Connected Hub Sets and Connected Hub Polynomials of the Lollipop Graph $L_{p,1}$

T. Angelinshiny¹ T. Anitha Baby²

Abstract

Let G be a graph with vertex set V(G). The number of vertices in G is the order of G and is denoted by |V(G)|. The connected hub polynomial of G denoted by $H_c(G, y)$ is defined as $H_c(G, y) = \sum_{k=h_c(G)}^{|V(G)|} h_c(G, k) y^k$ where $h_c(G, k)$ denotes the number of connected hub sets of G of cardinality k and $h_c(G)$ denotes the connected hub number of G. Let $L_{p,1}$ denotes the Lollipop graph with p + 1 vertices. The connected hub $L_{p,1}$ denoted by $H_c(L_{p,1}, y)$ is defined $as, H_c(L_{p,1}, y) =$ polynomial of $\sum_{k=h_c(L_{p,1})}^{|V(L_{p,1})|} h_c(L_{p,1},k) y^k \text{ where } h_c(L_{p,1},k) \text{ denotes the number of connected hub sets of}$ $L_{p,1}$ of cardinality k, and $\mathcal{A}_c(L_{p,1})$ denotes the connected hub number of $L_{p,1}$. In this paper, we derive a recursive formula for $h_c(L_{p,1}, k)$. From this recursive formula, we $L_{p,1}$ as, $H_{c}(L_{p,1}, y) =$ polynomial construct the connected of hub $\sum_{k=1}^{p+1} h_c(L_{p,1}, k) y^k$ Also we study some properties of this polynomial.

Keywords: Lollipop Graph, connected hub set, connected hub number, Connected hub polynomial.

Mathematics Subject Classification Code: 05C31, 05C99³

¹Research Scholar (Reg. No. 20213282092009), Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India. Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012. Mail Id: angelinshinyt@gmail.com

² Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India. Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012. Mail Id: anithasteve@gmail.com

³Received on June 19th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.886. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY license agreement.

1. Introduction

If any two distinct vertices of a graph *G* are adjacent, then *G* is a complete graph. If a tree has two nodes of vertex degree 1 and other nodes of vertex degree 2, then it is a path graph. A complete graph of order *p* is denoted by K_p and a path graph of order *q* is denoted by P_q . Join a complete graph K_p to a path graph P_q with a bridge. The resulting graph is a Lollipop graph $L_{p,q}$.

2. Connected Hub Sets of the Lollipop Graph L_{p,1}

In this section, we give the connected hub number of the Lollipop graph $L_{p,1}$ and some of the properties of the connected hub sets of the Lollipop graph $L_{p,1}$.

Definition 2.1 Join a complete graph K_p to a path graph P_1 with a bridge. The resulting graph is a Lollipop graph $L_{p,1}$.

Definition 2.2 Let G = (V, E) be a connected graph. A subset H of V is called a hub set of G if for any two distinct vertices $u, v \in V - H$, there exists a u - v path P in G, such that all the internal vertices of P are in H. The minimum cardinality of a hub set of G is called the hub number of G and is denoted by $\hbar(G)$.

Definition 2.3 A hub set *H* of *G* is called a connected hub set if the induced subgraph < H > is connected. The minimum cardinality of a connected hub set of *G* is called connected hub number of *G* and is denoted by $\hbar_c(G)$.

Theorem 2.4

$$h_{c}(L_{p,1,k}) = \begin{cases} \binom{p+1}{k} - \binom{p}{k} + 1 \text{ when } k = 1 \text{ and } p - 1 \\ \binom{p+1}{k} - \binom{p}{k} \text{ if } 2 \le k \le p + 1 \text{ and } k \ne p - 1 \end{cases}$$

Proof. Let $L_{p,1}$ be the Lollipop graph with p + 1 vertices and $p \ge 4$. Let $v_1, v_2, v_3 \dots v_p, v_{p+1}$ be the vertices of $L_{p,1}$, in which the degree of the vertices $v_1, v_2, v_3, \dots, v_{p-1}$ is p - 1, the degree of the vertex v_p is p and the degree of the vertex v_{p+1} is 1. Since, $L_{p,1}$ contains p + 1 vertices, the number of subsets of $L_{p,1}$ with cardinality k is $\binom{p+1}{k}$. Also, Since, the subgraph with vertex set $\{v_1, v_2, v_3 \dots v_{p-1}\}$ is not adjacent to v_{p+1} every hub set must contain the vertices v_p or v_{p+1} . Therefore, every time $\binom{p}{k}$ number of subsets of $L_{p,1}$ of cardinality k are not connected hub sets. Thus, $L_{p,1}$ have $\binom{p+1}{k} - \binom{p}{k}$ number of connected hubs sets of cardinalities k. When the cardinality is p - 1, the set which contains v_{p-1} is also a connected hub set. When the cardinality is $1, \{v_p\}$ and $\{v_{p+1}\}$ are the only connected hub sets.

Connected Hub Sets and Connected Hub Polynomials of the Lollipop Graph L_{p,1}

Hence,
$$h_c(L_{p,1,k}) = \begin{cases} \binom{p+1}{k} - \binom{p}{k} + 1 \text{ when } k = 1, \ p-1 \\ \binom{p+1}{k} - \binom{p}{k} \text{ if } 2 \le k \le p+1 \text{ and } k \ne p-1 \end{cases}$$

Theorem 2.5 Let
$$L_{p,1}$$
 be the Lollipop graph with $p \ge 4$. Then
(i) $h_c(L_{p,1,k}) = \binom{p}{k-1}$ for all $2 \le k \le p+1$ and $k \ne p-1$
(ii) $h_c(L_{p,1,k}) = \binom{p}{k-1} + 1$ when $k = 1$ and $p-1$.
(iii) $h_c(L_{p,1,k}) = \binom{p}{k-1} + 1$ if $1 \le k \le p+1$ and $k \ne 2$, $p-2$
 $\begin{cases} h_c(L_{p-1,1,k}) + h_c(L_{p-1,1,k}-1) \text{ if } 1 \le k \le p+1 \text{ and } k \ne 2, p-2 \end{cases}$
 $h_c(L_{p-1,1,k}) + h_c(L_{p-1,1,k}-1) - 1 \text{ if } k = 2 \text{ and } p-2$

Proof: (i) From Theorem 2.4, we have $h_c(L_{p,1,k}) = \binom{p+1}{k} - \binom{p}{k}$ We know that, $\binom{p+1}{k} - \binom{p}{k} = \binom{p}{k-1}$ Therefore, $h_c(L_{p,1,k}) = {p \choose k-1}$ for all $2 \le k \le p+1$ and $k \ne p-1$. (ii) From Theorem 2.4, we $h_c(L_{p,1},k) = {p+1 \choose k} - {p \choose k} + 1$ when k = 1 and p - 1. We know that, $\binom{p+1}{k} - \binom{p}{k} = \binom{p}{k-1}$ Therefore, $h_c(L_{p,1},k) = {p \choose k-1} + 1$ when k = 1 and p - 1. (iii) From (i) $h_c(L_{p,1,k}) = \binom{p}{k-1}$ for all $2 \le k \le p+1$ and $k \ne p-1$. $h_c(L_{p-1,1},k) = {p-1 \choose k-1}$ and $h_c(L_{p-1,k}-1) = {p-1 \choose k-2}$ Consider, $h_c(L_{p-1,1,k}) + h_c(L_{p-1,k}-1) = {p-1 \choose k-1} + {p-1 \choose k-2} = {p \choose k-1} =$ $h_c(L_{p,1},k)$ Therefore, $h_c(L_{p,1,k}) = h_c(L_{p-1,1,k}) + h_c(L_{p-1,k}-1)$ for $1 \le k \le p+1$ and $k \ne p$ 2, p - 2When k = 2, $h_c(L_{p,1},2) = \binom{p}{1}$ $h_c(L_{p-1,1},2) = \binom{p-1}{1}$ and $h_c(L_{p-1,1}, 1) = {p-1 \choose 0} + 1$, by (ii) Consider, $h_c(L_{p-1,1}, 2) + h_c(L_{p-1,1}, 1) = {p-1 \choose 1} + {p-1 \choose 0} + 1 = {p \choose 1} + 1$

$$= h_{c}(L_{p,1}, 2) + 1$$

That is, $h_{c}(L_{p,1}, 2) = h_{c}(L_{p-1,1}, 2) + h_{c}(L_{p-1,1}, 1) - 1$.
Therefore, $h_{c}(L_{p,1}, k) = h_{c}(L_{p-1,1}, k) + h_{c}(L_{p-,1}, k-1) - 1$ when $k = 2$.
When $k = p - 2$,
 $h_{c}(L_{p,1}, p - 2) = \binom{p}{p-3}$
 $h_{c}(L_{p-1,1}, p - 2) = \binom{p-1}{p-3}$
and $h_{c}(L_{p-1,1}, p - 3) = \binom{p-1}{p-4} + 1$, by (ii)
Consider, $h_{c}(L_{p-1,1}, p - 2) + h_{c}(L_{p-1,1}, p - 3) = \binom{p-1}{p-3} + \binom{p-1}{p-4} + 1 = \binom{p}{p-3} + 1 = h_{c}(L_{p,1}, p - 2) + 1$
That is, $h_{c}(L_{p,1}, p - 2) = h_{c}(L_{p-1,1}, p - 2) + h_{c}(L_{p-1,1}, p - 3) - 1$.
Therefore, $h_{c}(L_{p,1}, k) = h_{c}(L_{p-1,1}, k) + h_{c}(L_{p-1,1}, k - 1) - 1$ when $k = p - 2$.
Hence,
 $h_{c}(L_{p,1}, k) = \begin{cases} h_{c}(L_{p-1,1}, k) + h_{c}(L_{p-1,1}, k - 1) - 1 \text{ if } 1 \le k \le p + 1 \text{ and } k \ne 2, p - 2 \\ h_{c}(L_{p-1,1}, k) + h_{c}(L_{p-1,1}, k - 1) - 1 \text{ if } k = 2 \text{ and } p - 2 \end{cases}$

3. Connected Hub Polynomials of the Lollipop Graph $L_{p,1}$.

Definition 3.1 Let $H_c(L_{p,1,},k)$ denotes the family of connected hub sets of the Lollipop graph $L_{p,1}$, of cardinality k and $h_c(L_{p,1,},k) = |H_c(L_{p,1,},k)|$. Then, the connected hub polynomial of $L_{p,1}$ denoted by $H_c(L_{p,1,},y)$ is defined as $H_c(L_{p,1,},y) =$ $\sum_{k=h_c(L_{p,1,})}^{p+1} h_c(L_{p,1,},k) y^k$

where $h_c(L_{p,1})$ is connected hub number of $L_{p,1}$.

Remark 3.2 $h_c(L_{p,1}) = 1.$

Proof: Label the vertices of $L_{p,1}$ by $v_1, v_2, v_3, ..., v_p, v_{p+1}$ in which the degree of the vertices $v_1, v_2, v_3, ..., v_{p-1}$ is p-1, the degree of the vertex v_p is p and the degree of the vertex v_{p+1} is 1. Since, any two vertices of $v_1, v_2, v_3, ..., v_p$ are adjacent there is a path between any two vertices of $v_1, v_2, v_3, ..., v_p$. Also, v_p is the internal vertex for all the path between the vertices of $\{v_1, v_2, v_3, ..., v_{p-1}\}$ and v_{p+1} . Hence $\{v_p\}$ and $\{v_{p+1}\}$ are two connected hub sets of cardinalities 1. Hence, $\Re_c(L_{p,1}) = 1$.

Theorem 3.3
$$H_c(L_{p,1},y) = (1+y)H_c(L_{p-1,1},y) - y^2 - y^{p-2}$$
 with initial value
 $H_c(L_{4,1},y) = 2y + 4y^2 + 7y^3 + 4y^4 + y^5$.
Proof. We have, $H_c(L_{p,1},y) = \sum_{k=1}^{p+1} h_c(L_{p,1},k)y^k$
 $H_c(L_{p,1},y) = \sum_{k=1}^{p+1} h_c(L_{p,1},k)y^k + h_c(L_{p,1},2)y^2 + h_c(L_{p,1},p-2)y^{p-2}$
 $= \sum_{k=1}^{p+1} [h_c(L_{p-1,1},k) + h_c(L_{p-1,1},k-1)]y^k + [h_c(L_{p-1,1},2) + h_c(L_{p-1,1},1) - 1]y^2 + [h_c(L_{p-1,1},p-2) + h_c(L_{p-1,1},p-3) - 1]y^{p-2}$
 $= \sum_{k=1}^{p+1} [h_c(L_{p-1,1},k) + h_c(L_{p-1,1},k-1)]y^k - y^2 - y^{p-2}$
 $= \sum_{k=1}^{p+1} h_c(L_{p-1,1},k)y^k + \sum_{k=1}^{p+1} h_c(L_{p-1,1},k-1)y^k - y^2 - y^{p-2}$
 $= \sum_{k=1}^{p+1} h_c(L_{p-1,1},k)y^k + y \sum_{k=1}^{p+1} h_c(L_{p-1,1},k-1)y^{k-1} - y^2 - y^{p-2}$
 $= (1+y)H_c(L_{p-1,1},y) - y^2 - y^{p-2}$
Hence, $H_c(L_{p,1,1},y) = (1+y)H_c(L_{p-1,1},y) - y^2 - y^{p-2}$ with initial value
 $H_c(L_{4,1},x) = 2y + 4y^2 + 7y^3 + 4y^4 + y^5$.

Example 3.4 Consider the Lollipop graph $L_{5,1}$ be with order 6 given in Figure 1.

 $\begin{aligned} H_c(L_{5,1,}y) &= 2y + 5y^2 + 10y^3 + 11y^4 + 5y^5 + y^6 \\ \text{By Theorem 3.3, we have,} \\ H_c(L_{5,1,}y) &= (1+y)H_c(L_{4,1,}y) - y^2 - y^3 \\ &= (1+y)(2y + 4y^2 + 7y^3 + 4y^4 + y^5) - y^2 - y^3 \\ &= 2y + 5y^2 + 10y^3 + 11y^4 + 5y^5 + y^6 \end{aligned}$

Theorem 3.5 Let $L_{p,1}$ be the Lollipop graph with $p \ge 4$. Then (*i*) $H_c(L_{p,1}, y) = \sum_{k=1}^{p+1} {p+1 \choose k} y^k - \sum_{k=1}^{p+1} {p \choose k} y^k - y^2 - y^{p-2}$. T. Angelinshiny and T. Anitha Baby

(ii)
$$H_c(L_{p,1}, y) = \sum_{k=1}^{p+1} {p \choose k-1} y^k - y^2 - y^{p-2}.$$

Proof. Proof is obvious.

$h_c(L_{p,1}, k)$ for $4 \le p \le 14$ and $1 \le k \le 15$.															
k p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
4	2	4	7	4	1										
5	2	5	10	11	5	1									
6	2	6	15	20	16	6	1								
7	2	7	21	35	35	22	7	1							
8	2	8	28	56	70	56	29	8	1						
9	2	9	36	84	126	126	84	37	9	1					
10	2	10	45	120	210	252	210	120	46	10	1				
11	2	11	55	165	330	462	462	330	165	56	11	1			
12	2	12	66	220	495	792	924	792	495	220	67	12	1		
13	2	13	78	286	715	1287	1716	1716	1287	715	286	79	13	1	
14	2	14	91	364	100	2002	3003	3432	3003	2002	1001	364	92	14	1
							Tab	le 1							

Theorem 3.6 The coefficients of $H_c(L_{p,1}, y)$ satisfy the following properties.

(i) $h_c(L_{p,1}, p+1) = 1$, for every $p \ge 4$. (ii) $h_c(L_{p,1}, p) = p$, for every $p \ge 4$. (iii) $h_c(L_{p,1}, p-1) = \frac{1}{2}(p^2 - p + 2)$, for every $p \ge 4$. (iv) $h_c(L_{p,1}, p-2) = \frac{1}{6}(p^3 - 3p^2 + 2p)$, for every $p \ge 4$. (v) $h_c(L_{p,1}, p-3) = \frac{1}{24}(p^4 - 6p^3 + 11p^2 - 6p)$, for every $p \ge 6$. (vi) $h_c(L_{p,1}, 1) = 2$, for every $p \ge 4$. (vii) $h_c(L_{p,1}, 2) = p$, for every $p \ge 4$.

4. Conclusion

In this paper, we identified the connected hub sets of $L_{p,1}$ and using the connected hub sets we derived the connected hub polynomial of $L_{p,1}$. We can generalize this study to derive the connected hub polynomial of any Lollipop graph $L_{p,q}$.

Connected Hub Sets and Connected Hub Polynomials of the Lollipop Graph $L_{n,1}$

References

[1] Walsh, Matthew, "The Hub Number Of A Graph", Int. J. Math. Comput. Sci 1, No. 1 (2006): 117-124.

[2] Veettil, Ragi Puthan, And T. V. Ramakrishnan, "Introduction To Hub Polynomial Of Graphs", Malaya Journal Of Matematik (Mjm) 8, No. 4, 2020 (2020): 1592-1596.

[3] S. Alikhani And Y.h. Peng, "Dominating Sets And Domination Polynomials Of Paths", International Journal Of Mathematics And Mathematical Sciences, 2009.

[4] S. Alikhani And Y.h. Peng, "Introduction To Domination Polynomial Of A Graph ", Arxiv Preprint Arxiv:0905.2251, 2009.

[5] Sahib.sh. Kahat, Abdul Jalil Khalaf And Roslan Hasni, "Dominating Sets And Domination Polynomials Of Wheels", Asian Journal Of Applied Sciences (Issn:2321-0893), Volume 02- Issue 03, June 2014.

[6] Sahib.sh. Kahat, Abdul Jalil M. Khalaf And Roslan Hasni, "Dominating Sets And Domination Polynomials Of Stars", Australian Journal Of Basics And Applied Science,8(6) June 2014, 383-386.

[7] A. Vijayan, T. Anitha Baby, G. Edwin, "Connected Total Dominating Sets And Connected Total Domination Polynomials Of Stars And Wheels", Iosr Journal Of Mathematics, Volume II, 112-121.