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Abstract

A fixed point for a suitable map or operator is identical to the presence
of a solution to a theoretical or real-world problem. As a result, fixed
points are crucial in many fields of mathematics, science and engi-
neering. The purpose of this paper is to prove unique common fixed
point theorems for families of weakly compatible mappings. Given
mappings satisfy common limit range property and a mixed implicit
relation. Our results generalize, extend and improve the results of Im-
dad (2013) and Popa (2018). We provide an application for integral
type contraction condition. An example is also mentioned to check
the authenticity of our results.
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1 Introduction and Preliminaries
Fixed point theory is an important tool of modern mathematics as it helps to

find a unique fixed point of multi-valued and single-valued mappings by restrict-
ing the condition of the domain of the function. It also helps to find the results
of many differential as well as integral equations which can further be used to
solve many industrial based problems. The most popular tool in fixed point the-
ory is Banach contraction [6] principle which states that every contraction map-
ping on a complete metric space has a unique fixed point. Various authors have
extended and generalized this principle in various directions. In 1976, Jungck
[9] used the concept of commuting maps to prove a common fixed point theo-
rem. Several authors have investigated various concepts of minimal commuting
maps. A pair of self-mappings (P ,Q) on a metric space (X , d) is said to be
compatible [10] if limn→∞ d(PQun,QPun) = 0, whenever {un} is a sequence
in X such that limn→∞ Pun = limn→∞Qun = u for some u ∈ X . A pair of
self-mappings (P ,Q) on a metric space (X , d) is called weakly compatible [11]
if P and Q commute at their points of coincidence. Pant ([13], [14], [15]) ini-
tiated the study of common fixed points for non-compatible mappings. Further,
Aamri and El-Moutawakil [1] introduced (E.A) property as a generalization of
non-compatible mappings. A pair of self-mappings (P ,Q) on a metric space
(X , d) is said to satisfy (E.A) property [1] if there exists a sequence {un} in X
such that limn→∞ Pun = limn→∞Qun = u , for some u ∈ X .

In 2011, Sintunavarat and Kumam [22] introduced the concept of common
limit range property.

Definition 1.1. [22] A pair of self-mappings (P ,Q) on a metric space (X , d) is
said to satisfy the common limit range property with respect to Q, denoted by
CLRQ, if there exists a sequence {un} in X such that

lim
n→∞

Pun = lim
n→∞

Qun = u, for some u ∈ Q(X ).

Thus one can note that the mappings P and Q satisfying property (E.A) along
with the closedness of the subspace Q(X ) always have CLRQ property with re-
spect to Q.

In 2013, Imdad et al. [8] extended the notion of common limit range property
for pairs of self mappings.

Definition 1.2. [8] Two pairs of self-mappings (P ,Q) and (S, T ) on a metric
space (X , d) are said to satisfy common limit range property with respect to Q
and T , denoted by (CLR)(Q,T ), if there exists two sequences {un} and {vn} in X
such that

lim
n→∞

Pun = lim
n→∞

Qun = lim
n→∞

Svn = lim
n→∞

T vn = t,
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where t ∈ Q(X ) ∩ T (X ).

In 2018, Popa et al. [17] introduced a new type of limit range property as
follows.

Definition 1.3. [17] Let P ,Q, T be self mappings of a metric space (X , d). The
pair (P ,Q) is said to satisfy common limit range property with respect to T if
there exists a sequence {un} in X such that limn→∞ Pun = limn→∞Qun = u,
for some u ∈ Q(X ) ∩ T (X ).

Now we extend the definition 1.3 for families of mappings.

Definition 1.4. Let Q1,Q2,...,Q2n and P be self mappings of a metric space
(X , d). The pair (P ,Q1Q3...Q2n−1) is said to satisfy common limit range prop-
erty with respect to Q2Q4...Q2n if there exists a sequence {un} in X such that
limn→∞ Pun = limn→∞Q1Q3...Q2n−1un = u, for some u ∈ Q1Q3...Q2n−1(X )∩
Q2Q4...Q2n(X ).

Remark 1.1. [17] Let P ,Q, S and T be self mappings of a metric space (X , d). If
the pairs (P ,Q) and (S, T ) satisfy the common limit range property with respect
to Q and T , then (P ,Q) satisfy the limit range property with respect to T , but the
converse does not hold.

Boyd and Wong [5] introduced ϕ contraction condition and generalized the
Banach contraction principle using this contraction. A self mapping P on a
complete metric space (X , d) is said to satisfy ϕ contraction if d(Pα,Pβ) ≤
ϕ(d(α, β)), for all α, β ∈ X , where ϕ : [0,∞) → [0,∞) is an upper semi con-
tinuous function from right such that 0 ≤ ϕ(t) < t for all t > 0. The theorems
of existence of fixed points for self mappings in Hilbert spaces satisfying ϕ-weak
contraction were studied by Alber and Guerre-Delabriere [3]. Further Rhoades
[21] extended this concept in complete metric space. Some fixed point results
are proved in [7], [8] and in other papers for mappings with common limit range
property satisfying (ϕ, ψ)-weak contractive conditions.
The following theorem is proved in [8].

Theorem 1.1. [8] Let P , Q, S and T be self mappings of a metric space (X , d)
satisfying

ψ(d(Px,Qy)) ≤ ψ(m(x, y))− ϕ(m(x, y)),

for all x, y ∈ X and for some ϕ, ψ,
wherem(x, y) = max{d(Sx, Ty), d(Sx, Px), d(Ty,Qy), d(Sx,Qy), d(Ty, Px)}
and ϕ, ψ : [0,∞) → [0,∞) such that ϕ is a lower semi-continuous function and
ϕ−1(0) = 0 and ψ is a non-decreasing continuous function with ψ−1(0) = 0.
If the pairs (P,Q) and (S, T ) satisfy the (CLR)(S,T ) property and are weakly
compatible, then P , Q, S and T have a unique common fixed point.
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Definition 1.5. [12] An altering distance is a function ψ : [0,∞) → [0,∞)
satisfying:
(ψ1): ψ is increasing and continuous,
(ψ2): ψ(t) = 0 if and only if t = 0.

Definition 1.6. [18] A function ψ : [0,∞) → [0,∞) is an almost altering distance
if it satisfies:
(ψ′

1): ψ is continuous,
(ψ′

2): ψ(t) = 0 if and only if t = 0.

Example 1.1. Define a function ψ : [0,∞) → [0,∞) by

ψ(t) =

{
2t, t ∈ [0, 1]
1

1+t
, t ∈ (1,∞).

Here we note that every altering distance is an almost altering distance, but
converse is not true.
Various authors have unified several common fixed point theorems by using im-
plicit functions. In 2008, Ali and Imdad [2] introduced a new class of implicit
functions.

Definition 1.7. [2] Let F be the family of lower semi-continuous functions F :
R6

+ → R which are satisfying:
(F1) for all u > 0, F (u, 0, u, 0, 0, u) > 0;
(F2) for all u > 0, F (u, 0, 0, u, u, 0) > 0;
(F3) for all u > 0, F (u, u, 0, 0, u, u) > 0;

Definition 1.8. [17] Let FD be the set of all lower semi-continuous functions
F : R6

+ → R which are satisfying:
(F1D) for all u > 0, F (u, 0, u, 0, 0, u) ≥ 0;
(F2D) for all u > 0, F (u, 0, 0, u, u, 0) ≥ 0;
(F3D) for all u > 0, F (u, u, 0, 0, u, u) ≥ 0;

Now we provide some examples in support of definition 1.8.

1. Let F (u1, ..., u6) = u1 − tmax{u2, u3, u4, u5, u6}, where t ∈ [0, 1].

2. Let F (u1, ..., u6) = u1 − tmax{u2, u3, u4,u5+u6

3
}, where t ∈ [0, 1].

3. Let F (u1, ..., u6) = u1 − αmax{u2, u3, u4} − β(u5 + u6), where α, β ≥ 0
and α + 2β < 1.

4. Let F (u1, ..., u6) = u1 − αmax{u2, u3, u4,12(u5 + u6), u3u4

1+u2
, u5u6

1+u1
}, where

α ∈ [0, 1).
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5. Let F (u1, ..., u6) = u1 − max{cu2, cu3, cu4, au5 + bu6)}, where c > 0,
a, b ≥ 0 and a+ b+ c ≤ 1.

Definition 1.9. [17] Let GD be the set of all lower semi-continuous functions
G : R5

+ → R such that G(t1, ..., t5) > 0 if one of t1, ..., t5 > 0.

The following functions belong to the set GD.

1. G(t1, ..., t5) = max{t1, ..., t5}.

2. G(t1, ..., t5) = max{t1, t2+t3
2
, t4+t5

2
}.

3. G(t1, ..., t5) = t21 + t22 + t23 + t24 + t25.

4. G(t1, ..., t5) = 1
t1+t2+t3+t4+t5

.

Definition 1.10. [17] A function ϕ(u1, ..., u6, t1, ..., t5) = F (u1, ..., u6)+G(t1, ..., t5)
is called a mixed implicit relation.

The aim of this paper is to prove general fixed point theorems for families of
weakly compatible mappings with common limit range property satisfying a mixed
implicit relation. Our results generalize, extend and improve the results of Popa
[17] and Imdad [8].

2 Main Results
In 2018, Popa et al. [17] proved the following theorem.

Theorem 2.1. [17] Let (X , d) be a metric space and P,Q, S and T be four self
mappings on X satisfying

F (ψ(d(Px,Qy)), ψ(d(Sx, Ty)), ψ(d(Sx, Px)), ψ(d(Ty,Qy)), ψ(d(Sx,Qy)),

ψ(d(Ty, Px))) +G(ψ(d(Sx, Ty)), ψ(d(Sx, Px)), ψ(d(Ty,Qy)), ψ(d(Sx,Qy)),

ψ(d(Ty, Px))) ≤ 0,

for all x, y ∈ X , for some F ∈ FD, G ∈ GD and ψ is an almost altering distance.
If the pairs (P, S) and (Q, T ) are weakly compatible and (P, S) and T satisfy
(CLR)(P,S)T property, then P,Q, S and T have a unique common fixed point.

Now we extend the Theorem 2.1 for any even number of weakly compatible
mappings.
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Theorem 2.2. Let Q1, Q2, ..., Q2n, P0 and P1 be self mappings on a metric space
(X , d), satisfying the following conditions:
(C1) Q2(Q4...Q2n) = (Q4...Q2n)Q2,
Q2Q4(Q6...Q2n) = (Q6...Q2n)Q2Q4,
...
Q2...Q2n−2(Q2n) = (Q2n)Q2...Q2n−2,
P1(Q4...Q2n) = (Q4...Q2n)P1,
P1(Q6...Q2n) = (Q6...Q2n)P1,
...
P1Q2n = Q2nP1,
Q1(Q3...Q2n−1) = (Q3...Q2n−1)Q1,
Q1Q3(Q5...Q2n−1) = (Q5...Q2n−1)Q1Q3,
...
Q1...Q2n−3(Q2n−1) = (Q2n−1)Q1...Q2n−3,
P0(Q3...Q2n−1) = (Q3...Q2n−1)P0,
P0(Q5...Q2n−1) = (Q5...Q2n−1)P0,
...
P0Q2n−1 = Q2n−1P0,
(C2) the pairs (P0, Q1...Q2n−1) and (P1, Q2...Q2n) are weakly compatible and
(P0, Q1....Q2n−1) and Q2...Q2n satisfy (CLR)(P0,Q1...Q2n−1)Q2...Q2n property,
(C3)

F (ψ(d(P0x, P1y)), ψ(d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)), ψ(d(Q1Q3...Q2n−1x, P0x)),

ψ(d(Q2Q4...Q2ny, P1y)), ψ(d(Q1Q3...Q2n−1x, P1y)), ψ(d(Q2Q4...Q2ny, P0x)))

+G(ψ(d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)), ψ(d(Q1Q3...Q2n−1x, P0x)),

ψ(d(Q2Q4...Q2ny, P1y)), ψ(d(Q1Q3...Q2n−1x, P1y), ψ(d(Q2Q4...Q2ny, P0x))) ≤ 0,

for all x, y ∈ X , some F ∈ FD, G ∈ GD and ψ is an almost altering distance.
Then Q1, Q2,...,Q2n, P0 and P1 have a unique common fixed point in X .

Proof. Let Q′
1 = Q1Q3...Q2n−1 and Q′

2 = Q2Q4...Q2n. Since (P0,Q′
1) and Q′

2

satisfy (CLR)(P0,Q′
1)Q′

2
property, there exists a sequence {un} in X such that

lim
n→∞

P0un = lim
n→∞

Q′
1un = lim

n→∞
Q1Q3...Q2n−1un = z,

where z ∈ Q′
1(X ) ∩Q′

2(X ) = Q1...Q2n−1(X ) ∩Q2...Q2n(X ).
Since z ∈ Q2Q4...Q2n(X ), there exists u ∈ X such that z = Q2Q4...Q2nu. Using
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(C3) with x = un and y = u, we get

F (ψ(d(P0un, P1u)), ψ(d(Q1Q3...Q2n−1un, Q2Q4...Q2nu)), ψ(d(Q1Q3...Q2n−1un, P0un)),

ψ(d(Q2Q4...Q2nu, P1u)), ψ(d(Q1Q3...Q2n−1un, P1u)), ψ(d(Q2Q4...Q2nu, P0un)))

+G(ψ(d(Q1Q3...Q2n−1un, Q2Q4...Q2nu)), ψ(d(Q1Q3...Q2n−1un, P0un)),

ψ(d(Q2Q4...Q2nu, P1u)), ψ(d(Q1Q3...Q2n−1un, P1u), ψ(d(Q2Q4...Q2nu, P0un))) ≤ 0.

Taking limits as n→ ∞, we have

F (ψ(d(z, P1u)), 0, 0, ψ(d(z, P1u)), ψ(d(z, P1u)), 0) +G(0, 0, ψ(d(z, P1u)),

ψ(d(z, P1u)), 0) ≤ 0.

If d(z, P1u) > 0, then

G(0, 0, ψ(d(z, P1u)), ψ(z, P1u), 0) > 0,

which implies that

F (ψ(d(z, P1u)), 0, 0, ψ(d(z, P1u)), ψ(d(z, P1u), 0) < 0,

a contradiction of (F2D). Hence d(z, P1u) = 0 i.e., z = P1u = Q2Q4...Q2nu.
Since (P1, Q2Q4...Q2n) is weakly compatible, we have

P1z = P1Q2Q4...Q2nu = Q2Q4...Q2nP1u = Q2Q4...Q2nz.

Since z ∈ Q1Q3...Q2n−1(X ), which implies z = Q1Q3...Q2n−1v for some v ∈ X .
On putting x = v and y = u in (C3), we have

F (ψ(d(P0v, P1u)), ψ(d(Q1Q3...Q2n−1v,Q2Q4...Q2nu)), ψ(d(Q1Q3...Q2n−1v, P0v)),

ψ(d(Q2Q4...Q2nu, P1u)), ψ(d(Q1Q3...Q2n−1v, P1u)), ψ(d(Q2Q4...Q2nu, P0v)))

+G(ψ(d(Q1Q3...Q2n−1v,Q2Q4...Q2nu)), ψ(d(Q1Q3...Q2n−1v, P0v)),

ψ(d(Q2Q4...Q2nu, P1u)), ψ(d(Q1Q3...Q2n−1v, P1u), ψ(d(Q2Q4...Q2nu, P0v))) ≤ 0.

On simplification, we get

F (ψ(d(P0v, z)), 0, ψ(d(P0v, z)), 0, 0, ψ(d(P0v, z))) +G(0, ψ(d(P0v, z)), 0, 0,

ψ(d(P0v, z))) ≤ 0.

If d(P0v, z) > 0, then

G(0, ψ(d(P0v, z)), 0, 0, ψ(d(P0v, z))) > 0.
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Therefore, we obtain

F (ψ(d(P0v, z)), 0, ψ(d(P0v, z))0, 0, ψ(d(P0v, z)) < 0,

a contradiction of (F1D). Hence d(P0v, z) = 0, which implies that z = P0v =
Q1Q3...Q2n−1v. Since (P0, Q1Q3...Q2n−1) is weakly compatible, we get

P0z = P0Q1Q3...Q2n−1v = Q1Q3...Q2n−1P0v = Q1Q3...Q2n−1z.

Now, we prove that z = P1z. On putting x = v and y = z in (C3), we get

F (ψ(d(P0v, P1z)), ψ(d(Q1Q3...Q2n−1v,Q2Q4...Q2nz)), ψ(d(Q1Q3...Q2n−1v, P0v)),

ψ(d(Q2Q4...Q2nz, P1z)), ψ(d(Q1Q3...Q2n−1v, P1z)), ψ(d(Q2Q4...Q2nz, P0v)))

+G(ψ(d(Q1Q3...Q2n−1v,Q2Q4...Q2nz)), ψ(d(Q1Q3...Q2n−1v, P0v)),

ψ(d(Q2Q4...Q2nz, P1z)), ψ(d(Q1Q3...Q2n−1v, P1z), ψ(d(Q2Q4...Q2nz, P0v))) ≤ 0,

which implies that

F (ψ(d(z, P1z)), ψ(d(z, P1z)), 0, 0, ψ(d(z, P1z)), ψ(d(z, P1z))) +G(ψ(d(z, P1z)), 0, 0,

ψ(d(P1z, z)), ψ(d(z, P1z))) ≤ 0.

If d(z, P1z) > 0, then

G(ψ(d(z, P1z)), 0, 0, ψ(d(P1z, z)), ψ(d(z, P1z))) > 0.

Thus from above, we get

F (ψ(d(z, P1z)), ψ(d(z, P1z)), 0, 0, ψ(d(z, P1z)), ψ(d(z, P1z))) < 0,

a contradiction of (F3D). Hence d(z, P1v) = 0 i.e., P1z = z and hence P1z =
Q2Q4...Q2nz = z.
Further on putting x = y = z in (C3), we get

F (ψ(d(P0z, P1z)), ψ(d(Q1Q3...Q2n−1z,Q2Q4...Q2nz)), ψ(d(Q1Q3...Q2n−1z, P0z)),

ψ(d(Q2Q4...Q2nz, P1z)), ψ(d(Q1Q3...Q2n−1z, P1z)), ψ(d(Q2Q4...Q2nz, P0z)))

+G(ψ(d(Q1Q3...Q2n−1z,Q2Q4...Q2nz)), ψ(d(Q1Q3...Q2n−1z, P0z)),

ψ(d(Q2Q4...Q2nz, P1z)), ψ(d(Q1Q3...Q2n−1z, P1z), ψ(d(Q2Q4...Q2nz, P0z))) ≤ 0.

On simplification, we have

F (ψ(d(P0z, z)), ψ(d(P0z, z)), 0, 0, ψ(d(P0z, z)), ψ(d(P0z, z))) +G(ψ(d(P0z, z)), 0,

0, ψ(d(P0z, z)), ψ(d(P0z, z))) ≤ 0.
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If d(P0, z) > 0, then

G(ψ(d(P0z, z)), 0, , 0, ψ(d(P0z, z)), ψ(d(P0z, z))) > 0,

which implies that

F (ψ(d(P0z, z)), ψ(d(P0z, z)), 0, 0, ψ(d(P0z, z)), ψ(d(P0z, z))) < 0,

a contradiction of (F3D). Hence d(P0z, z) = 0 i.e., P0z = z and hence P0z =
Q1Q3...Q2n−1z = z.
On putting x = z and y = Q4...Q2nz in (C3) and using (C1), Q′

1 = Q1Q3...Q2n−1

and Q′
2 = Q2Q4...Q2n, we get

F (ψ(d(P0z, P1Q4...Q2nz)), ψ(d(Q′
1z,Q′

2Q4...Q2nz)), ψ(d(Q′
1z, P0z)),

ψ(d(Q′
2Q4...Q2nz, P1Q4...Q2nz)), ψ(d(Q′

1z, P1Q4...Q2nz)), ψ(d(Q′
2Q4...Q2nz, P0z)))

+G(ψ(d(Q′
1z,Q′

2Q4...Q2nz)), ψ(d(Q′
1z, P0z)), ψ(d(Q′

2Q4...Q2nz, P1Q4...Q2nz)),

ψ(d(Q′
1z, P1Q4...Q2nz)), ψ(d(Q′

2Q4...Q2nz, P0z))) ≤ 0.

From this we get

F (ψ(d(z,Q4...Q2nz)), ψ(d(z,Q4...Q2nz)), 0, 0, ψ(d(z,Q4...Q2nz)), ψ(d(Q4...Q2nz, z)))

+G(ψ(d(z,Q4...Q2nz)), 0, 0, ψ(d(z,Q4...Q2nz)), ψ(d(Q4...Q2nz, z))) ≤ 0.

If (d(z,Q4...Q2nz)) > 0 then
G(ψ(d(z,Q4...Q2nz)), 0, 0, ψ(d(z,Q4...Q2nz)), ψ(d(Q4...Q2nz, z))) > 0.
Therefore, we have

F (ψ(d(z,Q4...Q2nz)), ψ(d(z,Q4...Q2nz)), 0, 0, ψ(d(z,Q4...Q2nz)),

ψ(d(Q4...Q2nz, z))) < 0,

a contradiction to (F3D). Hence d(z,Q4...Q2nz)) = 0 i.e., Q4...Q2nz = z. Hence
Q2Q4...Q2nz = Q2z = z. Continuing like this, we have

P1z = Q2z = Q4z = ... = Q2n = z. (1)

On putting x = Q3...Q2n−1z and y = z in (C3) and using (C1), Q′
1 = Q1Q3...Q2n−1

and Q′
2 = Q2Q4...Q2n, we get

F (ψ(d(P0Q3...Q2n−1z, P1z)), ψ(d(Q′
1Q3...Q2n−1z,Q′

2z)),

ψ(d(Q′
1Q3...Q2n−1z, P0Q3...Q2n−1z)), ψ(d(Q′

2z, P1z)),

ψ(d(Q′
1Q3...Q2n−1z, P1z)), ψ(d(Q′

2z, P0Q3...Q2n−1z)))

+G(ψ(d(Q′
1Q3...Q2n−1z,Q′

2z)), ψ(d(Q′
1Q3...Q2n−1z, P0Q3...Q2n−1z)),

ψ(d(Q′
2z, P1z)), ψ(d(Q′

1Q3...Q2n−1z, P1z)), ψ(d(Q′
2z, P0Q3...Q2n−1z))) ≤ 0,
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which implies that

F (ψ(d(Q3...Q2n−1z, z)), ψ(d(Q3...Q2n−1z, z)), 0, 0, ψ(d(Q3...Q2n−1z, z)),

ψ(d(z,Q3...Q2n−1z))) +G(d(ψ(d(Q3...Q2n−1z, z)), 0, 0, ψ(d(Q3...Q2n−1z, z)),

ψ(d(z,Q3...Q2n−1z))) ≤ 0.

If d(z,Q3...Q2n−1z) > 0 then
G(d(ψ(d(Q3...Q2n−1z, z)), 0, 0, ψ(d(Q3...Q2n−1z, z)), ψ(d(z,Q3...Q2n−1z))) > 0.
Thus from above, we obtain

F (ψ(d(Q3...Q2n−1z, z)), ψ(d(Q3...Q2n−1z, z)), 0, 0, ψ(d(Q3...Q2n−1z, z)),

ψ(d(z,Q3...Q2n−1z))) < 0,

a contradiction to (F3D). Hence d(z,Q3...Q2n−1z) = 0 i.e., Q3...Q2n−1z = z.
Hence Q1Q3...Q2n−1z = Q1z = z. Continuing like this, we have

P0z = Q1z = Q3z = ... = Q2n−1 = z. (2)

Hence from (1) and (2), we have

P0z = P1 = Q1z = Q2z = Q3z = ... = Q2n−1 = Q2nz = z.

Therefore, z is a common fixed point of the given self mappings.
Uniqueness. Let w be another fixed point of the given mappings. Then P0w =
P1w = Q1w = Q2w = Q3w = ... = Q2nw = w. Suppose that z ̸= w. Putting
x = z and y = w in condition (C3), we have

F (ψ(d(z, w)), ψ(d(z, w)), 0, 0, ψ(d(z, w)), ψ(d(w, z))

+G(ψ(d(z, w)), 0, 0, ψ(d(z, w)), ψ(d(w, z))) ≤ 0.

If d(z, w) > 0, then

G(ψ(d(z, w)), 0, 0, ψ(d(z, w)), ψ(d(w, z))) > 0.

Therefore, we obtain

F (ψ(d(z, w)), ψ(d(z, w)), 0, 0, ψ(d(z, w)), ψ(d(w, z)) < 0,

a contradiction of (F3D). Hence z = w. Therefore, z is a unique common fixed
point of the given mappings.

Now we prove a theorem for families of mappings.
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Theorem 2.3. Let {Sα}α∈J and {Qi}2pi=1 be two families of self-mappings on a
metric space (X , d). Suppose that there exists a fixed β ∈ J such that:
(C4) Q2(Q4...Q2n) = (Q4...Q2n)Q2,
Q2Q4(Q6...Q2n) = (Q6...Q2n)Q2Q4,
...
Q2...Q2n−2(Q2n) = (Q2n)Q2...Q2n−2,
Sβ(Q4...S2n) = (S4...S2n)Sβ ,
Sβ(Q6...Q2n) = (Q6...Q2n)Sβ ,
...
SβQ2n = Q2nSβ,
Q1(Q3...Q2n−1) = (Q3...Q2n−1)Q1,
Q1Q3(Q5...Q2n−1) = (Q5...Q2n−1)Q1Q3,
...
Q1...Q2n−3(Q2n−1) = (Q2n−1)Q1...Q2n−3,
Sα(Q3...Q2n−1) = (Q3...Q2n−1)Sα,
Sα(Q5...Q2n−1) = (Q5...Q2n−1)Sα,
...
SαS2n−1 = S2n−1Sα,
(C5) the pairs (Sα, Q1...Q2n−1) and (Sβ, Q2...Q2n) are weakly compatible and
(Sα, Q1...Q2n−1) and Q2...Q2n satisfy (CLR)(Sα,Q1...Q2n−1)Q2...Q2n property,
(C6)

F (ψ(d(Sαx, Sβy)), ψ(d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)), ψ(d(Q1Q3...Q2n−1x, Sαx)),

ψ(d(Q2Q4...Q2ny, Sβy)), ψ(d(Q1Q3...Q2n−1x, Sβy)), ψ(d(Q2Q4...Q2ny, Sαx)))

+G(ψ(d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)), ψ(d(Q1Q3...Q2n−1x, Sαx)),

ψ(d(Q2Q4...Q2ny, Sβy)), ψ(d(Q1Q3...Q2n−1x, Sβy)), ψ(d(Q2Q4...Q2ny, Sαx))) ≤ 0,

for all x, y ∈ X and some F ∈ FD, G ∈ GD and ψ is an almost altering distance.
Then all Sα and Qi have a unique common fixed point in X .

Proof. Let Sα0 be a fixed element in {Sα}α∈J . By Theorem 2.2 with P0 = Sα and
P1 = Sα0 it follows that there exists some u ∈ X such that

Sαu = Sα0u = Q1Q3...Q2n−1u = Q2Q4...Q2nu = u.

Let β ∈ J be arbitrary. Then from (C6), we get

F (ψ(d(Sαu, Sβu)), ψ(d(Q1Q3...Q2n−1u,Q2Q4...Q2nu)), ψ(d(Q1Q3...Q2n−1u, Sαu)),

ψ(d(Q2Q4...Q2nu, Sβu)), ψ(d(Q1Q3...Q2n−1u, Sβu)), ψ(d(Q2Q4...Q2nu, Sαu)))

+G(ψ(d(Q1Q3...Q2n−1u,Q2Q4...Q2nu)), ψ(d(Q1Q3...Q2n−1u, Sαu)),

ψ(d(Q2Q4...Q2nu, Sβu)), ψ(d(Q1Q3...Q2n−1u, Sβu)), ψ(d(Q2Q4...Q2nu, Sαu))) ≤ 0.
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Hence

F (ψ(d(u, Sβu)), ψ(d(u, u)), ψ(d(u, u)), ψ(d(u, Sβu)), ψ(d(u, Sβu)), ψ(d(u, u)))

+G(ψ(d(u, u)), ψ(d(u, u)), ψ(d(u, Sβu)), ψ(d(u, Sβu)), ψ(d(u, u))) ≤ 0,

i.e.,
F (ψ(d(u, Sβu)), 0, 0, ψ(d(u, Sβu)), ψ(d(u, Sβu)), 0)

+G(0, 0, ψ(d(u, Sβu)), ψ(d(u, Sβu)), 0) ≤ 0.

If d(u, Sβu) > 0, we get

G(0, 0, ψ(d(u, Sβu)), ψ(d(u, Sβu)), 0) > 0,

which implies that

F (ψ(d(u, Sβu)), 0, 0, ψ(d(u, Sβu)), ψ(d(u, Sβu)), 0) < 0,

a contradiction by (F2D) and hence ψ(d(u, Sβu)) = 0 i.e., Sβu = u for each
β ∈ J . Uniqueness follows easily.

If we take ψ(t) = t in Theorem 2.2, we get

Theorem 2.4. Let Q1, Q2, ..., Q2n, P0 and P1 be self mappings on a metric space
(X , d), satisfying conditions (C1), (C2) and the following condition:
(C7)

F ((d(P0x, P1y)), (d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)), (d(Q1Q3...Q2n−1x, P0x)),

(d(Q2Q4...Q2ny, P1y)), (d(Q1Q3...Q2n−1x, P1y)), (d(Q2Q4...Q2ny, P0x)))

+G(d(Q1Q3...Q2n−1x,Q2Q4...Q2ny), d(Q1Q3...Q2n−1x, P0x), d(Q2Q4...Q2ny, P1y),

d(Q1Q3...Q2n−1x, P1y), d(Q2Q4...Q2ny, P0x)) ≤ 0,

for all x, y ∈ X , some F ∈ FD, G ∈ GD and ψ is an almost altering distance.
Then Q1, Q2,...,Q2n, P0 and P1 have a unique common fixed point in X .

If we take ψ(t) = t in Theorem 2.3, we get

Theorem 2.5. Let {Sα}α∈J and {Qi}2pi=1 be two families of self-mappings on a
metric space (X , d). Suppose that there exists a fixed β ∈ J such that conditions
(C4) and (C5) are satisfied. Moreover,
(C8)

F (d(Sαx, Sβy), d(Q1Q3...Q2n−1x,Q2Q4...Q2ny), d(Q1Q3...Q2n−1x, Sαx),

(d(Q2Q4...Q2ny, Sβy), d(Q1Q3...Q2n−1x, Sβy), d(Q2Q4...Q2ny, Sαx))

+G(d(Q1Q3...Q2n−1x,Q2Q4...Q2ny), d(Q1Q3...Q2n−1x, Sαx),

d(Q2Q4...Q2ny, Sβy), d(Q1Q3...Q2n−1x, Sβy), d(Q2Q4...Q2ny, Sαx)) ≤ 0,

for all x, y ∈ X and some F ∈ FD, G ∈ GD and ψ is an almost altering distance.
Then all Sα and Qi have a unique common fixed point in X .
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Remark 2.1. (i). Let ψ and ϕ be as in Theorem 1.1. Then

F (u1, ..., u6) = ψ(u1)− ψ(m(x, y))

and
G(v1, ..., v5) = ϕ(m(x, y)).

Then F (u, 0, u, 0, 0, u) = F (u, 0, 0, u, u, 0) = F (u, u, 0, 0, u, u) = 0 and

G(v1, ..., v5) = ϕ(max{v1, ..., v5}) > 0, if one of v1, ..., v5 > 0.

Hence F ∈ FD and G ∈ GD. Then by Theorem 2.4, we get a generalization and
extension of Theorem 1.1 for any even number of weakly compatible mappings.
Similarly, Theorem 2.5 is a generalization and extension of Theorem 1.1 for fam-
ilies of weakly compatible mappings.
(ii). Theorems 2.2 and 2.3 are extension of Theorem 2.1 for any even number of
weakly compatible mappings and families of weakly compatible mappings respec-
tively.

Now we give an example in support of our theorems.

Example 2.1. Let X = [0, 1] and d be usual metric on X . Define

Sα(x) =
x4

1 + x4
for each α ∈ J and all x ∈ X ,

Qi(x) = x
n√4 for each i ∈ {1, 2, ..., 2n} and all x ∈ X .

Then Q2Q4...Q2nx = x4, Q1Q3...Q2n−1x = x4.
The pairs (Sα, Q1...Q2n−1) and (Sβ, Q2...S2n) are weakly compatible..
Define implicit function F such that

Let F (u1, ..., u6) = u1 −
9

10
max{u2, u3, u4, u5, u6}.

and

G(t1, ..., t5) =
1

100(t1 + t2 + t3 + t4 + t5)
.

Then F ∈ FD andG ∈ GD. Thus all the conditions of Theorems 2.2 (for α = 0, 1)
and 2.3 are satisfied for ψ(t) = t and 0 is the unique common fixed point of the
mappings.

231



R. Kumar and S. Kumar

3 Application
In 2002, Branciari [4] obtained Banach contraction principle for mappings

satisfying an integral type contraction condition. In the same way, we analyze
Theorem 2.3 for mappings satisfying integral type contraction condition.

Lemma 3.1. [19] Let r : [0,∞) → [0,∞) is a Lebesgue measurable mapping
which is summable on each compact subset of [0,∞) such that

∫∞
0
r(t)dt > 0, for

ϵ > 0. Then ψ(t) =
∫ t

0
r(x)dx is an almost altering distance.

Theorem 3.1. Let {Sα}α∈J and {Qi}2pi=1 be two families of self-mappings on a
metric space (X , d). Suppose that there exists a fixed β ∈ J such that conditions
(C4) and (C5) are satisfied. Moreover,
(C12)

F

(∫ d(Sαx,Sβy)

0

r(t)dt,

∫ d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)

0

r(t)dt,

∫ d(Q1Q3...Q2n−1x,Sαx)

0

r(t)dt,

∫ d(Q2Q4...Q2ny,Sβy)

0

r(t)dt,

∫ d(Q1Q3...Q2n−1x,Sβy)

0

r(t)dt,

∫ d(Q2Q4...Q2ny,Sαx)

0

r(t)dt

)

+G

(∫ d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)

0

r(t)dt,

∫ d(Q1Q3...Q2n−1x,Sαx)

0

r(t)dt,

∫ d(Q2Q4...Q2ny,Sβy)

0

r(t)dt,

∫ d(Q1Q3...Q2n−1x,Sβy)

0

r(t)dt,

∫ d(Q2Q4...Q2ny,Sαx)

0

r(t)dt

)
≤ 0,

for all x, y ∈ X and some F ∈ FD and G ∈ GD. Then all Sα and Qi have a
unique common fixed point in X .

Proof. Let ψ(t) be as in Lemma 3.1. Then

ψ(d(Sαx, Sβy)) =

∫ d(Sαx,Sβy)

0

r(t)dt, ψ(d(Q1Q3...Q2n−1x, Sαx) =

∫ d(Q1Q3...Q2n−1x,Sαx)

0

ψ(d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)) =

∫ d(Q1Q3...Q2n−1x,Q2Q4...Q2ny)

0

r(t)dt,

ψ(d(Q2Q4...Q2ny, Sβy)) =

∫ d(Q2Q4...Q2ny,Sβy)

0

r(t)dt,

ψ(d(Q1Q3...Q2n−1x, Sβy)) =

∫ d(Q1Q3...Q2n−1x,Sβy)

0

r(t)dt,

ψ(d(Q2Q4...Q2ny, Sαx)) =

∫ d(Q2Q4...Q2ny,Sαx)

0

r(t)dt.

Hence the proof of Theorem 3.1 follows by Theorem 2.3.
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4 Conclusions
In this paper, we have established unique common fixed point theorems for

families of weakly compatible mappings satisfying common limit range property
and a mixed implicit relation. Our results generalize, extend and improve the
results of Imdad [8] and Popa [17]. We provide an application for integral type
contraction condition. In the end, we conclude that theory of fixed points can be
extended in metric space for some applications as well and that the analogue of
many known results can also be obtained in this literature.
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