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Abstract

Financial institutions, policy makers and regulatory authorities need to im-
plement stress tests in order to test both resilience and the consequences
of adverse shocks. The European Central Bank and the European Bank-
ing Authority regularly conduct these tests, whose importance is more and
more evident after the financial crisis of 2007-2008. The stress tests’ non-
linear features of variables and scenarios triggered the need of general and
robust strategies to perform this task. In this paper we want to introduce an
adaptive Neural Network approach to predict the Capital Adequacy Ratio
(CAR), which is one of the main ratios monitored to retrieve useful infor-
mation along many stress test procedures. The Neural Network approach is
based on a comparison between feed-forward and recurrent networks, and
is run after a meaningful pre-processing operations definition. Results show
that our approach is able to successfully predict CAR by using both Neural
Networks and recurrent networks.
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1 Introduction

Banks’ bankruptcy may have catastrophic effects over the overall economy,
since the contagion effect it may trigger could lead to a generalised overall cri-
sis [47]. To this extent the activity of banking supervision, and the role and the
authority of bank regulation, play a big role in preventing (or reducing the effect
of) the banks’ bankruptcy [11, 44]. Although aimed to different targets, many of
these supervision exercises are designed to maintain a sufficient banks’ level of
capital adequacy to allocate specific reserves aimed to face expected losses and to
protect themselves again excessive credit expansion. Authorities regulations im-
pose constraints over these reserves, even though banks often imposes themselves
reserves higher than the ones imposed by the regulations. These constraints are
defined by a minimum capital adequacy ratio that measures the level of capital as
a function of the risk bore the bank [27].

In this framework, systemic risk represents the risk of breakdown of the entire
financial system: this can be triggered by the misbehavior of a single component
of the overall financial system, that triggers negative impacts on the overall sys-
tem. This scenario can be observed on the timeline of years 2007-2008, starting
from some cracks in the subprime mortgage markets leading to a worldwide fi-
nancial crisis: this confirmed the idea that the more complex and non-linear a
system, the higher the probability of the system to fail [23, 28]. In order to pre-
vent these failures (and/or to quantify financial (un)stability), financial institutions
resort to stress tests, which are non linear tools used to assess the magnitude of
an exogenous shock and to determine a collapse threshold. These tools operate
by investigating both the local stress level (i.e. a single bank) and how the shock
is globally spread. Back in the 1990s, stress tests were intended for testing the
resilience and the stability of a financial institution to reach a certain credibility.
Later, stress tests, have been used to check the stability and vulnerability of single
financial institutions and the overall banking systems [16]. Based on the evalua-
tion aim and on the implications of the findings, stress tests can be classified into
two major groups: microprudential stress tests, which are forward-looking super-
visory instruments for determining the liquidity adequacy of individual banks in
relation to their portfolio risks [4]; macroprudential stress tests, which consists
of two different types of approaches: the bottom-up and the top-down approach
[16]. In the bottom-up approach, the effect is measured using data on individual
portfolios. On the other hand, in the top-down approach, the impact is estimated
by using aggregated data. Many computational methods have been introduced
to perform stress test and to predict bank failures: Discriminant Analysis [37],
Logit and Probit analysis [8], Neural Networks [53], just to name a few. There
are also contributions that compared different methods: for instance, [2] inves-
tigates different methods such as Logistic Regression (LR), Linear Discriminant
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Analysis (LDA), Random Forests (RF), Support Vector Machines (SVM), Neu-
ral Networks (NN) and Random Forests of Conditional Inference Trees (CRF);
[18] compared Generalized Linear Models and Generalized Additive Models, and
concluded that Generalized Linear Mixed Models have a better ability to predict
troubled businesses.

During a stress-test procedure many variables are taken into account to mon-
itor the financial institutions, and there exist several studies aimed to assess the
relative importance of these variables, in order to select what variable to monitor
to get the most accurate information as possible. Many contributions focuses in
determining the relationships between Capital Ratios and bank failures [1], and
to understand whether these ratios are useful to assess the regulatory capital ad-
equacy [42]. In this context, a careful investigation of Capital Ratios is crucial
for both the regulatory authority and the bank itself, since it has been shown that
the familiar banking characteristics for identifying a distress-prone bank identified
fragile banks effectively during the global crisis without new information and are
likely to continue to work well in the future [40]. Amongst many variables (e.g.,
profitability, liquidity, solvency, productivity, asset quality, see [54]), Capital Ad-
equacy Ratio (CAR) has a prominent place, and has been used in the predictor set
by many works [39, 31, 14, 38, 33, 5, 48]. Recently, some contributions proposed
to predict it as an indicator of financial health [49]. In our contribution we want to
expand this framework by implementing an adaptive Neural Network approach to
predict CAR from a well established set of indicators, and to provide banks and
regulators with useful information about their stress-test activity.

Our contribution is organised as follows: Section 2 reports the main literature
on the topic; Sections 3 and 4 outline the set of data and the pre-processing opera-
tion performed on it; Section 5 introduces the methods used in this paper; Section
6 comments the main results and Section 7 concludes the paper.

2 Literature review
CAR represents a particularly relevant topic for assessing the risks to which

banks are exposed [6]. In fact, for the construction of the CAR index, credit risk,
market risk, interest rate risk and exchange rate risk are considered. In this sense,
the regulatory authorities define the CAR as a significant indicator of safety and
stability as it considers capital as a useful element to absorb losses [34]. Currently,
the Capital Adequacy Ratios (CARs) defined by the minimum ratio of capital to
risk weighted assets are 8% under Basel II and 10.5% under Basel III [3, 12].
Based on this, CAR represents a factor of analysis by regulators to determine cap-
ital adequacy for banks and to perform stress tests [29]. In order to aggregate the
information coming from the literature, we performed an analysis on bibliographic
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data using the software VOSviewer (Figure 1) to create a keyword co-occurrence
map in order to analyze the main CAR literature in our field of analysis.

Figure 1: VOSviewer: Capital Adequacy Ratio

From the analysis of the data, it emerges that several authors analyze the re-
quired minimum levels of the CAR by evaluating macroeconomic indicators [46],
[7], financial indicators [50], multi credit rating indicators [45]. Furthermore,
many authors carry out stress tests on CAR to verify the effects of economic crises
[58], stability [25] and resilience [15] of banks, along with macro stress test for re-
silience assessment [20]. Recent studies are moving towards identifying the most
important variables for future projections of the CAR. In particular, [50] carry out
a study on South Korean national banks using Random Forest Boruta algorithms,
Random Forest Recursive Feature Elimination, and Bayesian Regularization Neu-
ral Networks. Other contributions use CAR to benchmark the performances of
banks in stress tests [3, 12, 24, 27, 29, 32, 59].

The goal of our contribution is to assess whether we can use stress-testing to
effectively benchmark the performance of a bank in a precise scenario, and to this
extent we need to choose a metrics that can precisely fill that role. CAR is apt
to measures the financial soundness of banks in absorbing a reasonable amount
of loss, and on the basis of the central role that the CAR assumes in the assess-
ments of banks and on the basis of the guidelines of the literature on the analysis
of the minimum levels of the CAR, our work aims to accurately predict the CAR
by using quantitative methods. In this framework the quantitative research about
stress-testing has been twofold: on one side, to predict the banks’ bankruptcy; on
the other side, to assess the different variables features and capability to explain
the default. According to [54], Neural Networks are widely used in contributions
related to the first side, while its application about the other side are still limited.
We can start our discussion by pointing out that along with stress testing, a key
topic is the prediction of various risks, that was based on traditional probability
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and statistical theories [9], but that could lead to non-linear formulations or to tak-
ing into account just a few variables, hence triggering the we need of complex and
non linear models, also due to the needs of a more interconnected world, not only
in financial terms. For this reason researchers and risk managers avail themselves
of the usage of Artificial Neural Networks and Deep Learning to stress testing
activities and predict high volatility periods. Since more hidden layers are in a
Neural Network means a more complex modelling interaction effect, in finance
forecasts, large collections of data often require dynamic data relationships that
are difficult or impossible to specify under a complete model [9]. On the other
hand, deep learning models can identify and manipulate dynamic non-linear data
connections that are invisible to any current financial economic theory and may
deliver more reliable predictive outcomes than traditional approaches [30]. Al-
though Artificial Neural Networks and Deep Learning have several applications
in the financial field such as credit scoring, predictions and forecasts in finan-
cial crisis and bankruptcy, we want to focus on how Artificial Neural Networks
and Deep Learning Methods are related to stress testing. Financial stability is
essential to the economic growth of countries and individuals. Regulatory agen-
cies and foreign organisations carried out stress testing activities to determine the
stability of the financial system even earlier than 2007, but failed to anticipate
the unprecedented economic implications of the crisis. For this reason ever more
stress testing exercises were created and used from the authorities with a glance
to the consequences of an interconnected financial system in the macroeconomic
environment. For example, the European Banking Authority (namely, EBA) ap-
proach uses simplified assumptions that cover only particular risks to individual
bank balance sheets depending on the macro-economic scenario. One of the ma-
jor drawbacks of the European Banking Authority approach is the static financial
statement expectation, which allows assets and liabilities to stay stable over the
horizon considered without any appreciation of management decisions or new
loans. Macroeconomic feedback impacts, such as the influence of large insolvent
firms on the global economy, are not generally welcomed assumptions in these
systems. This kind of test aims the planning binaries of an after crisis recovery
behaviour. However, [52] show that the main problem with respect to the Eu-
ropean Banking Authority approach is that this mechanism does not provide an
early alarm to avoid being completely disarmed in front of a shock. In [52] it
is also provided a solution to this weakness of the model. They propose a Neu-
ral intelligence for which financial or macroeconomic disturbances extend to the
bank’s balance sheets while simultaneously building a large Neural Network with
macro and financial factors. The model is capable of gathering more knowledge
concealed in a large data set and allows for complex non-linear interactions that
materialize under adverse macroeconomic conditions and financial strain. This
methodology examines the financial system independently, without relying on the
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forecasts of the single banks. As a result of the cited paper, comparing the static
stress test models with dynamic ones, prove that the deep learning framework can
become a useful tool and can improve the early warning mechanism’s signaling
ability to anticipate future financial issues and failures of individual banks. The
authors, finally, compare the performance of the Deep Learning technique with
the classic stress test models, such as the constant balance sheet approach and the
dynamic balance sheet approach to satellite modelling. They reveal that the pre-
diction error of the CAR dropped significantly under the Deep Learning Method
due to its improved performance in simulating the one-year gains and losses of
financial institutions. For this reason, Deep Learning Architecture may become a
useful tool for macro prudential stress testing and can improve the early warning
mechanism’s ability to anticipate future financial crises and failures of individual
banks.
Now that we have a measure by which we can benchmark banks, we need to find
a way by which we can predict the CAR of banks based on certain factors which
is what we need in order to stress test banks. The more factors we can incorporate
in our predictions the better since it will reflect better a real-world situation and
make our stress testing much more realistic.

3 Data set
Our data set consists of worldwide banks’ financial indicators; along with

stress financial indicators, we have considered also macro-economic indicators,
in order to identify the propagation of systemic shocks that propagate into the fi-
nancial institutions. We have retrieved quarterly observations that covers a period
of 12 years (2007 to 2019).

Data was collected from different sources: stress financial indicators have
been collected from the Federal Deposit Insurance Corporation2 website3; macro-
economics indicators were collected from the Federal Reserve Economic Data4

website5. The sample period covers twelve years: we have collected quarterly
data referring to 672 banks and financial institutions between 2007 and 2019,
hence we dispose of 34944 observations. The sample includes missing and noisy

2FDIC is an independent agency created by the Congress to maintain stability and public con-
fidence in the nation’s (USA) financial system. The FDIC insures deposits; examines and su-
pervises financial institutions for safety, soundness, and consumer protection; makes large and
complex financial institutions resolvable; and manages receiverships

3referred to as https://www.fdic.gov/FDIC in what follows
4referred to as https://fred.stlouisfed.org/FRED in what follows
5Researchers at the St. Louis Fed contribute to monetary policy discussions by advising on a
range of topics, especially in preparation for Federal Open Market Committee meetings (from
the https://www.fdic.gov/FDIC website, accessed on 2021, January 29th).
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Table 1: Variables used in the experimental phase and the category they belong
to: the label FIN denotes financial indicators and MAC denotes macro-economic
indicators.
Name Description FIN / MAC
net loan Net loans and leases exposure FIN
loss allow Loss allowance to loans FIN
dep Total deposits FIN
yield ea Yield on earning assets FIN
fundc ea cost of funding earning assets FIN
inc aa Noninterest income to average assets FIN
CAR Total risk-based capital ratio FIN
tot asst Average total assets FIN
tot eq Average total equity FIN
tot loan Average total loans FIN
risk dens Risk weight density FIN
GDP growth Gross Domestic Product growth MAC
export growth US real exports of goods and services growth MAC
debt GDP US public debt to GDP MAC
govex GDP US government expenditure to GDP MAC
inflat Implicit price deflator as a measure of US inflation MAC
HPI growth House Price Index growth MAC
unemp Unemployment rate (age 15-64) MAC
Yield 10Y 10-year US sovereign bonds yields MAC
SP500 ret SP 500 quarterly returns MAC

values. Please notice that we have chosen a sample period that does not con-
tain sub-periods denoting the emergence of a crisis, since we want to develop a
methodology for ordinary periods, in which systemic shocks are more difficult to
detect. Collected data show a number of correct entries which is smaller than its
theoretical value: this is due to missing and noisy data, and could lead to misbe-
havior of the Neural Network approach, hence we had to devise pre-processing
operations, that are outlined in what follows.

4 Data pre-processing

Data analysis is a key point in all experimental settings, and it is always per-
formed in order to understand its features, to detect anomalies (if any), and to rep-
resent data without loosing useful information. Based on the observations oulined
by [13, 21], we apply the following data pre-processing operations.
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Table 2: Variables used in the experimental phase: overall main statistics before
pre-processing operations.
Name Mean STD Kurt. Skewn. Min Max
net loan 684062.10 2845178 128.86 10.17 0 75190000
loss allow 10811.40 92866.23 1170.43 29.11 0 5752000
dep 848100.51 4672760 498.48 18.76 68 2180000
yield ea 4.61 1.21 20.01 2.38 0.07 26.96
fundc ea 1.24 0.88 2.67 1.32 0 16.59
inc aa 1.47 18.11 722.73 26.40 -15.95 601.27
CAR 23.68 15.42 113.18 6.08 0.75 725.80
tot asst 1114221 5587407 302.58 14.46 2816 2110361
tot eq 125720.10 566772.30 129.17 10.33 539.75 14389800
tot loan 683913.22 2852402 129.57 10.19 0 71201027
risk dens 60.09 14.28 0.63 0.06 8.43 192.24
GDP growth 1.73 2.35 4.05 -1.53 -8.45 5.51
exp. growth 3.63 8.17 5.14 -1.19 -28.65 25.84
debt GDP 93.95 11.27 1.38 -1.49 61.65 105.18
govex GDP 0.34 0.01 -1.09 0.37 0.31 0.37
inflat 100.43 4.51 -0.94 0.12 91.70 111.25
HPI growth 201.26 20.39 0.22 0.92 176.86 264.31
unemp 7.22 1.89 -1.40 -0.07 3.78 10.05
Yield 10Y 2.64 0.72 -0.02 0.70 1.56 4.84
SP500 ret 0.02 0.06 6.76 -1.47 -0.27 0.17

4.1 Removal and replacement

When collecting data, one may incur in missing and incorrect values. Previ-
ous contributions related to Neural Network approaches [21] suggested to remove
indicators containing more than 30% of missing and wrong values. Our set of data
does not contain such indicators, so we are using the whole set of variables in our
experimental phase. Anyhow, many indicators show missing and wrong values,
so we replace missing values (due to computational errors) with the upper limit
of the normalization (see what follows), and wrong values with the indicator’s
average over time.

4.2 Normalization

Normalization is a general procedure performed in order to feed the Neural
Network with data belonging to the same range: many contributions stress the
importance of performing meaningful normalization, and many formulas are sug-
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gested [35]. In our case we used the logarithmic transformation that has been
already introduced by [21], defined as follows:

xi = logu (|min(0, xmin)|+ xi + 1) , (1)

where xi represents the value before normalisation of input x for firm i, and xi

represents its normalised value. Please notice that we have defined

u

such that

u = xmax + 1

this has been imposed in order to have xi ∈ [0, 1].

Table 3: Main statistics of overall financial and macro-economic indicators after
pre-processing operations.

Name Mean STD Kurtosis Skewness Min Max
net loan 0.67 0.08 1.41 0.42 0 1
loss allow 0.48 0.10 1.29 0.25 0 1
dep 0.64 0.07 1.38 0.58 0.22 1
yield ea 0.53 0.06 5.19 -0.07 0.02 1
fundc ea 0.30 0.14 -0.28 0.53 0 1
inc aa 0.41 0.06 6.68 0.05 0 1
CAR 0.50 0.07 1.23 0.86 0.08 1
tot asst 0.65 0.07 1.38 0.66 0.42 1
tot eq 0.63 0.08 1.36 0.71 0.38 1
tot loan 0.67 0.08 1.43 0.43 0 1
risk dens 0.79 0.05 1.48 -0.74 0.44 1
GDP growth 1.06 0.31 2.58 -1.52 0 1
export growth 0.99 0.2 10.45 -3.09 0 1
debt GDP 0.97 0.02 2.11 -1.71 0.89 1
govex GDP 0.93 0.03 -1.09 0.36 0.86 1
inflat 0.98 ¡ 0.01 -1.17 0.03 0.96 1
HPI growth 0.96 0.01 -0.83 0.01 0.92 1
unemp 0.86 0.10 -1.27 -0.28 0.65 1
Yield 10Y 0.79 0.11 -0.93 0.10 0.55 1
SP500 ret 1.12 0.57 -1.08 -0.09 0 1
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4.3 Correlation analysis

We have performed a correlation analysis in order to understand whether some
kind of correlation arise amongst variables defined in Section 3 and to avoid
feeding the network with highly-correlated indicators. We have tested Pearson’s,
Kendall’s, and Spearman’s correlation, leading to similar trends in the obtained
correlations. In what follows we will refer to Spearman’s ranked based correla-
tion. We have decided to remove from the predictor set the indicators showing a
correlation with a given portion (i.e., j) of other indicators greater than a given
threshold (i.e., h). In order to determine the value of j and h we have defined
parameter-tuning procedure via REVAC (see [43]). The values found have been
j = 1

3
and h = 0.70. On the basis of these values, we have decided to remove

indicators showing a correlation with 30% of the other indicators greater than 0.7.
These indicators are: netloan, lossallow, dep, totasst, toteq, totloan. They will not
be considered in what follows: 6 indicators have been removed from the predic-
tors set, corresponding to 24 quarterly indicators that will not be used to feed the
Neural Networks’ nodes.

As for the Neural Network experiments, in what follows we are outlining re-
sults of the experiments run by using data before the pre-processing operations
(referred to as full model) and data after the pre-processing operations (referred to
as reduced model).

5 Experimental analysis
In this section we are introducing the methods used to perform our experimen-

tal analysis: the Neural Network approach will be detailed in Section 5.1, along
with the main components needed to define its use, i.e., the network topologies
(Section 5.1.1) and the partitioning of the set of data to enforce generalisation
(Section 5.1.2). Then, we are introducing the methods we are comparing our ap-
proach with (Linear Regression in Section 5.2, and Generalised Linear Models in
Section 5.3), along with the metrics used for our comparisons in Section 5.4.

5.1 Neural networks

In this section we are introducing our Neural Network approach: Artificial
Neural Networks [22] can be referred to as algorithms that mimic the behavior
of the human brain to perform complex tasks, and they are used to grasp non-
functional relationships over the data. They are composed of elementary units
(neurons) which are connected to each other via weighted and oriented links
(synapses). Neurons may have different functions: the input neurons receive data
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from external sources; the output neurons show the computed output values; the
hidden neurons are used to perform computations. During the learning phase, the
weights associated to the synapses iteratively change over time, accordingly to a
specific algorithm: several algorithms have been proposed for this learning phase:
Back-Propagation [56], Quasi-Newton methods [55], Levenberg-Marquardt algo-
rithm [26], just to name a few. The learning phase may be organised following
three different paradigms: supervised learning [36]; unsupervised learning [10]
and reinforcement leaning [57]. In what follows, we are training networks intro-
duced in Section 5.1.1 by using back-propagation algorithm, in order to minimize
the network test set’s root mean square error (RMSE) defined as√√√√ 1

n

n∑
i=1

(ei − ai)2, (2)

where n is the test set size, ei is expected output value corresponding to pattern
i, and ai is the actual network output corresponding to input pattern i.

5.1.1 Network topologies

For our experiments we are using two different Neural topologies: a feed-
forward6 architecture with 80 inputs nodes, referred to as standard network (see
Figure 2), and a variant in which inputs neurons corresponding to the same in-
dicator are grouped by 4 before feeding the first feed-forward layer7 (see Figure
3).

Please notice that, as for the cardinality of hidden neurons, many rules of
thumb exist, suggesting different formulas to compute the number of hidden lay-
ers and the number of hidden neurons [19]. We have decided not to use any of
these rules, resorting to an adaptive method to determine the optimal hidden neu-
rons structure: this procedure has been proposed by [17], and it aims to minimize
the network’s error (in our scenario, the Eq. 2) calculated for each of the data set
at hand. This adaptive procedure starts with a single hidden neuron and iteratively
add one neuron until no improvement on the Eq. 2 is found over the last user-
defined K iterations, and is outlined in Algorithm 1.

6A feed-forward network features neurons grouped into layers (1,2, . . . , lmax) : each neuron be-
longing to layer i (i < lmax) is associated to synapses that connect itself to all neurons belonging
to layer i+ 1.

7These four values correspond to past observations spreading over one year, since for each indi-
cator i corresponding to time t the input pattern contains the value of the indicators collected at
time t, together with the 3 previously quarterly collected values.
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Figure 2: Standard network.
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Figure 3: Ad-hoc network: input neurons are grouped by four, indicating the
observations over a year of the same variable.
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Algorithm 1: Adaptive hidden neurons computation for Neural Networks
Initialization: observational data set

The optimal network topology w.r.t. the error defined in Eq. 2. b in 1, . . . ,#
sub-sampling runs Xb ← Dataset at bth sub-sample Xtrainb ← Training set at bth

sub-sample run Xtestb ← Test set at bth sub-sample run i in 1, . . . ,# of hidden
layer k ← 0 j ← 1 k ≤ K train net Netij on Xtrainb compute RMSEij

error with Eq. 2 on the Xtestb Overallij ≤ all RSMEij BestNet ← Netij
Neurons← (i, j)Overallij > RSMENeurons k++ k ← 0 j++BestNetb ←
BestNet Neuronsb ← Neurons return BestNet, RSME=Eq. 2, Neurons

5.1.2 Training and test set

In our experiments we are exploiting the supervised learning, meaning that
during the learning phase, for each input pattern, we are also providing the de-
sired output value, that in our scenario corresponds to CAR: all other indicators
considered in Table 3 will define the input pattern for each financial institution.
In order to grasp the time dynamics, for each input indicator i we are providing
to the network the value of the indicators collected at time t, together with the
values collected at time (t− 1), (t− 2), and (t− 3). During the Neural Network
learning we have to identify two disjoint sets of observations out of the overall
34944 observations: the training set, that will be used to determine the synapses’
weights, and the test set, that will be used to determine the network performance
and to stop the learning. According to [19], we have decided to split the overall
data by randomly allocating the 70% of its observations to the training set, and
the remaining 30% to the test set. This random allocation has been repeated 50
times, each time determining a different train-test partition. We have then run our
Neural network approaches on all obtained partitions, and in what follows we are
reporting, for each Neural approach, the average and standard deviation statistics
over the 50 partitions.

5.2 Linear Regression
Linear Regression is used to model the relationship between two or multiple

parameters by fitting a linear equation on the observed data. Usually, this is done
using the least-square regression that minimizes the sum of squares of the vertical
deviation from each data point on the line. The algorithm aims to reduce this sum
by selecting the most appropriate constants in the equation representative of the
regression line.
A Linear Regression line has an equation of the form Y = a+ bX where X is the
explanatory variable and Y is the dependent variable. The slope of the line is b,
and a is the intercept (the value of y when x = 0) [60].
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5.3 Generalised Linear Models (GLMs)
The basic Linear Regression predicts a certain value as a linear combination of

a specific set of observed values, meaning that a change in one or multiple predic-
tors affects the response variable. However, for complex data, Linear Regression
is not very effective, and in these cases one may resort to Generalized Linear Mod-
els [41], that allow response variables to have arbitrary distributions (rather than
normal distributions), and define an arbitrary function of the response variable
(the link function) to vary linearly with the predictors, rather than assuming that
the response itself must vary linearly. A generalized Linear Model (GLM) con-
sists of three elements: Linear predictor; Link function; Probability distribution
or exponential family. The linear predictor is the linear combination of parameter
b and explanatory variable x. The link function is what links the linear predicted
and the probability distribution: there are many link functions and usually, they
are used depending on the features of data we are trying to predict and in which
range are we expecting it to be.

5.4 Evaluation of the model
Once we build a model through Linear Regressions (or GLMs), we need to

measure the correctness of this model. This can be done via different statistical
measures, that are used to benchmark the performance of predictive models.

5.4.1 Root mean squared error

The root mean squared errors represents the standard deviation of the prediction
errors. by that, we mean that it tells us how concentrated the data is around the line
that we predict. To calculate it we can take the square root of the Mean squared
errors.

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2.

where n is the number of predictions, Yi the observed values, and Ŷi being the
actual prediction of that variable.

5.4.2 R-Squared

The R-Squared represents how well the data fits on the regression line. More
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generally, it is used to analyze how the difference in one variable can be explained
by other variables. In the case of regression, we can reason in percentages and say
that the closer the measure is to 1 the closer the points are to the regression line
up to 1 where 100% of the points are on the line. Generally, this would mean that
the higher R-squared is the better the results we have but this can be false in some
edge cases. It is calculated by squaring the correlation coefficient calculated with
this formula

R2 = 1− SSres

SStot

where SSres is the sum of squares of residuals, and SStot is the residual sum
of squares.

5.4.3 F-statistic

The F-statistic in a regression is a value that represents how well you improved
the regression line compared to a regression line with all the coefficients = 0.
if your model significantly improved the model fit then you will get a better F-
statistic. But before taking into account the F-value one must first look at the
P-value that is calculated at the same time as the F-statistic. With the F-statistic
calculation comes the P-value. Usually the P-value is looked at before taking the
F-statistic into account. If the P-value is lower than the alpha level, then we can
reject the null hypothesis and we can consider the F-value, otherwise the F-values
is worthless.

6 Results and discussion

In this section we report the principal results to build a model that is performs
well on our benchmarks.

All Neural approaches have been implemented in Python, exploiting the li-
brary Tensor-Flow. Experiments have been run on a on a cluster with AMD
Opteron 2216 dual core CPUs running at 2.4 GHz with 2x1 MB L2 cache and
4 GB of RAM under Cluster Rocks distribution built on top of CentOS 5.3 Linux.

Table 4 reports the RMSE of the experiments run with both the Standard and
Ad-hoc networks. We have performed 50 runs of the adaptive procedure devised in
Algorithm 2 and reported the minimum, maximum, mean, median, and standard
deviation of the RMSE distribution, for each possible instantiation of the pair
[network, model].
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Standard Standard Ad-hoc Ad-hoc
Reduced model Full model Reduced model Full model

Min 0.070 0.071 0.040 0.040
Max 0.074 0.076 0.045 0.051
Mean 0.072 0.073 0.042 0.045
Std 0.001 0.001 0.001 0.003

Median 0.072 0.073 0.042 0.046

Table 4: RMSE of the experiments run with the Standard and Ad-hoc networks.
For each columns. For each column, statistics over 50 runs of the proposed adap-
tive procedure are reported.

As a first remark, we can see that the pre-processing operation have a valid
role in improving the networks’ performances, in both Standard and Ad-hoc
networks. Then, we can see that the Ad-hoc networks’ error is lower than the
Standard one. This confirms the results found by [17] and [21], in which authors
exploit the fact that the Ad-hoc network is able to grasp the temporal dependence
of inputs.

Then, we are presenting the results obtained with Linear Regression and with
GLMs (both developped using the Sci-kit learn library on Python[51]), and then,
we are comparing them with the Neural Network approach devised in section 5.1.
As a first experiment, we have implemented a regression approach over the whole
dataset, and the results are shown in table 5: in this table we report the R2 rel-
ative to experiments performed with Linear Regression and GLMs, along with
two variants: the Adjusted R-Squared (that takes into account the number of pre-
dictors) and the Predicted R-Squared (that takes into account overfitting). Please
notice that for GLM we have used the pseudo R-squared (for sake of definition)
and that we also report the P-value of the F-test (i.e., the probability of obtaining
an F-statistic value that is greater than the model’s F-value, under the null hy-
pothesis that the regression model is not significant: low positive values identifies
good fit). We have performed experiments by using as predictors both the total
set of variables identified after the pre-processing phase (identified by the entry
Whole set of data in the table), and a limited set of predictors composed of all pre-
dictors that are significant for the regression according to their P-value (identified
by the entry All observations, limited set of predictors). We see that the reduction
of predictors does not improve the goodness of the fit according to the different
metrics used, so in what follows we are using the whole set of predictors. In this
direction, we remark that Generalised linear models lead to a better R− squared,
but this comes at the cost of a higher overfitting, as witnessed by the lower value
of the PredictedR − squared. Linear Regression instead, leads to a worse (but
still acceptable) R− squared, but its difference with the PredictedR− squared
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is lower, showing a better robustness of the approach. Please notice that all regres-
sions are significant according to the P-value of the F-test. We recall that these
experiments have been performed on the whole set of data. In what follows we
will describe experiments performed on different partitions of training/test sets,
in order to compare these approaches with our Neural Network approach.

Table 5: Linear Regression and GLMs over the whole set of data: measures of the
goodness of the fit.

Data Used Model statistic values

All observations, Linear Regression Predicted R-squared 0.77
limited set of predictors R-squared 0.78

Adj R-squared 0.78

Whole set of data Linear Regression Predicted R-squared 0.77
R-squared 0.78

Adj R-squared 0.78
P-value of the F-test 0.0

Whole set of data GLM Predicted R-squared 0.71
Pseudo R-Squared 0.91

P-value of the F-test 0.0

Please notice that the previous results have been obtained on the whole set
of data. In order to test the generalization capability of our approach, we have
split the whole set of data in 50 different training/testing partitions (i.e., the
same partitioning generated in Section 5.1.2), built our model to fit the training
set, and assessed the goodness of the fit on the test set. This has been done for all
regression detailed in Table 5, along with the Neural approaches devised in Table
4, and the goodness of fit (assessed by the R − squared) has been reported in
Table 6, as computed on the error distributions displayed in Table 4.

By looking the results, we see that the best results are offered by the Ad-hoc
Neural Networks, but also the Standard network performs fairly well. This is due
to the generalisation skill of the network, able to prevent the overfitting we have
found on the aforementioned regression approaches. This confirms the goodness
of our adaptive procedure, that has been proposed by [17] in a different context,
but that can be tailored to the different application scenarios.
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Table 6: Experiments with Linear Regression, Generalised Linear Models, and
Neural Networks (Standard and Ad-hoc). Statistics of the R-Squared computed
on the test sets of 50 different training/testing partitions.

Model statistic values
Linear Regression min 0.76

max 0.80
mean 0.77
stdd ¡ 0.01

GLM min 0.69
max 0.72

mean 0.70
stdd ¡ 0.01

Standard NN min 0.71
max 0.90

mean 0.81
stdd 0.15

Ad-hoc NN min 0.64
max 0.92

mean 0.84
stdd 0.13

7 Concluding remarks

The bankruptcy of banks may lead to a huge catastrophic effect over the over-
all economy, since the contagion effect it may trigger could lead to a generalised
overall crisis. To this extent, the activity of banking supervision, and the role and
the authority of bank regulation, play a big role, since they may prevent (or reduce
the effect of) the banks’ bankruptcy. Although aimed to different targets, many
of these supervision exercise are designed to maintain a sufficient level of capital
adequacy: in a way, the banks have to allocate specific reserves to face expected
losses and to protect themselves from excessive credit expansion. Bank regula-
tions impose constraints over these reserves, even though banks operate them-
selves preventively against unexpected crises, and their reserves are often higher
than the ones imposed by the regulations. The CAR is one of the main indicators
monitored by the banks themselves and by the supervising authorities in order to
assess the bank health, and in our contribution we have devised an adaptive Neu-
ral Network approach to predict the CAR, and compared the obtained results with
standard approaches such as Linear Regression and Generalised Linear Models.
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Results show that Neural Networks may be successfully used to predict the CAR,
and that their outcomes compare favourably with standard methods when used
jointly with meaningful pre-processing operations. In future research, modern re-
current neural networks (Long Short-Term Memory or Gate Recurrent Units) and
1D-convolutional Neural Networks could be used to exploit the time dependency
of the data.
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