The Edge-To-Vertex Triangle Free Detor Distance in Graphs

S. Lourdu Elqueen ${ }^{1}$
G. Priscilla Pacifica ${ }^{2}$

Abstract

For every connected graph G, the triangle free detour distance $D_{\Delta f}(u, v)$ is the length of a longest $u-v$ triangle free path in G, where u, v are the vertices of G. A $u-v$ triangle free path of length $D_{\Delta f}(u, v)$ is called the $u-v$ triangle free detour. In this article, the edge-to-vertex triangle free detour distance is introduced. It is found that the edge -tovertex triangle free detour distance differs from the edge -to-vertex distance and edge-to-vertex detour distance. The edge-to-vertex triangle free detour distance is found for some standard graphs. Their bounds are determined and their sharpness is checked. Certain general properties satisfied by them are studied.

Keywords: connected graph, edge -to-vertex distance and edge-to-vertex detour distance

2010 AMS subject classification: $05 \mathrm{C} 12,05 \mathrm{C} 69^{3}$

[^0]
S. Lourdu Elqueen \& G. Priscilla Pacifica

1. Introduction

The facility location problem was introduced as edge-to-vertex distance by Santhakumaran [9], in 2010. For an edge e and a vertex v in a connected graph, the edge-to-vertex distance is defined by $d(e, v)=\min \{d(u, v): u \in e\}$. The edge-tovertex eccentricity of e is defined by $e_{2}(e)=\max \{d(e, v): v \in V\}$. A vertex v of G such that $e_{2}(e)=d(e, v)$ is called an edge-to-vertex eccentric vertex of v . The edge-to-vertex radius r_{2} of G is defined by $r_{2}=\min \left\{e_{2}(e): e \in E\right\}$ and the edge-to-vertex diameter d_{2} of G is defined by $d_{2}=\max \left\{e_{2}(e): e \in E\right\}$. An edge e for which $e_{2}(e)$ is minimum is called an edge-to-vertex central edge of G and the set of all edge-tovertex central edges of G is the edge-to-vertex center $C_{2}(G)$ of G. An edge e for which $e_{2}(e)$ is maximum is called an edge-to-vertexperipheral edge of G and the set of all edge-tovertex peripheraledges of G is the edge-to-vertex periphery $P_{2}(G)$ of G. If every edgeof G is an edge-to-vertex central edge then G is called the edge-to-vertex self-centered graph. This concept is useful in channel assignment problem in radio technology and security-based communication network design. The concept of edge-to-vertex detour distance was introduced by I. Keerthi Asir [6], Let e be an edge and v a vertex in a connected graph G. An edge-to-vertex $e-v$ path P is a $u-v$ path, where u is a vertex in e such that P contains no vertices of e other than u. The edge-to-vertex detour distance $D(e, v)$ is the length of a longest $e-v$ path in G. Ane $-v$ path of length $D(e, v)$ is called an edge-to-vertex $e-v$ detour or simply $e-v$ detour. Forour convenience an $-v$ path of length $d(e, v)$ is called an edge-to-vertex $e-v$ geodesic or simply $e-v$ geodesic.

The following theorems are used in the article.
Theorem: 1.1.[6] For any edge e and a vertex v in a non-trivial connected graph of ordern, $0 \leq d(e, v) \leq D(e, v) \leq n-2$.

Theorem: 1.2.[6] $\operatorname{Let} K_{n, m}(n<m)$ be a complete bipartite graph with partition V_{1}, V_{2} of $V\left(K_{n, m}\right)$ such that $\left|V_{1}\right|=n$ and $\left|V_{2}\right|=m$. Let e be an edge and v a vertex such that $v \notin e$ in $K_{n, m}$, then
$D(e, v)= \begin{cases}2 n-2 & \text { ifv } \in V_{1} \\ 2 n-1 & \text { ifv } \in V_{2}\end{cases}$

2. Edge-To-Vertex Triangle Free Detour Distance

Definition. 2.1 Let G be a connected graph. Let e be an edge and u a vertex in G. An edge-to-vertex $e-u$ triangle free path P is a $u-v$ triangle free path, where v is a vertex in e such that P contains no vertices of e other than $\quad v$. The edge-to-vertex triangle free detour distance is the length of the longest $e-u$ triangle free path in G.It is denoted by $D_{\Delta f}(e, v)$. An $e-u$ triangle free path of length $D_{\Delta f}(e, v)$ is called an edge-to-vertex $e-$ u triangle free detour.

Example: 2.1 Consider the graph G given in the figure: 2.1. Let $e=\left\{u_{6}, u_{7}\right\}$ and $v=u_{4}$. The paths between e and v are $P_{1}: u_{6}, u_{5}, u_{4} ; P_{2}: u_{7}, u_{2}, u_{4} ; P_{3}: u_{7}, u_{2}, u_{3}, u_{4} ; P_{4}: u_{7}$, $u_{8}, u_{9}, u_{1}, u_{2}, u_{4}$; and $P_{5}: u_{7}, u_{8}, u_{9}, u_{1}, u_{2}, u_{3}, u_{4}$;The paths P_{1}, P_{2}, P_{4} are triangle free $e-v$ paths and P_{3} and P_{5} are not triangle free $e-v$ paths. Thus edge-to-vertex distance $d(e, v)=2$, edge-to-vertex triangle free detour distance $D_{\Delta \mathrm{f}}(e, v)=5$ and edge-to-vertex detour distance $\mathrm{D}(\mathrm{e}, \mathrm{v})=6$.

Figure: 2.1 G
Thus edge-to-vertex triangle free detour distance differs from the edge-to-vertex distance and edge-to-vertex detour distance.

Theorem. 2.1 Let G be a connected graph of order n. Let e be an edge and u a vertex of G, then $0 \leq d(e, v) \leq D_{\Delta f}(e, v) \leq D(e, v) \leq n-2$.
Proof. By theorem 1.1, we can conclude that $0 \leq d(e, v) \leq D(e, v) \leq n-2$. It is enough to prove that (i) $d(e, v) \leq D_{\Delta f}(e, v)$ and (ii) $D_{\Delta f}(e, v) \leq D(e, v)$.
Thus (i) is true by the definition of edge-to-vertex distance and edge-to-vertex triangle free detour distance.
To prove :(ii)
Case(i): If the detour path does not induce a triangle in G , then $D_{\Delta f}(e, v)=D(e, v)$.
Case(ii): If the detour path induces a triangle in G , then $D_{\Delta f}(e, v)<D(e, v)$
Remark 2.1. The bounds in the theorem 2.1 are sharp. Let G be a graph and e be an edge, $d(e, u)=D_{\Delta f}(e, u)=D(e, u)=0$ iff $u \in e$.Let G be a path with vertices $\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$. Thend $(e, u)=D_{\Delta f}(e, u)=D(e, u)=n-2$, where $\quad e=$

S. Lourdu Elqueen \& G. Priscilla Pacifica

$\left\{v_{n-1}, v_{n}\right\}$ and $u=v_{1}$. Let G be a tree, $d(e, u)=D_{\Delta f}(e, u)=D(e, u)$ for every edge e and vertex u of G. For the graph G given in the figure:2.1, $e=\left\{u_{6}, u_{7}\right\}$ and $v=u_{4}$. The paths between e and v are $P_{1}: u_{6}, u_{5}, u_{4} ; P_{2}: u_{7}, u_{2}, u_{4} ; P_{3}: u_{7}, u_{2}, u_{3}, u_{4}$; $P_{4}: u_{7}, u_{8}, u_{9}, u_{1}, u_{2}, u_{4}$; and $P_{5}: u_{7}, u_{8}, u_{9}, u_{1}, u_{2}, u_{3}, u_{4}$; The paths P_{1}, P_{2}, P_{4} are triangle free $e-v$ paths and P_{3} and P_{5} are not triangle free $e-v$ paths. Thus edge-tovertex distance $d(e, v)=2$, edge-to-vertex triangle free detour distance $D_{\Delta f}(e, v)=5$ and edge-to-vertex detour distance $\mathrm{D}(\mathrm{e}, \mathrm{v})=6$. Thus $0<d(e, v)<D_{\Delta f}(e, v)<$ $D(e, v)<n-2$.

Theorem. 2.2 For a complete bipartite graph G with partitions V_{1} and V_{2} such that $\left|V_{1}\right|=$ n and $\left|V_{2}\right|=m(n<m)$.Let e be an edge of G and u a vertex such that $u \notin e$ in G. Then, $D_{\Delta f}(e, u)= \begin{cases}2 n-2 & \text { if } u \in V_{1} \\ 2 n-1 & \text { if } u \in V_{2}\end{cases}$
Proof. Since any vertex subset of G do not induce a cycle C_{3} in G. Thus edge-to-vertex triangle free detour distance is equal to edge-to-vertex detour distance. By theorem: 1.2, $D_{\Delta f}(e, u)= \begin{cases}2 n-2 & \text { if } u \in V_{1} \\ 2 n-1 & \text { if } u \in V_{2}\end{cases}$

Corollary:2.1 Let G be a complete bipartite graph $K_{n, n}$ with partitions V_{1} and V_{2}. Let e be an edge and u be a vertex such that $u \notin e \operatorname{in} G$. $\operatorname{Then} D_{\Delta f}(e, u)=2 n-2$.

Theorem: 2.3 Let G be a tree, then for every edge e and a vertex v in $G, d(e, v)=$ $D_{\Delta f}(e, v)=D(e, v)$.

Remark: 2.2 The converse of the theorem:2.3 need not be true. Consider the graph, $G=$ C_{4}, where $d(e, v)=D_{\Delta f}(e, v)=D(e, v)=1$ if $v \notin e$ and $d(e, v)=D_{\Delta f}(e, v)=$ $D(e, v)=0$ if $v \in e$.

Definition: 2.2 The edge-to-vertex triangle free detour eccentricity $e_{\Delta f 2}(e)$ of an edge e in a connected graph G is defined $\operatorname{ase}_{\Delta f 2}(e)=\max \left\{D_{\Delta f}(e, v): v \in V\right\}$. A vertex v for which $e_{\Delta f 2}(e)=D_{\Delta f}(e, v)$ is called an edge-to-vertex triangle free detour eccentric vertex of e. The edge-to-vertex triangle free detour radius of G is defined as $R_{\Delta f 2}=\operatorname{rad}_{\Delta f 2}(G)=\min \left\{e_{\Delta f 2}(e): e \in E\right\}$. The edge-to-vertex triangle free detour diameter of G is defined as $D_{\Delta f 2}=\operatorname{diam}_{\Delta f 2}(G)=\max \left\{e_{\Delta f 2}(e): e \in E\right\}$.

Definition: 2.3 An edge e is called an edge-to-vertex triangle free detour central edge if $e_{\Delta f 2}(e)=R_{\Delta f 2}$. The edge-to-vertex triangle free detour center of G is defined as $C_{\Delta f 2}(G)=\operatorname{Cen}_{\Delta f 2}(G)=\left\{e \in E: e_{\Delta f 2}(e)=R_{\Delta f 2}\right\}$.

Definition: 2.4 An edge e is called an edge-to-vertex triangle free detour peripheral edge if $e_{\Delta f 2}(e)=D_{\Delta f 2}$. The edge-to-vertex triangle free detour periphery of G is defined as $P_{\Delta f 2}(G)=\operatorname{Per}_{\Delta f 2}(G)=\left\{e \in E: e_{\Delta f 2}(e)=D_{\Delta f 2}\right\}$.

Definition. 2.5 If every edge of a graph G is a edge-to-vertex triangle free detour central edge, then G is called edge-to-vertex triangle free detour self centered graph.

Definition. 2.6 If G is the edge-to-vertex triangle free detour self centered graph, then G is called edge-to-vertex triangle free detour periphery.

Example. 2.2 For the graph G given in the figure: 2.2, $e_{1}=\left\{u_{1}, u_{2}\right\}, e_{2}=$ $\left\{u_{2}, u_{3}\right\}, e_{3}=\left\{u_{3}, u_{4}\right\}, e_{4}=\left\{u_{4}, u_{5}\right\}, e_{5}=\left\{u_{5}, u_{6}\right\}, e_{6}=\left\{u_{6}, u_{7}\right\}, e_{7}=$ $\left\{u_{7}, u_{8}\right\}, e_{8}=\left\{u_{1}, u_{8}\right\}, e_{9}=\left\{u_{8}, u_{2}\right\}, e_{10}=\left\{u_{7}, u_{5}\right\}, e_{11}=\left\{u_{5}, u_{2}\right\}, e_{12}=\left\{u_{3}, u_{5}\right\}$ are the edges of G.

Figure:2.2 G
The edge-to- vertex triangle free detour distances of the graph G, are provided in the following table.

	$\boldsymbol{u}_{\mathbf{1}}$	$\boldsymbol{u}_{\mathbf{2}}$	$\boldsymbol{u}_{\mathbf{3}}$	$\boldsymbol{u}_{\mathbf{4}}$	$\boldsymbol{u}_{\mathbf{5}}$	$\boldsymbol{u}_{\mathbf{6}}$	$\boldsymbol{u}_{\mathbf{7}}$	$\boldsymbol{u}_{\mathbf{8}}$	$\boldsymbol{e}_{\Delta \boldsymbol{f} \mathbf{2}}$
$\boldsymbol{e}_{\boldsymbol{1}}$	0	0	4	4	3	3	2	3	4
$\boldsymbol{e}_{\mathbf{2}}$	1	0	0	4	3	3	2	3	4
$\boldsymbol{e}_{\mathbf{3}}$	4	4	0	0	1	4	3	3	4
$\boldsymbol{e}_{\mathbf{4}}$	3	3	1	0	0	5	4	3	5
$\boldsymbol{e}_{\mathbf{5}}$	3	3	4	5	0	0	3	2	5
$\boldsymbol{e}_{\mathbf{6}}$	3	2	3	4	3	0	0	3	4
$\boldsymbol{e}_{\boldsymbol{7}}$	3	2	2	3	2	3	0	0	3
$\boldsymbol{e}_{\mathbf{8}}$	0	3	3	3	2	3	3	0	3
$\boldsymbol{e}_{\boldsymbol{9}}$	1	0	3	3	2	2	2	0	3
$\boldsymbol{e}_{\mathbf{1}}$	2	2	3	4	0	1	0	2	4
$\boldsymbol{e}_{\mathbf{1 1}}$	3	0	2	2	0	3	2	2	3
$\boldsymbol{e}_{\boldsymbol{1} 2}$	3	3	0	1	0	4	3	2	4

Table:2.1
The following table provides the edge-to- vertex distances, edge-to-vertex triangle free detour distances and edge-to- vertex detour distances of the graph G in figure:2.2

	$\boldsymbol{e}_{\mathbf{1}}$	$\boldsymbol{e}_{\mathbf{2}}$	$\boldsymbol{e}_{\mathbf{3}}$	$\boldsymbol{e}_{\mathbf{4}}$	\boldsymbol{e}_{5}	$\boldsymbol{e}_{\mathbf{6}}$	$\boldsymbol{e}_{\mathbf{7}}$	$\boldsymbol{e}_{\mathbf{8}}$	$\boldsymbol{e}_{\boldsymbol{9}}$	$\boldsymbol{e}_{\mathbf{1 0}}$	$\boldsymbol{e}_{\mathbf{1 1}}$	$\boldsymbol{e}_{\mathbf{1 2}}$
$\boldsymbol{e}_{\mathbf{2}}$	2	2	2	2	2	2	2	3	2	2	1	2
$\boldsymbol{e}_{\Delta f \mathbf{2}}$	4	4	4	5	5	4	3	3	3	4	3	4
$\boldsymbol{e}_{\boldsymbol{D} 2}$	6	6	6	6	6	6	6	6	5	5	4	5

Table: 2.2
The edge-to-vertex radius $r_{2}=1$, the edge-to-vertex triangle free detour radius $R_{\Delta f 2}=3$, the edge-to- vertex detour radius $R_{2}=4$. Thus, the edge-to-vertex triangle free detour radius is different from the edge-to- vertex radius and the edge-to- vertex detour radius. The edge-to-vertex diameter $d_{2}=3$, the edge-to- vertex triangle free detour diameter $D_{\Delta f 2}=6$, the edge-to- vertex detour diameter $D_{2}=6$. Thus, the edge-to- vertex triangle free detour diameter is different from the edge-to- vertex diameter and the edge-to- vertex detour diameter.

The edge-to-vertex center $C_{2}(G)=\left\{e_{11}\right\}$, the edge-to-vertex triangle free detour center $C_{\Delta f 2}(G)=\left\{e_{7}, e_{8}, e_{9}, e_{11}\right\}$, the edge-to-vertex detour center $C_{D 2}(G)=$ $\left\{e_{9}, e_{10}, e_{11}\right\}$ Thus the edge-to- vertex triangle free detour center is different from the edge-to- vertex center and the edge-to- vertex detour center. The edge-to-vertex periphery $P_{2}(G)=\left\{e_{8}\right\}$, the edge-to-vertex triangle free detour periphery $P_{\Delta f 2}(G)=$ $\left\{e_{4}, e_{5}\right\}$, the edge-to-vertex detour periphery $P_{D 2}(G)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right\}$. Thus, the edge-to- vertex triangle free detour periphery is different from the edge-tovertex periphery and the edge-to- vertex detour periphery.

The edge-to-vertex triangle free detour radius $R_{\Delta f 2}$ and the edge-to-vertex triangle free detour diameter $D_{\Delta f 2}$ of some standard graphs are provided in the table:2.3

\boldsymbol{G}	$\boldsymbol{K}_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}}$	$\boldsymbol{C}_{\boldsymbol{n}}(\boldsymbol{n} \geq \mathbf{4})$	$\boldsymbol{W}_{\boldsymbol{n}}(\boldsymbol{n} \geq \mathbf{5})$	$\boldsymbol{K}_{\boldsymbol{n}, \boldsymbol{m}}(\boldsymbol{n} \geq \boldsymbol{m})$
$\boldsymbol{R}_{\Delta \boldsymbol{f} \mathbf{2}}$	1	$\left\lfloor\frac{n-2}{n}\right\rfloor$	$n-2$	$n-2$	$\left\{\begin{array}{l}2(n-1), \text { ifn }=m \\ 2 n-1, \text { ifn } n>m\end{array}\right.$
$\boldsymbol{D}_{\Delta f \mathbf{2}}$	1	$n-2$	$n-2$	$n-2$	$\left\{\begin{array}{l}2(n-1), \text { ifn } n=m \\ 2 n-1, \text { ifn }>m\end{array}\right.$

Example: 2.3 The complete graph K_{n}, the Cycle graph $C_{n}(n \geq 4)$ and the wheel graph $W_{n}(n \geq 5)$ are the edge-to-vertex triangle free detour self centered graph.

Theorem:2.4 For a connected graph G of order n. Then
(i) $0 \leq e_{2}(e) \leq e_{\Delta f 2}(e) \leq e_{D 2}(e) \leq n-2$, for every edge e of G.
(ii) $0 \leq r_{2} \leq R_{\Delta f 2} \leq R_{2} \leq n-2$.
(iii) $0 \leq d_{2} \leq D_{\Delta f 2} \leq D_{2} \leq n-2$.

Remark: 2.3 The bounds in the theorem:2.4are sharp. If $G=P_{2}$, then $e_{2}(e)=$ $e_{\Delta f 2}(e)=e_{D 2}(e)=0$. If $G=C_{n}(n \geq 4)$, then $e_{2}(e)=e_{\Delta f 2}(e)=e_{D 2}(e)=n-2$. For the graph G given in the figure:2.2, $0<e_{2}(e)<e_{\Delta f 2}(e)<e_{D 2}(e)<n-2$, for the edges $e=e_{9}, e_{10}, e_{11}, e_{12}$.

References

[1] H. Bielak and M. M. Syslo, Peripheral vertices in graphs, Studies. Math. Ungar., 18 (1983), 269-275.
[2] G. Chartrand and H. Escuadro and P. Zhang, Detour Distance in Graphs, J. Combin. Math. Combin. Comput., 53 (2005), 75-94.
[3] G. Chartrand and P. Zhang, Distance in Graphs - Taking the Long View, AKCEJ. Graphs. Combin., 1 (2004), 1-13.
[4] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill New Delhi, 2006.
[5] I. Keerthi Asir and S. Athisayanathan, Triangle Free Detour Distance in Graphs,
J. Combin. Math. Combin. Comput., 105(2016).
[6] I. Keerthi Asir and S. Athisayanathan, Edge-to-Vertex Detour Distance in Graphs, ScienciaActaXaverianaAn International Science Journal, Volume 8 No. 1, 115-133
[7] P.A. Ostrand, Graphs and specified radius and diameter, Discrete Math., 4(1973),7175.
[8] A. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, Discrete Math. Algorithms Appl., 3 (2011), 159-169.
[9] A. P. Santhakumaran, Center of a graph with respect to edges, SCIENTIA series A: Mathematical Sciences, 19 (2010), 13-23.
[10] Sr Little Femilin Jana. D., Jaya. R., Arokia Ranjithkumar, M., Krishnakumar. S., "Resolving Sets and Dimension in Special Graphs", Advances And Applications In Mathematical Sciences 21 (7) (2022), 3709-3717.

[^0]: ${ }^{1}$ Reg No: 19212212092009, Ph. D Research Scholar (Full Time) of Mathematics. Mary's College (Autonomous) Thoothukudi affiliated under Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, South India. sahayamelqueen@gmail.com.
 ${ }^{2}$ Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, India, priscillamelwyn@gmail.com.
 ${ }^{3}$ Received on June28th, 2022. Accepted on Sep 1st, 2022.Published on Nov 30th, 2022.doi: $10.23755 / \mathrm{rm} . \mathrm{v} 44 \mathrm{i} 0.894$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

