}$ is soft open in Y. Since \tilde{f} is soft semi* δ -continuous, $\tilde{f}^{-1}((H, B)^{\tilde{c}})$ is soft semi* δ -open in X. That is, $(\tilde{f}^{-1}(H, B))^{\tilde{c}}$ is soft semi* δ -open in $(X, \tilde{\tau}, E)$. Hence $\tilde{f}^{-1}(H, B)$ is soft semi* δ -closed in $(X, \tilde{\tau}, E)$.

(ii) \Rightarrow (i) Let (G, B) be soft open in Y. Then $(G, B)^{\tilde{c}}$ be soft closed in Y. By assumption, $\tilde{f}^{-1}((G, B)^{\tilde{c}})$ is soft semi* δ -closed in X. That is, $(\tilde{f}^{-1}(G, B))^{\tilde{c}}$ is soft semi* δ -closed in X. Hence, $\tilde{f}^{-1}(G, B)$ is soft semi* δ -continuous.

(ii) \Rightarrow (iii) Let (F,A) be a soft set over X. Now, $(F,A) \cong \tilde{f}^{-1}(\tilde{f}(F,A))$ implies $(F,A) \cong \tilde{f}^{-1}\left(S_t cl\left(\tilde{f}(F,A)\right)\right)$. Since $S_t cl\left(\tilde{f}(F,A)\right)$ is soft closed in Y, by assumption $\tilde{f}^{-1}\left(S_t cl\left(\tilde{f}(F,A)\right)\right)$ is a soft semi* δ -closed set containing (F,A). Also, $S_t s^* \delta cl(F,A)$ is the smallest soft semi* δ -closed set containing (F,A). Hence, $S_t s^* \delta cl(F,A) \cong \tilde{f}^{-1}\left(S_t cl\left(\tilde{f}(F,A)\right)\right)$. Therefore, $\tilde{f}(S_t s^* \delta cl(F,A)) \cong S_t cl\left(\tilde{f}(F,A)\right)$.

(iii) \Rightarrow (ii) Let (H,B) be a soft closed set in Y. Then, by assumption, $\tilde{f}(S_t s^* \delta cl(\tilde{f}^{-1}(H,B))) \cong S_t cl(\tilde{f}(\tilde{f}^{-1}(H,B))) \cong S_t cl(H,B) = (H,B)$ implies $S_t s^* \delta cl(\tilde{f}^{-1}(H,B)) \cong \tilde{f}^{-1}(H,B)$. Also, $\tilde{f}^{-1}(H,B) \cong S_t s^* \delta cl(\tilde{f}^{-1}(H,B))$. Hence, $\tilde{f}^{-1}(H,B)$ is soft semi* δ -closed in X.

(iii) \Rightarrow (iv) Let (G, B) be a soft set over Y and let $(F, A) = \tilde{f}^{-1}(G, B)$. By assumption, $\tilde{f}(S_t s^* \delta cl(F, A)) \cong S_t cl(\tilde{f}(F, A)) = S_t cl(G, B)$. This implies $S_t s^* \delta cl(\tilde{f}^{-1}(G, B)) \cong \tilde{f}^{-1}(S_t cl(G, B))$.

(iv) \Rightarrow (iii) Let $(G,B) = \tilde{f}(F,A)$. Then, by assumption $S_t s^* \delta cl(F,A) = S_t s^* \delta cl\left(\tilde{f}^{-1}(G,B)\right) \cong \tilde{f}^{-1}(S_t cl(G,B)) = \tilde{f}^{-1}(S_t cl\left(\tilde{f}(F,A)\right))$. This implies $\tilde{f}(S_t s^* \delta cl(F,A)) \cong S_t cl\left(\tilde{f}(F,A)\right)$

(iv) \Rightarrow (i) Let (G, B) be soft open in Y. Then, $(G, B)^{\tilde{c}}$ is soft closed in Y. By assumption, $\tilde{f}^{-1}((G, B)^{\tilde{c}}) = \tilde{f}^{-1}(S_t cl(G, B)^{\tilde{c}}) \cong S_t s^* \delta cl(\tilde{f}^{-1}(G, B)^{\tilde{c}})$. Also, we know that $\tilde{f}^{-1}((G, B)^{\tilde{c}}) \cong S_t s^* \delta cl(\tilde{f}^{-1}(G, B)^{\tilde{c}})$. Hence $\tilde{f}^{-1}((G, B)^{\tilde{c}}) = S_t s^* \delta cl(\tilde{f}^{-1}(G, B)^{\tilde{c}})$. Therefore, $\tilde{f}^{-1}((G, B)^{\tilde{c}})$ is soft semi* δ -closed. That is, $(\tilde{f}^{-1}(G, B))^{\tilde{c}}$ is soft semi* δ closed in X. Hence, $\tilde{f}^{-1}(G, B)$ is soft semi* δ -open in X. Therefore, \tilde{f} is soft semi* δ continuous.

Theorem 3.26. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft function. Then \tilde{f} is soft semi* δ continuous if and only if $\tilde{f}^{-1}(S_t int(G, B)) \cong S_t s^* \delta int(\tilde{f}^{-1}(G, B))$ for every soft set (G, B) over Y.

Proof. Let \tilde{f} be a soft semi* δ -continuous function and (G, B) be a soft set over Y. Then $S_t int(G, B)$ is soft open set in Y. By assumption, $\tilde{f}^{-1}(S_t int(G, B))$ is soft semi* δ -open in X. Now, $\tilde{f}^{-1}(S_t int(G,B)) \cong \tilde{f}^{-1}(G,B)$ and $S_t s^* \delta int(\tilde{f}^{-1}(G,B))$ is the largest soft semi* δ -open set contained in $\tilde{f}^{-1}(G,B)$. Hence $\tilde{f}^{-1}(S_t int(G,B)) \cong$ $S_t s^* \delta int(\tilde{f}^{-1}(G,B))$. Conversely, Let (G,B) be soft open in Y. Then, $\tilde{f}^{-1}(G,B) =$ $\tilde{f}^{-1}(S_t int(G,B)) \cong S_t s^* \delta int(\tilde{f}^{-1}(G,B))$. Also, $S_t s^* \delta int(\tilde{f}^{-1}(G,B)) \cong \tilde{f}^{-1}(G,B)$. This implies $\tilde{f}^{-1}(G,B)$ is soft semi* δ -open in X. Hence \tilde{f} is soft semi* δ -continuous.

Remark 3.27. The composition of two soft semi* δ -continuous functions need not be soft semi* δ -continuous.

Example 3.28. Let $X = \{a, b, c\}, Y = \{x, y\}, Z = \{m, n\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}, L = \{l_1, l_2\}.$ Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_5, F_{12}, F_{16}\}, \tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_2, G_7, G_8\}$ and $\tilde{\mu} = \{\tilde{Z}, \tilde{\phi}, H_{10}\}$ where $F_5 = \{(e_1, \{\phi\}), (e_2, \{a, b\})\}, F_{12} = \{(e_1, \{a\}), (e_2, \{c\})\}, F_{16} = \{(e_1, \{a\}), (e_2, \{a, b, c\})\}, G_2 = \{(k_1, \{\phi\}), (k_2, \{x\})\}, G_7 = \{(k_1, \{x\}), (k_2, \{y\})\}, G_8 = \{(k_1, \{x\}), (k_2, \{x, y\})\}$ and $H_{10} = \{(l_1, \{n\}), (l_2, \{m\})\}$. Define $u_1: X \to Y$ and $p_1: E \to K$ as $u_1(a) = u_1(b) = x, u_1(c) = y, p_1(e_1) = k_1, p_1(e_2) = k_2$. Then the soft mapping $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is soft semi* δ -continuous. Also, define $u_2: Y \to Z$ and $p_2: K \to L$ as $u_2(x) = m, u_2(y) = n, p_2(k_1) = l_1$ and $p_2(k_2) = l_2$. Then the soft mapping $\tilde{g}: (Y, \tilde{\sigma}, K) \to (Z, \tilde{\mu}, L)$ is soft semi* δ -continuous. Now, let $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, E) \to (Z, \tilde{\mu}, L)$ be the composition of two soft semi* δ -continuous functions. Then $\tilde{g} \circ \tilde{f}$ is not soft semi* δ -continuous since $(\tilde{g} \circ \tilde{f})^{-1}(H_{10}) = \tilde{f}^{-1}(\tilde{g}^{-1}(H_{10})) = \tilde{f}^{-1}(G_{10}) = \{(e_1, \{c\}), (e_2, \{a, b\})\}$ is not soft semi* δ -open.

Theorem 3.29. Let $(X, \tilde{\tau}, E)$, $(Y, \tilde{\sigma}, K)$ and $(Z, \tilde{\mu}, L)$ be soft topological spaces and let $(Y, \tilde{\sigma}, K)$ be a space in which every soft semi* δ -open set is soft open. Then the composition $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, E) \to (Z, \tilde{\mu}, L)$ of two soft semi* δ -continuous functions $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ and $\tilde{g}: (Y, \tilde{\sigma}, K) \to (Z, \tilde{\mu}, L)$ is soft semi* δ -continuous.

Proof. Let (H, C) be any soft open set in Z. Since \tilde{g} is soft semi* δ -continuous, $\tilde{g}^{-1}(H, C)$ is soft semi* δ -open in Y. Then, by assumption $\tilde{g}^{-1}(H, C)$ is soft open in Y. Also, since \tilde{f} is soft semi* δ -continuous, $\tilde{f}^{-1}(\tilde{g}^{-1}(H, C)) = (\tilde{g} \circ \tilde{f})^{-1}(H, C)$ is soft semi* δ -open in X. Hence $\tilde{g} \circ \tilde{f}$ is soft semi* δ -continuous.

Theorem 3.30. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft semi* δ -continuous function and $\tilde{g}: (Y, \tilde{\sigma}, K) \to (Z, \tilde{\mu}, L)$ be a soft continuous function. Then their composition $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, E) \to (Z, \tilde{\mu}, L)$ is soft semi* δ -continuous.

C. Reena and K. S. Yaamini

Proof. Let (H, C) be any soft open set in Z. Since \tilde{g} is soft continuous, $\tilde{g}^{-1}(H, C)$ is soft open in Y. Also, since \tilde{f} is soft semi* δ -continuous, $\tilde{f}^{-1}(\tilde{g}^{-1}(H, C)) = (\tilde{g} \circ \tilde{f})^{-1}(H, C)$ is soft semi* δ -open in X. Hence $\tilde{g} \circ \tilde{f}$ is soft semi* δ -continuous.

4. Soft semi^{*} δ -irresolute functions

Definition 4.1. Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be soft topological spaces. Let $u: X \to Y$ and $p: E \to K$ be mappings. Then the soft function $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is said to be soft semi* δ -irresolute if $\tilde{f}^{-1}(G, B)$ is soft semi* δ -open in $(X, \tilde{\tau}, E)$ for every soft semi* δ -open set (G, B) in $(Y, \tilde{\sigma}, K)$.

Example 4.2. Let $X = \{a, b\}, Y = \{x, y\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u: X \to Y$ and $p: E \to K$ as u(a) = y, u(b) = x, $p(e_1) = k_1, p(e_2) = k_2$. Consider the soft topologies $\tilde{\tau} = \{\tilde{X}, \tilde{\phi}, F_4, F_9, F_{12}\}$ and $\tilde{\sigma} = \{\tilde{Y}, \tilde{\phi}, G_4, G_5, G_8\}$. Here, $S_t S^* \delta O(X, \tilde{\tau}, E) =$ $\{\tilde{X}, \tilde{\phi}, F_4, F_8, F_9, F_{12}, F_{13}\}$ and $S_t S^* \delta O(Y, \tilde{\sigma}, K) = \{\tilde{Y}, \tilde{\phi}, G_4, G_5, G_8, G_{12}, G_{13}\}$. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft mapping. Then, $\tilde{f}^{-1}(G_4) = F_4$, $\tilde{f}^{-1}(G_5) = F_9$ $\tilde{f}^{-1}(G_8) = F_{12}, \tilde{f}^{-1}(G_{12}) = F_8$ and $\tilde{f}^{-1}(G_{13}) = F_{13}$. Hence, \tilde{f} is soft semi* δ irresolute.

Theorem 4.3. Let $(X, \tilde{\tau}, E)$ and $(Y, \tilde{\sigma}, K)$ be soft topological spaces and let $(Y, \tilde{\sigma}, K)$ be a space in which every soft semi* δ -open set is soft open. If $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is soft semi* δ -continuous, then \tilde{f} is soft semi* δ -irresolute.

Proof. Let (G, B) be soft semi* δ -open in Y. Then, by assumption (G, B) is soft open in Y. Since \tilde{f} is soft semi* δ -continuous, $\tilde{f}^{-1}(G, B)$ is soft semi* δ -open in X. Hence \tilde{f} is soft semi* δ -irresolute.

Theorem 4.4. Let $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ be a soft function. Then the following statements are equivalent:

- (i) \tilde{f} is soft semi* δ -irresolute.
- (ii) The inverse image of every soft semi*δ-closed set in (Y, σ̃, K) is soft semi*δ-closed in (X, τ̃, E).
- (iii) $\tilde{f}(S_t s^* \delta cl(F, A)) \cong S_t s^* \delta cl(\tilde{f}(F, A))$ for every soft set (F, A) over X.
- (iv) $S_t s^* \delta cl(\tilde{f}^{-1}(G, B)) \cong \tilde{f}^{-1}(S_t s^* \delta cl(G, B))$ for every soft set (G, B) over *Y*.

Proof. The proof is similar to theorem 3.25

Theorem 4.5. If $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ and $\tilde{g}: (Y, \tilde{\sigma}, K) \to (Z, \tilde{\mu}, L)$ are soft semi* δ -irresolute functions, then their composition $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, E) \to (Z, \tilde{\mu}, L)$ is also soft semi* δ -irresolute.

Proof. Let (H, C) be soft semi* δ -open in Z. Since \tilde{g} is soft semi* δ -irresolute, $\tilde{g}^{-1}(H, C)$ is soft semi* δ -open in Y. Again, since \tilde{f} is soft semi* δ -irresolute,

 $\tilde{f}^{-1}(\tilde{g}^{-1}(H,C)) = (\tilde{g} \circ \tilde{f})^{-1}(H,C)$ is soft semi* δ -open in X. Hence $\tilde{g} \circ \tilde{f}: (X,\tilde{\tau},E) \to (Z,\tilde{\mu},L)$ is soft semi* δ -irresolute.

Theorem 4.6. If $\tilde{f}: (X, \tilde{\tau}, E) \to (Y, \tilde{\sigma}, K)$ is soft semi* δ -irresolute and $\tilde{g}: (Y, \tilde{\sigma}, K) \to (Z, \tilde{\mu}, L)$ is soft semi* δ -continuous, then $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, E) \to (Z, \tilde{\mu}, L)$ is soft semi* δ -continuous.

Proof. Let (H, C) be a soft open set in Z. Since \tilde{g} is soft semi* δ -continuous, $\tilde{g}^{-1}(H, C)$ is soft semi* δ -open in Y. Now, since \tilde{f} is soft semi* δ -irresolute, $\tilde{f}^{-1}(\tilde{g}^{-1}(H, C)) = (\tilde{g} \circ \tilde{f})^{-1}(H, C)$ is soft semi* δ -open in X. Hence $\tilde{g} \circ \tilde{f}: (X, \tilde{\tau}, E) \to (Z, \tilde{\mu}, L)$ is soft semi* δ -continuous.

5. Conclusions

We have studied the concept of continuity in soft topological spaces by means of soft semi* δ -open sets. We have also introduced the concept of soft semi* δ -irresolute functions. Further, we have compared it with other existing soft functions and we have also investigated the characterization of these functions.

References

[1] P. Anbarasi Rodrigo, S. Maheshwari, Functions Related to Soft β^* -closed sets in Soft Topological Spaces, Proceedings of International Conference on Recent Advances in Computational Mathematics and Engineering 2021.

[2] C.G. Aras, A. Sonmez, H. Cakalli, On Soft Mappings, arXiv: 1305.4545. 2013.

[3] I. Arockiarani, A. Selvi, Soft π g-continuous functions and irresolute functions, International Journal of Innovation and Applied Studies, Volume 7(2), 440-446. 2014.

[4] Athar Kharal and B. Ahmad, Mappings on Soft Classes, New Mathematics and Natural Computation, Volume 7, 471-481. 2010.

[5] J. Mahanta, P.K. Das, On Soft Topological Spaces via Semi open and Semi closed Soft Sets, Kyungpook Math. Journal, 54, 221-236. 2014.

[6] Metin Akdag, Alkan Ozkan, Soft alpha – open sets and soft alpha – continuous functions, Hindawi Publishing Corporation, Abstract and Applied Mathematics, 2014.

[7] Metin Akdag, Alkan Ozkan, Soft b – open sets and soft b – continuous functions, Math Sci 8, 124. 2014.

[8] D. Molostsov, Soft Set Theory – First Results, Computers and Mathematics with Applications, 37, 19 - 31. 1999.

[9] Mrudula Ravindran, G. Manju, Some results on soft pre-continuity, Malaya Journal of Mathematik, 10-17. 2015.

C. Reena and K. S. Yaamini

[10] Muhammud Shabir, Munazza Naz, On Soft Topological Spaces, Computers and Mathematics with Applications, 61, 1786 – 1799. 2011.

[11] Ramadhan A. Mohammed, O. R. Sayed, A. Eliow, Some Properties of Soft Delta – Topology, Academic Journal of Nawroz University, 2019.

[12] C. Reena, K.S. Yaamini, A New Class of Soft Sets Weaker than Soft δ -open sets, Proceedings of International Conference on Smart Technologies and Applications (ICSTA 2022).

[13] Sattar Hameed Hamzah, Samer Adnan Jubair, On Soft Generalized Continuous Mappings, Journal of Al-Qadisiyah for Computer Science and Mathematics, 8(1), 83-92. 2016

[14] Yenus Yumak, Aynur Keskin Kaymakci, Soft β – open sets and their applications, Journal of New Theory, 80 – 89. 2015.