The Edge-To-Vertex Triangle Free Detor Distance in Graphs

S. Lourdu Elqueen¹ G. Priscilla Pacifica²

Abstract

For every connected graph G, the triangle free detour distance $D_{\Delta f}(u, v)$ is the length of a longest u- v triangle free path in G, where u, v are the vertices of G. A u-v triangle free path of length $D_{\Delta f}(u, v)$ is called the u-v triangle free detour. In this article, the edge-to-vertex triangle free detour distance is introduced. It is found that the edge -tovertex triangle free detour distance differs from the edge -to-vertex distance and edgeto-vertex detour distance. The edge-to-vertex triangle free detour distance is found for some standard graphs. Their bounds are determined and their sharpness is checked. Certain general properties satisfied by them are studied.

Keywords: connected graph, edge -to-vertex distance and edge-to-vertex detour distance

2010 AMS subject classification: 05C12, 05C69³

¹Reg No: 19212212092009, Ph. D Research Scholar (Full Time) of Mathematics. Mary's College (Autonomous) Thoothukudi affiliated under Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, South India. sahayamelqueen@gmail.com.

²Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, India, priscillamelwyn@gmail.com.

³ Received on June28th, 2022. Accepted on Sep 1st, 2022.Published on Nov 30th, 2022.doi: 10.23755/rm.v44i0.894. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

1. Introduction

The facility location problem was introduced as edge-to-vertex distance by Santhakumaran [9], in 2010. For an edge e and a vertex v in a connected graph, the edge-to-vertex distance is defined by $d(e, v) = min\{d(u, v) : u \in e\}$. The edge-tovertex eccentricity of e is defined by $e_2(e) = max\{d(e, v) : v \in V\}$. A vertex v of G such that $e_2(e) = d(e, v)$ is called an edge-to-vertex eccentric vertex of v. The edgeto-vertex radius r_2 of G is defined by $r_2 = min\{e_2(e) : e \in E\}$ and the edge-to-vertex diameter d_2 of G is defined by $d_2 = max\{e_2(e) : e \in E\}$. An edge e for which $e_2(e)$ is minimum is called an edge-to-vertex central edge of G and the set of all edge-tovertex central edges of G is the edge-to-vertex center $C_2(G)$ of G. An edge e for which $e_2(e)$ is maximum is called an edge-to-vertexperipheral edge of G and the set of all edge-tovertex peripheraledges of G is the edge-to-vertex periphery $P_2(G)$ of G. If every edgeof G is an edge-to-vertex central edge then G is called the edge-to-vertex self-centered graph. This concept is useful in channel assignment problem in radio technology and security-based communication network design. The concept of edge-to-vertex detour distance was introduced by I. Keerthi Asir [6], Let e be an edge and v a vertex in a connected graph G. An edge-to-vertex e - v path P is a u - v path, where u is a vertex in e such that P contains no vertices of e other than u. The edge-to-vertex detour distance D(e, v) is the length of a longest e - v path in G. Ane - v path of length D(e, v) is called an edge-to-vertex e - v detour or simply e - v detour. Forour convenience an e - v path of length d(e, v) is called an edge-to-vertex e - v geodesic or simply e - v geodesic.

The following theorems are used in the article.

Theorem: 1.1.[6] For any edge *e* and a vertex *v* in a non-trivial connected graph of order $n, 0 \le d(e, v) \le D(e, v) \le n - 2$.

Theorem: 1.2.[6] Let $K_{n,m}$ (n < m) be a complete bipartite graph with partition V_1, V_2 of $V(K_{n,m})$ such that $|V_1| = n$ and $|V_2| = m$. Let *e* be an edge and *v* a vertex such that $v \notin e$ in $K_{n,m}$, then

 $v \notin e \text{ in } K_{n,m}, \text{ then}$ $D(e,v) = \begin{cases} 2n-2 & if v \in V_1 \\ 2n-1 & if v \in V_2 \end{cases}$

2. Edge-To-Vertex Triangle Free Detour Distance

Definition. 2.1 Let *G* be a connected graph. Let *e* be an edge and *u* a vertex in*G*. An edge-to-vertex e - utriangle free path *P* is a u - v triangle free path, where *v* is a vertex in *e* such that *P* contains no vertices of *e* other than *v*. The edge-to-vertex triangle free detour distance is the length of the longest e - u triangle free path in *G*. It is denoted by $D_{\Delta f}(e, v)$. An e - u triangle free path of length $D_{\Delta f}(e, v)$ is called an edge-to-vertex e - u triangle free detour.

Example: 2.1 Consider the graph *G* given in the figure: 2.1. Let $e = \{u_6, u_7\}$ and $v = u_4$. The paths between *e* and *v* are $P_1: u_6, u_5, u_4; P_2: u_7, u_2, u_4; P_3: u_7, u_2, u_3, u_4; P_4: u_7, u_8, u_9, u_1, u_2, u_4; and P_5: u_7, u_8, u_9, u_1, u_2, u_3, u_4$; The paths P_1, P_2, P_4 are triangle free e - v paths and P_3 and P_5 are not triangle free e - v paths. Thus edge-to-vertex distance d(e, v) = 2, edge-to-vertex triangle free detour distance $D_{\Delta f}(e, v) = 5$ and edge-to-vertex detour distance D(e, v) = 6.

Figure: 2.1 G

Thus edge-to-vertex triangle free detour distance differs from the edge-to-vertex distance and edge-to-vertex detour distance.

Theorem. 2.1 Let *G* be a connected graph of order *n*. Let *e* be an edge and *u*a vertex of *G*, then $0 \le d(e, v) \le D_{\Delta f}(e, v) \le D(e, v) \le n - 2$.

Proof. By theorem 1.1, we can conclude that $0 \le d(e, v) \le D(e, v) \le n - 2$. It is enough to prove that (i) $d(e, v) \le D_{\Delta f}(e, v)$ and (ii) $D_{\Delta f}(e, v) \le D(e, v)$.

Thus (i) is true by the definition of edge-to-vertex distance and edge-to-vertex triangle free detour distance.

To prove :(ii)

Case(i): If the detour path does not induce a triangle in G, then $D_{\Delta f}(e, v) = D(e, v)$. Case(ii): If the detour path induces a triangle in G, then $D_{\Delta f}(e, v) < D(e, v)$

Remark 2.1. The bounds in the theorem 2.1 are sharp. Let *G* be a graph and *e* be an edge, $d(e,u) = D_{\Delta f}(e,u) = D(e,u) = 0$ iff $u \in e$. Let *G* be a path with vertices $\{v_1, v_2, \dots, v_n\}$. Then $d(e, u) = D_{\Delta f}(e, u) = D(e, u) = n - 2$, where e = 0

S. Lourdu Elqueen & G. Priscilla Pacifica

 $\{v_{n-1}, v_n\}$ and $u = v_1$. Let *G* be a tree, $d(e, u) = D_{\Delta f}(e, u) = D(e, u)$ for every edge eand vertex uof *G*. For the graph *G* given in the figure:2.1, $e = \{u_6, u_7\}$ and $v = u_4$. The paths between eand *v* are $P_1: u_6, u_5, u_4; P_2: u_7, u_2, u_4; P_3: u_7, u_2, u_3, u_4; P_4: u_7, u_8, u_9, u_1, u_2, u_4;$ and $P_5: u_7, u_8, u_9, u_1, u_2, u_3, u_4;$ The paths P_1, P_2, P_4 are triangle free e - v paths and P_3 and P_5 are not triangle free e - v paths. Thus edge-to-vertex distance d(e, v) = 2, edge-to-vertex triangle free detour distance $D_{\Delta f}(e, v) = 5$ and edge-to-vertex detour distance D(e, v) = 6. Thus $0 < d(e, v) < D_{\Delta f}(e, v) < D(e, v) < n - 2$.

Theorem. 2.2 For a complete bipartite graph *G* with partitions V_1 and V_2 such that $|V_1| = n$ and $|V_2| = m(n < m)$.Let *e* be an edge of *G* and *u* a vertex such that $u \notin e$ in G. Then, $D_{\Delta f}(e, u) = \begin{cases} 2n - 2 & if u \in V_1 \\ 2n - 1 & if u \in V_2 \end{cases}$

Proof. Since any vertex subset of *G* do not induce a cycle C_3 in *G*. Thus edge-to-vertex triangle free detour distance is equal to edge-to-vertex detour distance. By theorem: 1.2, $D_{\Delta f}(e, u) = \begin{cases} 2n-2 & if u \in V_1 \\ 2n-1 & if u \in V_2 \end{cases}$

Corollary:2.1 Let *G* be a complete bipartite graph $K_{n,n}$ with partitions V_1 and V_2 . Let *e* be an edge and *u* be a vertex such that $u \notin einG$. Then $D_{\Delta f}(e, u) = 2n - 2$.

Theorem: 2.3 Let G be a tree, then for every edge e and a vertex vin G, $d(e, v) = D_{\Delta f}(e, v) = D(e, v)$.

Remark: 2.2 The converse of the theorem:2.3 need not be true. Consider the graph, $G = C_4$, where $d(e,v) = D_{\Delta f}(e,v) = D(e,v) = 1$ if $v \notin e$ and $d(e,v) = D_{\Delta f}(e,v) = D(e,v) = 0$ if $v \in e$.

Definition: 2.2 The edge-to-vertex triangle free detour eccentricity $e_{\Delta f^2}(e)$ of an edge e in a connected graph G is defined as $e_{\Delta f^2}(e) = max\{D_{\Delta f}(e, v) : v \in V\}$. A vertex v for which $e_{\Delta f^2}(e) = D_{\Delta f}(e, v)$ is called an edge-to-vertex triangle free detour eccentric vertex of e. The edge-to-vertex triangle free detour radius of G is defined as $R_{\Delta f^2} = rad_{\Delta f^2}(G) = min\{e_{\Delta f^2}(e) : e \in E\}$. The edge-to-vertex triangle free detour diameter of G is defined as $D_{\Delta f^2} = diam_{\Delta f^2}(G) = max\{e_{\Delta f^2}(e) : e \in E\}$.

Definition: 2.3 An edge *e* is called an edge-to-vertex triangle free detour central edge if $e_{\Delta f2}(e) = R_{\Delta f2}$. The edge-to-vertex triangle free detour center of *G* is defined as $C_{\Delta f2}(G) = Cen_{\Delta f2}(G) = \{e \in E : e_{\Delta f2}(e) = R_{\Delta f2}\}.$

Definition: 2.4 An edge *e* is called an edge-to-vertex triangle free detour peripheral edge if $e_{\Delta f^2}(e) = D_{\Delta f^2}$. The edge-to-vertex triangle free detour periphery of *G* is defined as $P_{\Delta f^2}(G) = Per_{\Delta f^2}(G) = \{e \in E : e_{\Delta f^2}(e) = D_{\Delta f^2}\}$.

Definition. 2.5 If every edge of a graph G is a edge-to-vertex triangle free detour central edge, then G is called edge-to-vertex triangle free detour self centered graph.

Definition. 2.6 If G is the edge-to-vertex triangle free detour self centered graph, then G is called edge-to-vertex triangle free detour periphery.

Example. 2.2 For the graph G given in the figure: 2.2, $e_1 = \{u_1, u_2\}$, $e_2 = \{u_2, u_3\}$, $e_3 = \{u_3, u_4\}$, $e_4 = \{u_4, u_5\}$, $e_5 = \{u_5, u_6\}$, $e_6 = \{u_6, u_7\}$, $e_7 = \{u_7, u_8\}$, $e_8 = \{u_1, u_8\}$, $e_9 = \{u_8, u_2\}$, $e_{10} = \{u_7, u_5\}$, $e_{11} = \{u_5, u_2\}$, $e_{12} = \{u_3, u_5\}$ are the edges of G.

Figure:2.2 G

The edge-to- vertex triangle free detour distances of the graph G, are provided in the following table.

	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	<i>u</i> ₄	u_5	<i>u</i> ₆	u 7	<i>u</i> ₈	$e_{\Delta f2}$
<i>e</i> ₁	0	0	4	4	3	3	2	3	4
<i>e</i> ₂	1	0	0	4	3	3	2	3	4
<i>e</i> ₃	4	4	0	0	1	4	3	3	4
<i>e</i> ₄	3	3	1	0	0	5	4	3	5
<i>e</i> ₅	3	3	4	5	0	0	3	2	5
<i>e</i> ₆	3	2	3	4	3	0	0	3	4
<i>e</i> ₇	3	2	2	3	2	3	0	0	3
<i>e</i> ₈	0	3	3	3	2	3	3	0	3
e ₉	1	0	3	3	2	2	2	0	3
<i>e</i> ₁₀	2	2	3	4	0	1	0	2	4
<i>e</i> ₁₁	3	0	2	2	0	3	2	2	3
<i>e</i> ₁₂	3	3	0	1	0	4	3	2	4
Table:2.1									

The following table provides the edge-to- vertex distances, edge-to-vertex triangle free detour distances and edge-to- vertex detour distances of the graph *G* in figure:2.2

S.	Lourdu	Elqueen	& G.	Priscilla	Pacifica

	<i>e</i> ₁	e_2	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	<i>e</i> ₆	<i>e</i> ₇	<i>e</i> ₈	<i>e</i> ₉	<i>e</i> ₁₀	<i>e</i> ₁₁	<i>e</i> ₁₂
<i>e</i> ₂	2	2	2	2	2	2	2	3	2	2	1	2
$e_{\Delta f2}$	4	4	4	5	5	4	3	3	3	4	3	4
e_{D2}	6	6	6	6	6	6	6	6	5	5	4	5
Table: 2.2												

The edge-to-vertex radius $r_2 = 1$, the edge-to-vertex triangle free detour radius $R_{\Delta f^2} = 3$, the edge-to- vertex detour radius $R_2 = 4$. Thus, the edge-to-vertex triangle free detour radius is different from the edge-to- vertex radius and the edge-to- vertex detour radius. The edge-to-vertex diameter $d_2 = 3$, the edge-to- vertex triangle free detour diameter $D_{\Delta f^2} = 6$, the edge-to- vertex detour diameter $D_2 = 6$. Thus, the edge-to- vertex diameter and the edge-to- vertex detour diameter.

The edge-to-vertex center $C_2(G) = \{e_{11}\}$, the edge-to-vertex triangle free detour center $C_{\Delta f2}(G) = \{e_7, e_8, e_9, e_{11}\}$, the edge-to-vertex detour center $C_{D2}(G) = \{e_9, e_{10}, e_{11}\}$ Thus the edge-to- vertex triangle free detour center is different from the edge-to- vertex center and the edge-to- vertex detour center. The edge-to-vertex periphery $P_2(G) = \{e_8\}$, the edge-to-vertex triangle free detour periphery $P_{\Delta f2}(G) = \{e_4, e_5\}$, the edge-to-vertex detour periphery $P_{D2}(G) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$. Thus, the edge-to- vertex triangle free detour periphery is different from the edge-tovertex periphery and the edge-to- vertex detour periphery.

The edge-to-vertex triangle free detour radius $R_{\Delta f2}$ and the edge-to-vertex triangle free detour diameter $D_{\Delta f2}$ of some standard graphs are provided in the table:2.3

G	K _n	P _n	$C_n (n \ge 4)$	$W_n (n \ge 5)$	$K_{n,m}(n \ge m)$
$R_{\Delta f2}$	1	$\left\lfloor \frac{n-2}{n} \right\rfloor$	n-2	n-2	$ \begin{cases} 2(n-1), if n = m \\ 2n - 1, if n > m \end{cases} $
$D_{\Delta f2}$	1	n – 2	n-2	n-2	$ \begin{cases} 2(n-1), ifn = m \\ 2n-1, ifn > m \end{cases} $

Example: 2.3 The complete graph K_n , the Cycle graph C_n $(n \ge 4)$ and the wheel graph W_n $(n \ge 5)$ are the edge-to-vertex triangle free detour self centered graph.

Theorem:2.4 For a connected graph *G* of order *n*. Then (i) $0 \le e_2(e) \le e_{\Delta f^2}(e) \le e_{D^2}(e) \le n-2$, for every edge eof *G*. (ii) $0 \le r_2 \le R_{\Delta f^2} \le R_2 \le n-2$. (iii) $0 \le d_2 \le D_{\Delta f^2} \le D_2 \le n-2$.

Remark: 2.3 The bounds in the theorem:2.4are sharp. If $G = P_2$, then $e_2(e) = e_{\Delta f^2}(e) = e_{D2}(e) = 0$. If $G = C_n$ $(n \ge 4)$, then $e_2(e) = e_{\Delta f^2}(e) = e_{D2}(e) = n - 2$. For the graph *G* given in the figure:2.2, $0 < e_2(e) < e_{\Delta f^2}(e) < e_{D2}(e) < n - 2$, for the edges $e = e_9, e_{10}, e_{11}, e_{12}$.

References

[1] H. Bielak and M. M. Syslo, Peripheral vertices in graphs, Studies. Math. Ungar., 18 (1983), 269-275.

[2] G. Chartrand and H. Escuadro and P. Zhang, Detour Distance in Graphs, J. Combin. Math. Combin. Comput., 53 (2005), 75-94.

[3] G. Chartrand and P. Zhang, Distance in Graphs - Taking the Long View, AKCEJ. Graphs. Combin., 1 (2004), 1–13.

[4] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill New Delhi, 2006.

[5] I. Keerthi Asir and S. Athisayanathan, Triangle Free Detour Distance in Graphs,

J. Combin. Math. Combin. Comput., 105(2016).

[6] I. Keerthi Asir and S. Athisayanathan, Edge-to-Vertex Detour Distance in Graphs, ScienciaActaXaverianaAn International Science Journal, Volume 8 No. 1, 115-133

[7] P.A. Ostrand, Graphs and specified radius and diameter, Discrete Math., 4(1973),71-75.

[8] A. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, Discrete Math. Algorithms Appl., 3 (2011), 159–169.

[9] A. P. Santhakumaran, Center of a graph with respect to edges, SCIENTIA series A: Mathematical Sciences, 19 (2010), 13-23.

[10] Sr Little Femilin Jana. D., Jaya. R., Arokia Ranjithkumar, M., Krishnakumar. S., "Resolving Sets and Dimension in Special Graphs", Advances And Applications In Mathematical Sciences 21 (7) (2022), 3709 – 3717.