On Intuitionistic Semi * Continuous Functions

G. Esther Rathinakani^{*} M. Navaneethakrishnan[†]

Abstract

In this paper we introduce intuitionistic semi * continuous and intuitionistic contra - semi * continuous functions via the concept of intuitionistic semi * open and intuitionistic semi * closed set respectively. Also, we investigate their properties and characterization.

Keywords: intuitionistic semi * open, intuitionistic semi * closed, intuitionistic semi * continuous, intuitionistic contra-semi * closed.

2010 AMS subject classification: 54C05[‡]

^{*}Research Scholar, Reg. No. 19222102092011, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India; e-mail estherrathinakani@gmail.com.

[†]Associate Professor, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India; e-mail navaneethan65@yahoo.co.in.

[‡] Received on June 8th, 2022. Accepted on Aug 10th, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.891. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement

1. Introduction

The concept of intuitionistic set introduce by D. Coker [2] in 1996 and also he [1] has introduced the concept of intuitionistic topological space. In [5], we introduced the concept of intuitionistic generalized closure operator and defined a new intuitionistic topology τ^* and studied their properties. Also, in [6] we introduced a new open set namely intuitionistic semi * open and studied their properties. In this paper we define intuitionistic semi * continuous and intuitionistic contra - semi * continuous functions via the concept of intuitionistic semi * open and intuitionistic semi * closed set respectively. Also, we investigate their properties and characterization.

2.Preliminaries

Definition 2.1 [1] Let X be a nonempty fixed set. An intuitionistic set (IS in short) \tilde{A} is an object having the form $\tilde{A} = \langle X, A^1, A^2 \rangle$ where A^1 and A^2 are subsets of X such that $A^1 \cap A^2 = \emptyset$. The set A^1 is called the set of member of \tilde{A} , while A^2 is called the set of non member of \tilde{A} .

Definition 2.2 [1] An intuitionistic topology (IT in short) by subsets of a nonempty set X is a family τ of IS's satisfying the following axioms.

(a) $\widetilde{\emptyset}_{I}, \widetilde{X}_{I} \in \tau$,

(b) $\tilde{G}_1 \cap \tilde{G}_2 \in \tau$ for every \tilde{G}_1 , $\tilde{G}_2 \in \tau$, and

(c) $\cup \tilde{G}_i \in \tau$ for any arbitrary family { $\tilde{G} : i \in J$ } $\subseteq \tau$.

The pair (X, τ) is called an intuitionistic topological space (ITS in short) and any IS \tilde{A} in τ is called an intuitionistic open set (IOS). The complement of an IO set \tilde{A} in is called an intuitionistic closed set (ICS).

Definition 2.3 [1] Let (X, τ) be an ITS and $\tilde{A} = \langle X, A^1, A^2 \rangle$ be an IS in X. Then the interior and the closure of A are denoted by $Iint(\tilde{A})$ and $Icl(\tilde{A})$, and are defined as follows.

 $Iint(\tilde{A}) = \bigcup \{ \tilde{G} | \tilde{G} \text{ is an IOS and } \tilde{G} \subseteq \tilde{A} \} \text{ and } Icl(\tilde{A}) = \bigcap \{ \tilde{K} | \tilde{K} \text{ is an ICS and } \tilde{A} \subseteq \tilde{K} \}.$

Definition 2.4 [2] Let *X* be a nonempty set and $p \in X$ be a fixed element. Then the IS \tilde{p} defined by $\tilde{p} = \langle X, \{p\}, \{p\}^c \rangle$ is called an intuitionistic point (in short, IP).

Definition 2.5 [10] Let (X, τ) be an ITS and $\tilde{A} = \langle X, A^1, A^2 \rangle$ be an IS in X, \tilde{A} is said to be intuitionistic generalized closed set (briefly Ig – closed set) $Icl(\tilde{A}) \subseteq \tilde{U}$ whenever $\tilde{A} \subseteq \tilde{U}$ and \tilde{U} is IOS in X.

Definition 2.6 [5] If \tilde{A} is an IS of an ITS (X, τ) , then the intuitionistic generalized closure of \tilde{A} is defined as the intersection of all Ig – closed sets in X containing \tilde{A} and is denoted by $Icl^*(\tilde{A})$.

Definition 2.7 [6] The IS \tilde{A} of an ITS (X, τ) is called intuitionistic semi * open sets if there is an intuitionstic open set \tilde{G} in X such that $\tilde{G} \subseteq \tilde{A} \subseteq Icl^*(\tilde{G})$.

Definition 2.8 [6] The intuitionistic semi * interior of \tilde{A} is defined as the union of all intuitionistic semi * open sets of *X* contained in \tilde{A} . It is denoted by $IS^{*int}(\tilde{A})$.

Definition 2.9 An intuitionistic set \tilde{A} of a ITS (X, τ) is called an intuitionistic semi * closed set if $X - \tilde{A}$ is intuitionistic semi * open.

Definition 2.10 The semi * closure of an IS \tilde{A} is defined as the intersection of all intuitionistic semi * closed sets in *X* that containing \tilde{A} . It is denoted by $IS*cl(\tilde{A})$.

Theorem 2.11 Let (X, τ) be an ITS and \tilde{A} be an IS of X. Then (i) $IS^*cl(X - \tilde{A}) = X - IS^*int(\tilde{A})$ (ii) $IS^*int(X - \tilde{A}) = X - IS^*cl(\tilde{A})$

Definition 2.12[9] A function $f : X \to Y$ is said to be intuitionistic semi continuous if $f^{-1}(\tilde{A})$ is ISO in X for every IOS \tilde{A} in Y.

Theorem 2.13[6] Let (X, τ) be an ITS and \tilde{A} be an IS of *X*. Then

- (i) Every IOS is IS*O.
- (ii) Every IS*O is ISO.
- (iii) Every ICS is IS*C.
- (iv) Every IS*C is ISC.

Theorem 2.14[6] Let (X, τ) be an ITS. Then

- (i) If $\{\tilde{A}_{\alpha}\}$ is a collection of IS*O in X then $\bigcup \tilde{A}_{\alpha}$ is IS*O.
- (ii) If \tilde{A} is IS*O in X and \tilde{B} is an IOS in X, then $\tilde{A} \cap \tilde{B}$ is IS*O in X.

Theorem 2.15[6] Let (X, τ) be an ITS and \tilde{A} be an IS of X. Then

- (i) \tilde{A} is IS*O if and only if $IS^{*int}(\tilde{A}) = \tilde{A}$.
- (ii) \tilde{A} is IS*C if and only if $IS*cl(\tilde{A}) = \tilde{A}$.

Theorem 2.16[6] Let (X, τ) be an ITS, \tilde{A} be an IS of X and $\tilde{p} \in X$. Then $\tilde{p} \in IS^*cl(\tilde{A})$ if and only if every IS*O in X containing \tilde{p} intersects \tilde{A} .

Definition 2.17[7] Let (X, τ) be an ITS and \tilde{A} be an IS of X. Then the intuitionistic semi * frontier of \tilde{A} (denoted by $IS*Fr(\tilde{A})$) is defined by $IS*Fr(\tilde{A}) = IS*cl(\tilde{A}) - IS*int(\tilde{A})$.

Theorem 2.18[7] Let (X, τ) be an ITS and \tilde{A} be an IS of *X*. Then

$$IS^*Fr(\tilde{A}) = IS^*cl(\tilde{A}) \cap IS^*cl(\tilde{A}).$$

3. Intuitionistic Semi * Continuous Functions

Definition 3.1 A function $f: X \to Y$ is said to be intuitionistic semi * continuous at $\tilde{p} \in X$ if for each intuitionistic open set \tilde{U} of *Y* containing $f(\tilde{p})$, there is an intuitionistic semi open set \tilde{V} in *X* such that $\tilde{p} \in \tilde{V}$ and $f(\tilde{V}) \subseteq \tilde{U}$.

Definition 3.2 A function $f : X \to Y$ is said to be intuitionistic semi * continuous if $f^{-1}(\tilde{U})$ is IS*O in X for every IOS \tilde{U} in Y.

Theorem 3.3 Every intuitionistic continuous function is intuitionistic semi * continuous.

Proof: Let $f: X \to Y$ be intuitionistic continuous and \widetilde{U} be IO in Y. Then $f^{-1}(\widetilde{U})$ is IO in X. Therefore by theorem 2.13(*i*), $f^{-1}(\widetilde{U})$ is IS*O in X. Hence f is intuitionistic semi * continuous function.

Remark 3.4 The converse of the above theorem need not be true as seen from the succeeding example

Example 3.5 Let $X = \{i, j, k\} = Y$ and $\tau_1 = \{\widetilde{X}_I, \widetilde{\emptyset}_I, \langle X, \{i\}, \{j, k\} \rangle, \langle X, \{j\}, \{i, k\} \rangle, \langle X, \{i, j\}, \{k\} \rangle\}, \tau_2 = \{\widetilde{X}_I, \widetilde{\emptyset}_I, \langle X, \{j\}, \{i, k\} \rangle, \langle X, \{i\}, \{j\} \rangle, \langle X, \{i, j\}, \emptyset \rangle\}$. Let $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ be defined by f(i) = j, f(j) = i, f(k) = k. Then f is intuitionistic semi * continuous. Let $\widetilde{D} = \langle X, \{i, j\}, \emptyset \rangle$. Then $f^{-1}(\widetilde{D}) = \langle X, \{k, i\}, \emptyset \rangle$ is not IOS in τ_1 . Therefore f is not an intuitionistic continuous.

Corollary 3.6 Every constant function is intuitionistic semi * continuous function.

Proof: We know that every constant function is intuitionistic continuous function. Therefore by theorem 3.3 every constant function is intuitionistic semi * continuous function.

Theorem 3.7 Let \mathcal{B} be the intuitionistic basis of the intuitionistic topological space *Y*. Then the function $f: X \to Y$ is intuitionistic semi * continuous if and only if inverse image of every basic IOS in *Y* under the function *f* is IS*O in *X*.

Proof: Let $f: X \to Y$ be intuitionistic semi * continuous. Then the inverse image of every IOS in *Y* is IS*O in *X*. In particular, the inverse image of every basic IOS in *Y* is IS*O in *X*. Coversely, assume that \tilde{V} be an IOS in *Y*. Then $\tilde{V} = \bigcup \tilde{B}_{\alpha}$ where $\tilde{B}_{\alpha} \in \mathcal{B}$. Now $f^{-1}(\tilde{V}) = f^{-1}(\bigcup \tilde{B}_{\alpha}) = \bigcup f^{-1}(\tilde{B}_{\alpha})$. Therefore by hypothesis, $f^{-1}(\tilde{B}_{\alpha})$ is IS*O for each α . Then by theorem 2.14(*i*), $f^{-1}(\tilde{V})$ is IS*O. Hence the function *f* is intuitionistic semi * continuous.

Theorem 3.8 Every intuitionistic semi * continuous function is intuitionistic semi continuous.

Proof: Let $f: X \to Y$ be intuitionistic semi * continuous function and \tilde{V} be an IOS in Y. Then $f^{-1}(\tilde{V})$ is IS*O in X. Therefore by theorem 2.13(*ii*), $f^{-1}(\tilde{V})$ is ISO in X. Hence f is intuitionistic semi continuous.

Remark 3.9 The following example shows that the converse of the above theorem need not be true.

Example 3.10 Let $X = \{i, j, k\} = Y$ and $\tau_1 = \{\tilde{X}_I, \tilde{\emptyset}_I, \langle X, \{j\}, \{i, k\} \rangle, \langle X, \{i\}, \{j\} \rangle, \langle X, \{i, j\}, \emptyset \rangle\}$, $\tau_2 = \{\tilde{X}_I, \tilde{\emptyset}_I, \langle X, \{i\}, \{j\} \rangle, \langle X, \{i, j\}, \emptyset \rangle\}$. Let $f: (X, \tau_1) \to (Y, \tau_2)$ be defined by f(i) = j, f(j) = i, f(k) = k. Then f is intuitionistic semi continuous. Let $\tilde{E} = \langle X, \{j\}, \{i\} \rangle$. Then $f^{-1}(\tilde{E}) = \langle X, \{j\}, \{i\} \rangle$ is not an IS*O in τ_1 . Therefore f is not an intuitionistic semi * continuous.

Lemma 3.11 Let (X, τ) be an ITS and \tilde{A} be an IS of X. Then

- (i) \tilde{A} is IS*O in X if and only if $Icl^*(Iint(\tilde{A})) = Icl^*(\tilde{A})$.
- (ii) \tilde{A} is IS*C in X if and only if $Iint^*(Icl(\tilde{A})) = Iint^*(\tilde{A})$.

Proof: (i) Let \tilde{A} be an IS*O. Then by definition of IS*O we have $\tilde{A} \subseteq Icl^*(Iint(\tilde{A}))$. Hence $Icl^*(\tilde{A}) \subseteq Icl^*(Iint(\tilde{A}))$. Also we have $Iint(\tilde{A}) \subseteq \tilde{A}$, $Icl^*(Iint(\tilde{A})) \subseteq Icl^*(\tilde{A})$. Thus $Icl^*(Iint(\tilde{A})) = Icl^*(\tilde{A})$. On the other hand, let $Icl^*(Iint(\tilde{A})) = Icl^*(\tilde{A})$. Then by definition of IS*O, \tilde{A} is IS*O.

(ii) \tilde{A} is IS*C if and only if $X - \tilde{A}$ is *IS**O. Then by (i) \tilde{A} is IS*C if and only if $Icl^*(Iint(X - \tilde{A})) = Icl^*(X - \tilde{A})$. Hence \tilde{A} is IS*C if and only if $Iint^*(Icl(\tilde{A})) = Iint^*(\tilde{A})$.

Theorem 3.12 Let $f: X \to Y$ be a function. Then the following are equivalent.

- (i) f is intuitionistic semi * continuous.
- (ii) f is intuitionistic semi * continuous at each IP of X.
- (iii) $f^{-1}(\tilde{U})$ is IS*C in X for every ICS \tilde{U} in Y.
- (iv) $f(IS^*cl(\tilde{B})) \subseteq Icl(f(\tilde{B}))$ for every IS \tilde{B} of X.
- (v) $IS^*cl(f^{-1}(\tilde{A})) \subseteq f^{-1}(Icl(\tilde{A}))$ for every IS \tilde{A} of Y.
- (vi) $lint*(lcl(f^{-1}(\tilde{E}))) = lint*(f^{-1}(\tilde{E}))$ for every ICS \tilde{E} in Y.
- (vii) $Icl^*(Iint(f^{-1}(\tilde{F}))) = Icl^*(f^{-1}(\tilde{F}))$ for every IOS \tilde{F} in Y.
- (viii) $f^{-1}(Iint(\tilde{C}) \subseteq IS^*int(f^{-1}(\tilde{F})))$ for every IS \tilde{C} in Y.

Proof: (i) \Rightarrow (ii). Let $f: X \to Y$ be an intuitionistic semi * continuous. Let $\tilde{p} \in X$ and \tilde{V} be an IOS in Y containing $f(\tilde{p})$. Then $\tilde{p} \in f^{-1}(\tilde{V})$. Since f is intuitionistic semi * continuous, $\tilde{U} = f^{-1}(\tilde{V})$ is an IS*O in X containing \tilde{p} such that $f(\tilde{U}) \subseteq \tilde{V}$. Hence f is intuitionistic semi * continuous at each IP of X.

(ii) \Rightarrow (iii). Let \tilde{U} be an ICS in Y. Then $\tilde{V} = Y - \tilde{U}$ is an IOS in Y. Let $\tilde{p} \in f^{-1}(\tilde{V})$. Then $f(\tilde{p}) \in \tilde{V}$. By hypothesis, there is a IS*O set \tilde{A}_p in X containing \tilde{p} such that $f(\tilde{p}) \in f(\tilde{A}_p) \subseteq \tilde{V}$. Therefore $\tilde{A}_p \subseteq f^{-1}(\tilde{V})$. Hence $f^{-1}(\tilde{V}) = \bigcup \{\tilde{A}_p : \tilde{p} \in f^{-1}(\tilde{V})\}$. By theorem 2.14(*i*), $f^{-1}(\tilde{V})$ is IS*O in X. Thus $f^{-1}(\tilde{U}) = f^{-1}(Y - \tilde{V}) = X - f^{-1}(\tilde{V})$ is IS*C in X. Hence $f^{-1}(\tilde{U})$ is IS*C in X for every ICS \tilde{U} in Y.

(iii) \Rightarrow (iv). Let \tilde{B} be an IS of X and let \tilde{U} be an ICS containing $f(\tilde{B})$. Then by (iii), $f^{-1}(\tilde{U})$ is IS^*C containing \tilde{B} . This implies that $IS^*cl(\tilde{B}) \subseteq f^{-1}(\tilde{U})$ and hence $f(IS^*cl(\tilde{B})) \subseteq \tilde{U}$. Thus $f(IS^*cl(\tilde{B})) \subseteq Icl(f(\tilde{B}))$.

(iv) ⇒ (v).Let \tilde{A} be an IS of Y. Let $\tilde{B} = f^{-1}(\tilde{A})$. By assumption, $f(IS^*cl(\tilde{B})) \subseteq Icl(f(\tilde{B}) \subseteq Icl(\tilde{A}))$. This implies $(IS^*cl(\tilde{B})) \subseteq f^{-1}(Icl(\tilde{A}))$. Hence $IS^*cl(f^{-1}(\tilde{A})) \subseteq f^{-1}(Icl(\tilde{A}))$.

 $(\mathbf{v}) \Longrightarrow (\mathbf{vi})$. Let \tilde{E} be an ICS in Y. Then by (\mathbf{v}) , $IS^*cl(f^{-1}(\tilde{E})) \subseteq f^{-1}(Icl(\tilde{E})) = f^{-1}(\tilde{E})$. Also we have $f^{-1}(\tilde{E}) \subseteq IS^*cl(f^{-1}(\tilde{E}))$. Hence $IS^*cl(f^{-1}(\tilde{E})) = f^{-1}(\tilde{E})$. Thus by theorem 2.15(*ii*), $f^{-1}(\tilde{E})$ is closed. Therefore by lemma 3.11 (*ii*) $Iint^*(Icl(f^{-1}(\tilde{E}))) = Iint^*(f^{-1}(\tilde{E}))$.

 $(vi) \Rightarrow (vii)$. Let \tilde{F} be an IOS in Y. Then $Y - \tilde{F}$ is ICS in Y. Therefore by assumption, $Iint^*(Icl(f^{-1}(Y - \tilde{F}))) = Iint^*(f^{-1}(Y - \tilde{F}))$. This implies that $Icl^*(Iint(f^{-1}(\tilde{F}))) = Icl^*(f^{-1}(\tilde{F}))$.

 $(vii) \Rightarrow$ (i). Let \tilde{U} be an IOS in Y. Then by assumption, $Icl^*(Iint (f^{-1}(\tilde{U}))) = Icl^*(f^{-1}(\tilde{U}))$. Now by lemma 3.11 (i), $f^{-1}(\tilde{U})$ is IS*O in X. Hence f is intuitionistic semi * continuous.

(i) \Rightarrow (viii). Let \tilde{C} be any IS of Y. Then $Iint(\tilde{C})$ is IOS in Y. By intuitionistic semi * continuity of f, $f^{-1}(Iint(\tilde{C}))$ is IS*O in X and it is contained in $f^{-1}(\tilde{C})$. Hence $f^{-1}(Iint(\tilde{C})) \subseteq IS^{*}int(f^{-1}(\tilde{C}))$.

(viii) \Rightarrow (i). Let \tilde{U} be an IOS in *Y*. Then $Iint(\tilde{U}) = \tilde{U}$. By (viii) $f^{-1}(\tilde{U}) \subseteq IS^*int(f^{-1}(\tilde{U}))$ and hence $f^{-1}(\tilde{U}) = IS^*int(f^{-1}(\tilde{U}))$. Therefore by theorem 2.15(*i*), $f^{-1}(\tilde{U})$ is IS*O in *X*. Thus *f* is intuitionistic semi * continuous.

Theorem 3.13 The function $f: X \to Y$ is not an intuitionistic semi * continuous at an IP \tilde{p} in X if and only if \tilde{p} belongs to the intuitionistic semi * frontier of the inverse image of some IOS in Y containing $f(\tilde{p})$.

Proof: Let f be not an intuitionistic semi * continuous at an IP \tilde{p} . Then there is an IOS \tilde{U} in Y containing $f(\tilde{p})$ such that $f(\tilde{V})$ is not an IS of \tilde{U} for every IS*O set \tilde{V} in X containing \tilde{p} . Hence $\tilde{V} \cap (X - f^{-1}(\tilde{U})) \neq \tilde{\emptyset}_I$ for every IS*O set \tilde{V} containing \tilde{p} . By theorem 2.16, $\tilde{p} \in IS*cl(X - f^{-1}(\tilde{U}))$. Also we have $\tilde{p} \in f^{-1}(\tilde{U}) \subseteq IS*cl (f^{-1}(\tilde{U}))$. Thus $\tilde{p} \in IS*cl (f^{-1}(\tilde{U})) \cap IS*cl(X - f^{-1}(\tilde{U}))$. Hence by theorem 2.18, $\tilde{p} \in IS*Fr(f^{-1}(\tilde{U}))$. Conversely, let f be an intuitionistic semi * continuous at an IP \tilde{p} . Let \tilde{U} be any IOS in Y containing $f(\tilde{p})$. Then $f^{-1}(\tilde{U})$ is an IS*O set in X containing \tilde{p} . Hence by theorem 2,15(i), $\tilde{p} \in IS*int(f^{-1}(\tilde{U}))$. Thus $\tilde{p} \notin IS*Fr(f^{-1}(\tilde{U}))$. This proves the theorem.

Theorem 3.14 Let $f: X \to \prod X_{\alpha}$ be an intuitionistic semi * continuous where $\prod X_{\alpha}$ is the intuitionistic product topology and $f(\tilde{p}) = (f_{\alpha}(\tilde{p}))$. Then each coordinate function $f_{\alpha}: X \to X_{\alpha}$ is an intuitionistic semi * continuous.

Proof: Let \widetilde{U} be an IOS in X_{α} . Then $f_{\alpha}^{-1}(\widetilde{U}) = (P_{\alpha} \circ f)^{-l}(\widetilde{U}) = f^{-1}(P_{\alpha}^{-1}(\widetilde{U}))$, where P_{α} : $\prod X_{\alpha} \to X$, the projection map. Since P_{α} is intuitionistic continuous, $P_{\alpha}^{-1}(\widetilde{U})$ is IOS in $\prod X_{\alpha}$. Since f is intuitionistic semi * continuous, $f_{\alpha}^{-1}(\widetilde{U}) = f^{-1}(P_{\alpha}^{-1}(\widetilde{U}))$ is IS*O in X. Thus each f_{α} is intuitionistic semi * continuous.

Remark 3.15 The converse of the above theorem is not true in general. However the converse is true if IS*O(X) is ICS under finite intersection as seen in the following theorem.

Theorem 3.16 Let $f: X \to \prod X_{\alpha}$ be defined by $f(\tilde{p}) = (f_{\alpha}(\tilde{p}))$ and $\prod X_{\alpha}$ be the intuitionistic product topology. Let IS*O(X) be ICS under finite intersection. If each coordinate function $f_{\alpha}: X \to X_{\alpha}$ is intuitionistic semi * continuous, then *f* is intuitionistic semi * continuous.

Proof: Let \widetilde{U} be the basic IOS in $\prod X_{\alpha}$. Then $\widetilde{V} = \bigcap P_{\alpha}^{-1}(\widetilde{U})$ where each \widetilde{U} is IOS in X_{α} , the intersection being taken over finitely many α 's and where $P_{\alpha} : \prod X_{\alpha} \to X$ is the

projection map. Now $f^{-1}(\widetilde{U}) = f^{-1}(\cap(P_{\alpha}^{-1}(\widetilde{U}_{\alpha}))) = \cap f^{-1}(P_{\alpha}^{-1}(\widetilde{U}_{\alpha})) = \cap (P_{\alpha} \circ f)^{-1}(\widetilde{U}_{\alpha}) = \cap f_{\alpha}^{-1}(\widetilde{U}_{\alpha})$ is IS*O, by hypothesis. Thus by theorem 3.7, f is intuitionistic semi * continuous.

Theorem 3.17 Let $f: X \to Y$ be intuitionistic continuous and $g: X \to Z$ be intuitionistic semi * continuous. Let $h: X \to Y \times Z$ be defined by $h(\tilde{p}) = (f(\tilde{p}), g(\tilde{p}))$ and $Y \times Z$ be the intuitionistic product topology. Then *h* is intuitionistic semi * continuous.

Proof: Using theorem 3.7, it is sufficient to prove that the inverse image under h of every basic IOS in $Y \times Z$ is IS*O in X. Let $\tilde{A} \times \tilde{B}$ be the basic IOS in $Y \times Z$. Then $h^{-1}(\tilde{A} \times \tilde{B}) = f^{-1}(\tilde{A}) \cap g^{-1}(\tilde{B})$. Now by intuitionistic continuity of f, $f^{-1}(\tilde{A})$ is IO in X and by intuitionistic semi * continuity of g, $g^{-1}(\tilde{B})$ is IS*O in X. Therefore by theorem 2.14(*ii*), $h^{-1}(\tilde{A} \times \tilde{B}) = f^{-1}(\tilde{A}) \cap g^{-1}(\tilde{B})$ is IS*O in X. Hence h is intuitionistic semi * continuous.

Theorem 3.18 Let $f: X \to Y$ be intuitionistic semi * continuous and $h: Y \to Z$ be an intuitionistic continuous. Then $h \circ f: X \to Z$ is intuitionistic semi * continuous.

Proof: Let \tilde{U} be an IOS in Z. Since h is intuitionistic continuous, $h^{-1}(\tilde{U})$ is IOS in Y. Since f is intuitionistic semi * continuous, $f^{-1}(h^{-1}(\tilde{U}))$ is IOS in X. Therefore $f^{-1}(h^{-1}(\tilde{U})) = (h^{\circ} f)^{-1}(\tilde{U})$ is IS*O in X. Hence $h^{\circ} f$ is intuitionistic semi * continuous.

Remark 3.19 From the above theorem it can be seen that the composition of two intuitionistic semi * continuous need not be intuitionistic semi * continuous.

Example 3.20 Let $X = Y = Z = \{i, j, k\}$ and $\tau_1 = \{\tilde{X}_I, \tilde{\emptyset}_I, \langle X, \{i\}, \{j, k\} \rangle, \langle X, \{k\}, \{i, j\} \rangle, \langle X, \{i, k\}, \{b\} \rangle\}, \tau_2 = \{\tilde{X}_I, \tilde{\emptyset}_I, \langle X, \{j\}, \{i, k\} \rangle, \langle X, \{i\}, \{j\} \rangle, \langle X, \{i, j\}, \emptyset \rangle\}, \tau_3 = \{\tilde{X}_I, \tilde{\emptyset}_I, \langle X, \{j\}, \{i\} \rangle, \langle X, \{i, j\}, \emptyset \rangle\}$. Let $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ be defined by f(i) = i, f(j) = k, f(k) = j and Let $g: (Y, \tau_2) \rightarrow (Z, \tau_3)$ be defined by $g(i) = j, \quad g(j) = i, g(k) = k$. Then f and g are intuitionistic semi * continuous. Let $g \circ f: (X, \tau_1) \rightarrow (Z, \tau_3)$ and $\tilde{B} = \langle X, \{j\}, \{i\} \rangle$. Then $(g \circ f)^{-1}(\tilde{B}) = g(f(\langle X, \{j\}, \{i\} \rangle)) = g(\langle X, \{k\}, \{i\} \rangle) = \langle X, \{k\}, \{i\} \rangle$ is not an IS*O in (Z, τ_3) . Therefore $g \circ f$ is not an intuitionistic semi * continuous.

Definition 3.21 A function $f: X \to Y$ is said to be intuitionistic contra semi * continuous if $f^{-1}(\tilde{U})$ is IS*C in X for every IOS \tilde{U} in Y.

Remark 3.22 The concept of intuitionistic semi * continuity is free from intuitionistic contra semi * continuity.

Theorem 3.23 Let $f: X \to Y$ be the function. Then the following are equivalent

- (i) *f* is intuitionistic contra semi * continuous.
- (ii) For each $\tilde{p} \in X$ and each ISC \tilde{E} in Y containing $f(\tilde{p})$, there exists a IS*O set \tilde{V} in X containing \tilde{p} such that $f(\tilde{V}) \subseteq \tilde{E}$.
- (iii) The inverse image of each ISC in Y is IS*O in X.
- (iv) $Icl^*(Iint(f^{-1}(\tilde{E}))) = Icl^*(f^{-1}(\tilde{E}))$ for every ICS \tilde{E} in Y.
- (v) $Iint^*(Icl(f^{-1}(\tilde{V}))) = Iint^*(f^{-1}(\tilde{V}))$ for every IOS \tilde{V} in X.

Proof: (i) \Rightarrow (ii). Let $f: X \to Y$ be the intuitionistic contra semi * continuous function. Let $\tilde{p} \in X$ and \tilde{E} be an ICS in Y containing $f(\tilde{p})$. Take $\tilde{U} = Y - \tilde{E}$. Then \tilde{U} is an IOS in Y not containing $f(\tilde{p})$. Since f is intuitionistic contra semi * continuous, $f^{-1}(\tilde{U})$ is a intuitionistic semi * closed set in X not containing \tilde{p} . Therefore $f^{-1}(\tilde{U}) = X - f^{-1}(\tilde{E})$ is a IS*C in X not containing \tilde{p} . Thus $\tilde{V} = f^{-1}(\tilde{E})$ is a IS*O in X containing \tilde{p} such that $f(\tilde{V}) \subseteq \tilde{E}$. Hence (i).

(ii) \Rightarrow (iii). Let \tilde{E} be an ICS in Y and $\tilde{p} \in f^{-1}(\tilde{E})$. Then $f(\tilde{p}) \in \tilde{E}$. By assumption, there is an IS*O set \tilde{V}_p in X containing \tilde{p} such that $f(\tilde{p}) \in f(\tilde{V}_p) \subseteq \tilde{E}$. Therefore $\tilde{V}_p \subseteq f^{-1}(\tilde{E})$. Thus $f^{-1}(\tilde{E}) = \bigcup \{ \tilde{V}_p : \tilde{p} \in f^{-1}(\tilde{E}) \}$. By theorem 2.14 (i) $f^{-1}(\tilde{E})$ is an IS*O in X. Hence (ii).

(iii) \Rightarrow (iv). Let \tilde{E} be an ISC in Y. Then by hypothesis, $f^{-1}(\tilde{E})$ is IS*O in X. Hence from lemma 3.11(i), we have $Icl*(Iint(f^{-1}(\tilde{E}))) = Icl*(f^{-1}(\tilde{E}))$.

 $(\mathbf{iv}) \Rightarrow (\mathbf{v})$. Let \widetilde{U} be an IOS in Y, Then $Y - \widetilde{U}$ is an ICS in Y. By assumption, $Icl^*(Iint(f^{-1} (Y - \widetilde{U}))) = Icl^*(f^{-1} (Y - \widetilde{U}))$. Therefore $[Icl^*(Iint(f^{-1} (Y - \widetilde{U})))]^c = [Icl^*(f^{-1} (Y - \widetilde{U}))]^c$. Hence $Iint^*(Icl(f^{-1} (\widetilde{U}))) = Iint^*(f^{-1} (\widetilde{U}))$.

(v) \Rightarrow (i). Let \tilde{U} be an IOS in Y. Then by assumption, $Iint^*(Icl(f^{-1}(\tilde{U}))) = Iint^*(f^{-1}(\tilde{U}))$. Therefore by lemma 3.11 (ii), $f^{-1}(\tilde{U})$ is IS*C in X. Thus f is an intuitionistic contra semi * continuous.

Theorem 3.24 Every intuitionistic contra continuous is intuitionistic contra semi * continuous.

Proof: Let $f: X \to Y$ be the intuitionistic contra continuous function and \tilde{U} be an IOS in *Y*. Then $f^{-1}(\tilde{U})$ is an ICS in *X*. Hence *f* is intuitionistic contra semi * continuous.

Theorem 3.25 Every intuitionistic contra semi * continuous is intuitionistic contra semi continuous.

Proof: Let $f: X \to Y$ be the intuitionistic contra semi * continuous function and \widetilde{U} be an IOS in Y. Then $f^{-1}(\widetilde{U})$ is an IS*C in X. Hence f is intuitionistic contra semi continuous.

Theorem 3.26 Let (X, τ_1) and (Y, τ_2) be an ITS.

(i) If $f: X \to Y$ is intuitionistic contra semi * continuous and $g: Y \to Z$ is intuitionistic contra continuous, then $g \circ f: X \to Z$ is intuitionistic semi * continuous.

(ii) If $f: X \to Y$ is intuitionistic semi * continuous and $g: Y \to Z$ is intuitionistic contra continuous, then $g \circ f: X \to Z$ is intuitionistic contra semi * continuous.

(iii) If $f: X \to Y$ is intuitionistic contra semi * continuous and $g: Y \to Z$ is intuitionistic continuous, then $g \circ f: X \to Z$ is intuitionistic contra semi * continuous.

Proof: Let \widetilde{U} be an IOS in Z. Then $g^{-1}(\widetilde{U})$ is an ICS in Y. Since f is intuitionistic contra semi * continuous, $(g \circ f)^{-1}(\widetilde{U}) = f^{-1}(g^{-1}(\widetilde{U}))$ is IS*C in X. Thus $g \circ f$ is intuitionistic semi * continuous.

(ii) and (iii) can be proved in a similar way.

4. Conclusions

In this paper, we dealt with intuitionistic semi * continuous and intuitionistic contra semi * continuous. In future we wish to do our research work in intuitionistic semi * separated, intuitionistic semi * connected, intuitionistic semi * compact, intuitionistic semi * irresolute continuous function and so on.

References

[1] D. Coker, An introduction to intuitionistic topological spaces Preliminary Report, Akdeniz University, Mathematics department, Turkey, 1995.

[2] D. Coker, A note on intuitionistic sets and intuitionistic points, Turk. J. Math., 20(3),1996,343-351.

[3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88, 1997, 81-89.

[4] D. Coker, An Introduction to Intuitionistic Topological Spaces, Busefal81, 2000, 51 -56.
[5] Rathinakani, G. Esther, and M. Navaneethakrishnan, "A New Closure Operator In Intuitionistic Topological Spaces."

[6] Rathinakani, G. Esther, and M. Navaneethakrishnan, "A Study on Intuitionistic Semi * Open Set." Design Engineering (2021): 5043-5049.

[7] G. Esther Rathinakani and M. Navaneethakrishnan, Some New Operators on Intuitionistic Semi * Open Set, (Communicated).

[8] Robert. A and Pious Missier. S, Functions Associated with Semi * Open Sets, International Journal of Modern Sciences and Engineering Technology (IJMSET) Vol.1, Issue 2, 2014, pp. 39-46.

[9] S. Girija, S. Selvanayaki and Gnanambal Ilango, Semi closed and semi continuous mapping in intuitionistic topological space, Journal of Physics: Conf. Series 1139 (2018) 012057.

[10] Younis J. Yaseen and Asmaa G. Raouf (2009) "On generalization closed set and generalized continuity on Intuitionistic Topological spaces" University of Tikrit- College of Computer Science and Mathematics.