Elongation of Sets in Soft Lattice Topological Spaces

G. Hari Siva Annam*
T. Abinaya ${ }^{\dagger}$

Abstract

The aim of this paper, we investigate some Lattice sets such as soft lattice exterior, soft lattice interior, soft lattice boundary and soft lattice border sets in soft lattice topological spaces which are defined over a soft lattice L with a fixed set of parameter A and it is also a generalization of soft topological spaces. Further, we develop and continue the initial views of some soft lattice sets, which are deep-seated for further research on soft lattice topology and will consolidate the origin of the theory of soft topological spaces.

2020 AMS subject classifications: 54A05, 54A10. ${ }^{1}$

[^0]G. Hari Siva Annam and T. Abinaya

1 Introduction

The concept of soft theory was first originated by Molodstov in 1999, which is deal with unpredictable problems meanwhile modeling results in engineering cases such as medical sciences, economics, etc., In 2003, Maji. et. al.[8] studied and discussed the fundamental ideas of soft theory. Following stage of soft set linked with netrosophic sets are introduced by Parimala Mani et. al.[9] in 2018 and Also, we introduced the new notion of neutrosophic complex $\alpha \Psi$-connectedness in neutrosophic complex topological spaces and investigate some of its properties in 2022[5]. In 2019[13], several new generalizations of nano open sets be introduced and investigated by Nethaji, Ochanan.
The study of soft topological spaces (on short $\mathfrak{S . T . S}$) is instated by Shabir and $\operatorname{Naz}[14]$ in 2011. They discussed $\mathfrak{S} \cdot \mathfrak{T}$ on the collection θ on soft set (on short $\mathfrak{S} . \mathfrak{S})$ over U. Accordingly, they discussed fundamental notions of $\mathfrak{S} . \mathfrak{T} . \mathfrak{S}$ such as soft open (on short $\mathfrak{S} . \mathfrak{D}$), soft closed (on short $\mathfrak{S} . \mathfrak{C}$), \mathfrak{S} closure, \mathfrak{S} neighborhood of a point, $\mathfrak{S} T_{i}$ spaces, for $(\mathrm{i}=1,2,3,4), \mathfrak{S}$ regular spaces, \mathfrak{S} normal spaces, and their specific features are also established. Therefore, in 2011[1], Naim Cagman, Serkan Karatas, and Serdar Enginoglu investigated a topology with $\mathfrak{S} . \mathfrak{S}$ called $\mathfrak{S} \cdot \mathfrak{T}$ and its corresponding features. Then they present the foundation of the theory $\mathfrak{S . T . S}$. The $\mathfrak{S} . \mathfrak{T} . \mathfrak{S}$ may be the initial stage for the concepts of the soft mathematical opinion of structures which are the foundation of $\mathfrak{S} . \mathfrak{S}$. theoretic operation.
From the concept of $\mathfrak{S} . \mathfrak{S}$, the idea of soft lattices (on short $\mathfrak{S . L}$) has arisen. In 2010[7], F. Li studied and defined this conviction of $\mathfrak{S .} . \mathfrak{L}$ and primary operations of results on $\mathfrak{S} . \mathfrak{L}$. Additional, an application of $\mathfrak{S} . \mathfrak{S}$ to lattices has executed by E. Kuppusamy in 2011. A different approach towards $\mathfrak{S} . \mathfrak{L}$ can be seen in E. Kuppusamy apart from what F. Li has done. Further, the operation and the properties of $\mathfrak{S} . \mathfrak{L}$ were studied by V. D. Jobish. et. al.[4] in 2013. Many theorems related to various types of unions, intersections, and complements including De Margon's Laws are obtained. In 2020[12], M. Parimala et. al explained the $n I \alpha g$ closed sets in nano ideal toplogical spaces with various prevailing closed sets.
Currently, topology depends toughly on the thoughts of the soft theory. Recently, $\mathfrak{S} . \mathfrak{L} . \mathfrak{T} . \mathfrak{S}$ was first investigated by Sandhya. et. al.[11] in 2021 that are discussed throughout an $\mathfrak{S . L}$. 'L' with a fixed set of parameters ' A ' and it is also a generalization of $\mathfrak{S} . \mathfrak{T} . \mathfrak{S}$. They detailed discussed the concept of Soft L - open (on short $\mathfrak{S} . \mathfrak{L}-\mathfrak{O}$), soft L - closed (on short $\mathfrak{S} . \mathfrak{L}-\mathfrak{C}$), $\mathfrak{S} . \mathfrak{L}$ - closure, $\mathfrak{S} . \mathfrak{L}$ - interior point, and $\mathfrak{S} . \mathfrak{L}$ - neighborhood. In this paper, we continue investigating a soft $\mathrm{L}-\mathrm{in}$ terior (on short $\mathfrak{S} . \mathfrak{L}-\mathfrak{I}$), soft L - exterior (on short $\mathfrak{S} . \mathfrak{L}-\mathfrak{E}$), soft L - boundary (on short $\mathfrak{S .} \mathfrak{L}-\mathfrak{B}$), and soft L - border (on short $\mathfrak{S} . \mathfrak{L}-\mathfrak{B o r}$) which are basics for stimulating research on $\mathfrak{S} \cdot \mathfrak{T} . \mathfrak{S}$ and will build up the fountain of the theory of S.T.S.

2 Preliminaries

Definition 2.1 (5,7). Let's take U be a whole set and A be a set parameters. A pair (F, A), where F is a map from A to $\wp(U)$ is called a \mathfrak{S}. \mathfrak{S} over U. Here, the $\mathfrak{S} . \mathfrak{S}$ is simply represented by f_{A}.

Example 2.1. Let say that there are 6 cars in the whole world $U=\left\{\mathfrak{w}_{1}, \mathfrak{w}_{2}, \mathfrak{w}_{3}, \mathfrak{w}_{4}, \mathfrak{w}_{5}, \mathfrak{w}_{6}\right\}$ is the set of cars under regard and that $A=\left\{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}\right\}$ is a set of parameters denoted as colors.
The $r_{a},(a=1,2,3,4,5)$ it means the parameters 'Red', 'Blue', 'Black', 'White', and 'Ash,' respectively.

Consider the mapping f_{A} given by 'cars' (.), where (.) is to be complete in by one of the parameters $r_{a} \in E$. For instance, $f_{A}\left(\rho_{1}\right)$ means 'Cars (Colors)'.

Suppose that $B=\left\{\rho_{1}, \rho_{2}, \rho_{5}\right\} \subseteq A$ and $f_{A}\left(\rho_{1}\right)=\left\{\mathfrak{w}_{1}, \mathfrak{w}_{4}\right\}, f_{A}\left(\rho_{2}\right)=U$, and $f_{A}\left(\rho_{5}\right)=\left\{\mathfrak{w}_{2}, \mathfrak{w}_{4}, \mathfrak{w}_{5}\right\}$ Then, we can view the $\mathfrak{S} . \mathfrak{S} F_{A}$ as consisting of the following collection of approximations:

$$
F_{A}=\left\{\left(\rho_{1},\left\{\mathfrak{w}_{1}, \mathfrak{w}_{4}\right\}\right),\left(\rho_{2}, U\right),\left(\rho_{5},\left\{\mathfrak{w}_{2}, \mathfrak{w}_{4}, \mathfrak{w}_{5}\right\}\right)\right\} .
$$

Definition 2.2 (2,7). In two $\mathfrak{S} . \mathfrak{S} f_{A}, g_{A}$ over U, we say that
(i) f_{A} is a soft subset of g_{A} if
(a) $A \subseteq B$, and $(b) \forall \rho \in A, \lambda(\rho)=\mu(\rho)$ are equal to estimations.
(ii) f_{A} is soft equal set to g_{A} denoted by $f_{A}=g_{A}$ if $f_{A} \subseteq g_{A}$ and $g_{A} \subseteq f_{A}$

Definition 2.3 (7). Let $A=\left\{\rho_{1}, \ldots . \rho_{n}\right\}$ be a parameters. The 'Not set of A ', denoted by ΓA is defined as $\Gamma A=\left\{\Gamma \rho_{1}, \ldots, \Gamma \rho_{n}\right\}, \Gamma \rho_{i}$ means not $\rho_{i} \forall i=$ 1, 2, 3...n.

Definition 2.4 (7,9). Complement of a $\mathfrak{S . S} f_{A}$ over U, represented by f_{A}^{\prime} is defined as $f_{A}^{\prime}=\left(F^{\prime}, \Gamma A\right), F^{\prime}: \Gamma A \longrightarrow \wp(U)$ such that(on short $\mathfrak{s t}$) $F^{\prime}(\Gamma \rho)=U-F(\rho), \forall \Gamma \rho \in \Gamma A$.

Definition 2.5 (9). The relative complement of a $\mathfrak{S . S} f_{A}$ over U, stand for f_{A}^{C} is defined as $\left(f_{A}\right)^{C}=\left(F^{C}, A\right), F^{C}: A \longrightarrow \wp(U)$ s.t $F^{C}(\rho)=U-F(\rho), \forall \rho \in A$.

Definition 2.6 (7,9). Let f_{A} be a $\mathfrak{S . S}$ over U, then f_{A} is Null $\mathfrak{S} . \mathfrak{S}$ if $\forall \rho \in A, F(\rho)=\phi$ and is denoted by ϕ_{A}.
Let f_{A} be a $\mathfrak{S . S}$ over U, then f_{A} is absolute $\mathfrak{S} . \mathfrak{S}$ represented by U_{A}, if $\forall \rho \in A, F(\rho)=U$. Also, $U_{A}^{C}=\phi_{A}$ and $\phi_{A}^{C}=U_{A}$.

G. Hari Siva Annam and T. Abinaya

Definition 2.7 (2,7). Union of two $\mathfrak{S . S} f_{A}, g_{B}$ over U is the $\mathfrak{S . S} h_{C}$,
$C=A \cup B$ and $\forall \rho \in C, \kappa(\rho)= \begin{cases}\lambda(\rho), & \text { if } \rho \in A-B \\ \mu(\rho), & \text { if } \rho \in B-A \\ \lambda(\rho) \bigcup \mu(\rho), \quad \text { if } \rho \in A \bigcap B\end{cases}$
We write $f_{A} \bigcup g_{B}=h_{C}$.
Definition 2.8 (2,7). The intersection of two $\mathfrak{S} . \mathfrak{S} f_{A}, g_{B}$ over a whole set U is the $\mathfrak{S} . \mathfrak{S} h_{C}$, here $C=A \bigcap B$ and $\forall e \in C, \kappa(\rho)=\lambda(\rho)$ or $\mu(\rho)$. We mark done $f_{A} \bigcap g_{B}=h_{c}$.

Definition 2.9 (1). Consider $\mathfrak{F}_{\mathfrak{A}}, \mathfrak{G}_{\mathfrak{A}} \in \mathfrak{S} . \mathfrak{S}(U, A)$. The soft symmetric difference of these sets is the $\mathfrak{S} . \mathfrak{S} . \mathfrak{H}_{\mathfrak{A}} \in$ to $\mathfrak{G} . \mathfrak{S} .(U, A)$, here the map $\mathfrak{H}: A \rightarrow \wp(U)$ defined as follows:
$\mathfrak{h}(\rho)=((\mathfrak{f}(\rho) \backslash \mathfrak{g}(\rho)) \bigcup((\mathfrak{g}(\rho) \backslash(\mathfrak{f}(\rho))$ for each $\rho \in$ A. We mark down $\mathfrak{H}_{\mathfrak{A}}=\mathfrak{F}_{\mathfrak{A}} \Delta \mathfrak{G}_{\mathfrak{A}}$.

Definition 2.10 (3,6,10). A sublatice of a lattice L is a non-void subset of L that is a lattice with the same meet and join operation as L, ie., $\alpha, \beta \in L$ implies $\alpha \wedge \beta, \alpha \bigvee \beta \forall \alpha, \beta \in L$.

Definition 2.11 (3,6,10). A Complete lattice L and A is the parameters of the $\mathfrak{S} . \mathfrak{L}$ over L. The triplet $M=(f, A, L), f: A \rightarrow \wp(L)$ is $\mathfrak{S} . \mathfrak{L}$ if $f(\rho)$ is the sublattice of L for each $\rho \in A$. Then the $\mathfrak{S} . \mathfrak{L}$ is represented by f_{A}^{L}.

Definition 2.12 (10). Two $\mathfrak{S} . \mathfrak{L} . f_{A}^{L}$ and g_{A}^{L} over L its difference is denoted by $h_{A}^{L}=f_{A}^{L} \backslash g_{A}^{L}$, is stated as $\mathfrak{h}(\rho)=((\mathfrak{f}(\rho) \backslash \mathfrak{g}(\rho)) \forall \rho \in A$.

Definition 2.13 (10). Let us consider L be any complete lattice and A be the non void set of parameters. Let θ contains complete members, uniquely complemented $\mathfrak{S} . \mathfrak{L}$. over L, then θ is $\mathfrak{S} . \mathfrak{L} . \mathfrak{T}$, then the condition hold:
(i) $\phi_{A}, L_{A} \in \theta$.
(ii) $\bigcup_{a \in n} \eta_{a} \in \theta, \forall\left\{\eta_{a}: a \in n\right\} \subseteq \theta$
(iii) $\eta_{1} \bigcap \eta_{2} \in \theta, \forall \eta_{1}, \eta_{2} \in \theta$.

Then the triplet (L, θ, A) is called a S.L.T.S. (soft L - space or soft L-topological space) over L. The members of θ are called soft lattice open sets in L. Also, a soft lattice $\left(f_{A}^{L}\right)$ is called soft lattice closed if the relative complement $\left(f_{A}^{L}\right)^{C}$ belongs to θ.

3 Extension of $\mathfrak{S} . \mathfrak{L}$ - sets

Definition 3.1. In $\mathfrak{S . L . T . S}$, the $\mathfrak{S .} \mathfrak{L}-\mathfrak{I}$ of $\left(f_{A}^{L}\right)$ is the union of all $\mathfrak{S} . \mathfrak{L}-\mathfrak{O}$ sets contained in f_{A}^{L} denoted by $\left(f_{A}^{L}\right)^{\circ}$.
i.e., $\left(f_{A}^{L}\right)^{\circ}=\bigcup\left\{g_{A}^{L}: g_{A}^{L} \in \theta\right.$ and $\left.g_{A}^{L} \subseteq f_{A}^{L}\right\}$.

Theorem 3.1. Let (L, θ, A) be a $\mathfrak{S . L . T . S}$ over L and f_{A}^{L}, g_{A}^{L} are $\mathfrak{S} . \mathfrak{L}$. over L. Then,
(i) $\phi_{A}^{\circ}=\phi_{A}$ and $L_{A}=L_{A}^{\circ}$
(ii) $\left(f_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L}\right)$
(iii) f_{A}^{L} is a $\mathfrak{S} . \mathfrak{L}-\mathfrak{O}$ set $\Longleftrightarrow\left(f_{A}^{L}\right)^{\circ}=f_{A}^{L}$
(iv) $\left(\left(f_{A}^{L}\right)^{\circ}\right)^{\circ}=\left(f_{A}^{L}\right)^{\circ}$
(v) $f_{A}^{L} \subseteq g_{A}^{L} \Rightarrow\left(f_{A}^{L}\right)^{\circ} \subseteq\left(g_{A}^{L}\right)^{\circ}$
(vi) $\left(f_{A}^{L}\right)^{\circ} \bigcap\left(g_{A}^{L}\right)^{\circ}=\left(f_{A}^{L} \bigcap g_{A}^{L}\right)^{\circ}$
(vii) $\left(f_{A}^{L}\right)^{\circ} \cup\left(g_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L} \bigcup g_{A}^{L}\right)^{\circ}$

Proof

Results (i), (ii) are trival.
(iii) If $\left(f_{A}^{L}\right)$ is $\mathfrak{S .} \mathfrak{L}-\mathfrak{O}$ set, $\left(f_{A}^{L}\right)$ is itself a $\mathfrak{S} . \mathfrak{L}-\mathfrak{O}$ set contained in $\left(f_{A}^{L}\right)$. Since, $\left(f_{A}^{L}\right)^{\circ}$ is the largest $\mathfrak{S} \cdot \mathfrak{L}-\mathfrak{O}$ set contained in $\left(f_{A}^{L}\right),\left(f_{A}^{L}\right)=\left(f_{A}^{L}\right)^{\circ}$.
Conversely, Suppose that $\left(f_{A}^{L}\right)=\left(f_{A}^{L}\right)^{\circ}$. Since $\left(f_{A}^{L}\right)^{\circ}$ is a $\mathfrak{S} . \mathfrak{L}-\mathfrak{O}$ set, so $\left(f_{A}^{L}\right)$ is $\mathfrak{S} \cdot \mathfrak{L}-\mathfrak{O}$ set over \mathbf{L}.
(iv) since $\left(f_{A}^{L}\right)^{\circ}$ is $\mathfrak{S} . \mathfrak{L}-\mathfrak{O}$ set, by (iii) $\left(\left(f_{A}^{L}\right)^{\circ}\right)^{\circ}=\left(f_{A}^{L}\right)^{\circ}$.
(v) suppose that $\left(f_{A}^{L}\right) \subseteq\left(g_{A}^{L}\right)$. Since, $\left(f_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L}\right) \subseteq\left(g_{A}^{L}\right)$. $\left(f_{A}^{L}\right)^{\circ}$ is a $\mathfrak{S} . \mathfrak{L}-\mathfrak{O}$ subset of $\left(g_{A}^{L}\right)$, so by the definition of $\left(g_{A}^{L}\right)^{\circ},\left(f_{A}^{L}\right)^{\circ} \subseteq\left(g_{A}^{L}\right)^{\circ}$.
(vi) we have $\left(f_{A}^{L} \cap g_{A}^{L}\right) \subseteq f_{A}^{L}$ and $\left(f_{A}^{L} \cap g_{A}^{L}\right) \subseteq g_{A}^{L}$. This implies (by v) $\left(f_{A}^{L} \bigcap g_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L}\right)^{\circ}$ and $\left(f_{A}^{L} \bigcap g_{A}^{L}\right)^{\circ} \subseteq\left(g_{A}^{L}\right)^{\circ}$ so that, $\left(f_{A}^{L} \bigcap g_{A}^{L}\right)^{\circ} \subseteq$ $\left(f_{A}^{L}\right)^{\circ} \bigcap\left(g_{A}^{L}\right)^{\circ}$.
Also, since $\left(f_{A}^{L}\right)^{\circ} \subseteq f_{A}^{L}$ and $\left(g_{A}^{L}\right)^{\circ} \subseteq g_{A}^{L}$ implies
$\left(f_{A}^{L}\right)^{\circ} \cap\left(g_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L} \bigcap g_{A}^{L}\right)$ so that, $\left(f_{A}^{L} \bigcap g_{A}^{L}\right)^{\circ}$ is the largest $\mathfrak{S} \cdot \mathfrak{L}-\mathfrak{O}$ subsets of $\left(f_{A}^{L} \cap g_{A}^{L}\right)$. Hence, $\left(f_{A}^{L}\right)^{\circ} \cap\left(g_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L} \cap g_{A}^{L}\right)^{\circ}$.
Thus, $\left(f_{A}^{L}\right)^{\circ} \bigcap\left(g_{A}^{L}\right)^{\circ}=\left(f_{A}^{L} \bigcap g_{A}^{L}\right)^{\circ}$.
(vii) Since, $f_{A}^{L} \subseteq\left(f_{A}^{L} \bigcup g_{A}^{L}\right)$ and, $g_{A}^{L} \subseteq\left(f_{A}^{L} \bigcup g_{A}^{L}\right)$.

So, by (v) $\left(f_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L} \bigcup g_{A}^{L}\right)^{\circ}$ and $\left(g_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L} \cup g_{A}^{L}\right)^{\circ}$. So that $\left(f_{A}^{L}\right)^{\circ} \cup\left(g_{A}^{L}\right)^{\circ} \subseteq\left(f_{A}^{L} \bigcup g_{A}^{L}\right)^{\circ}$.
Example 3.1. Now the given example to show that the statement of theorem $1(v)$ may be strict or equal, Let $L=\left\{S_{l_{1}}, S_{l_{2}}, S_{l_{3}}, S_{l_{4}}, S_{l_{5}}, S_{l_{6}}, S_{l_{7}}, S_{l_{8}}\right\} ; A=$ $\left\{\rho_{1}, \rho_{2}\right\} ;$ $\theta=\left\{f_{1 A}^{L}, f_{2 A}^{L}, f_{3 A}^{L}, f_{4 A}^{L}, f_{5 A}^{L}, L_{A}, \phi_{A}\right\}$

Figure 1: Complete lattice

$$
\begin{aligned}
& \quad f_{1 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{4}}, S_{l_{7}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{3}}, S_{l_{6}}\right\}\right)\right\}, \\
& f_{2 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{6}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{4} 4}\right\}\right)\right\} \\
& f_{3 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{4}}, S_{l_{6}}, S_{l_{7}}, S_{\left.l^{6}\right\}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{3}}, S_{l_{4}}, S_{l_{6}}\right\}\right)\right\}, \\
& f_{4 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{8}}\right\}\right),\left(\rho_{2}, \phi\right)\right\} \\
& \text { and } f_{5 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{4}}, S_{l_{7}}\right\}\right),\left(\rho_{2},\left\{S_{l_{3}}, S_{l_{6}}\right\}\right)\right\}
\end{aligned}
$$

For Equal Condition,

We choose any two $\mathfrak{S} . \mathfrak{L}$ from figure:1,

$$
\begin{aligned}
& f_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{6}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{4}}\right\}\right)\right\} \text { and } \\
& g_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{1}}, S_{l_{6}}, S_{l_{7}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{3}}, S_{l_{4}}, S_{l_{6}}\right\}\right)\right\} \\
& \left(f_{C}^{L}\right)^{\circ}=f_{2 A}^{L} \text { and }\left(g_{C}^{L}\right)^{\circ}=f_{2 A}^{L} .
\end{aligned}
$$

Hence, $f_{A}^{L} \subset g_{A}^{L} \operatorname{implies}\left(f_{A}^{L}\right)^{\circ}=\left(g_{A}^{L}\right)^{\circ}$.

For inclusion condition,
We choose any two $\mathfrak{S} \mathfrak{L}$ from figure:1,
$f_{D}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{3}}, S_{l_{6}}\right\}\right)\right\}$ and
$g_{D}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{4}}, S_{l_{7}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{3}}, S_{l_{6}}\right\}\right)\right\}$
$\left(f_{D}^{L}\right)^{\circ}=f_{4 A}^{L}$ and $\left(g_{D}^{L}\right)^{\circ}=f_{1 A}^{L}$.
Hence, $f_{A}^{L} \subset g_{A}^{L} \operatorname{implies}\left(f_{A}^{L}\right)^{\circ} \subset\left(g_{A}^{L}\right)^{\circ}$.
Example 3.2. Now the given example to show that the statement of theorem 1(vii) may be strict or equal, Let us consider the lattice and $\mathfrak{S} . \mathfrak{L} . \mathfrak{T}$ given in Example: 3.1

For inclusion Condition,
We choose any two $\mathfrak{S} . \mathfrak{L}$ from figure:1,
$f_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{6}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{3}}, S_{l_{6}}\right\}\right)\right\}$ and
$g_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{4}}, S_{l_{7}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{3}}, S_{l_{4}}, S_{l_{6}}\right\}\right)\right\}$
$\left(f_{C}^{L}\right)^{\circ}=f_{4 A}^{L}$ and $\left(g_{C}^{L}\right)^{\circ}=f_{1 A}^{L}$, which implies $\left(f_{C}^{L}\right)^{\circ} \bigcup\left(g_{C}^{L}\right)^{\circ}=f_{1 A}^{L}$.
$\left(f_{C}^{L} \bigcup g_{C}^{L}\right)^{\circ}$ is $f_{3 A}^{L}$.
Hence, $\left(f_{A}^{L}\right) \circ \bigcup\left(g_{A}^{L}\right)^{\circ} \subset\left(f_{A}^{L} \bigcup g_{A}^{L}\right)^{\circ}$.
For equal condition,
We choose any two $\mathfrak{S} \mathfrak{L}$ from figure:1,
$f_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{6}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{4}}\right\}\right)\right\}$ and
$g_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{1}}, S_{l_{6}}, S_{l_{7}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{3}}, S_{l_{4}}, S_{l_{6}}\right\}\right)\right\}$
$\left(f_{C}^{L}\right)^{\circ}=f_{2 A}^{L}$ and $\left(g_{C}^{L}\right)^{\circ}=f_{2 A}^{L}$, which implies $\left(f_{C}^{L}\right)^{\circ} \bigcup\left(g_{C}^{L}\right)^{\circ}=f_{2 A}^{L}$.
Hence, $\left(f_{A}^{L}\right) \circ \bigcup\left(g_{A}^{L}\right)^{\circ}=\left(f_{A}^{L} \bigcup g_{A}^{L}\right)^{\circ}$.
Definition 3.2. Let (L, θ, A) be a $\mathfrak{S . L . T . S}$ over L, then the $\mathfrak{S . L}$ - \mathfrak{E}. of $\mathfrak{S} . \mathfrak{L} f_{A}^{L}$ is denoted by $\left(f_{A}^{L}\right)_{\circ}$ and is defined as $\left(f_{A}^{L}\right)_{\circ}=\left(\left(f_{A}^{L}\right)^{C}\right)^{\circ}$.

Theorem 3．2．Let f_{A}^{L} and g_{A}^{L} be $\mathfrak{S . L}$ of a $\mathfrak{S . L . T . S}(L, \theta, A)$ ．Then，
（i）$\left(f_{A}^{L} \bigcup g_{A}^{L}\right)_{\circ}=\left(f_{A}^{L}\right)_{\circ} \bigcap\left(g_{A}^{L}\right)_{\circ}$ ．
（ii）$\left(f_{A}^{L}\right) 。 \bigcup\left(g_{A}^{L}\right) 。 \subseteq\left(f_{A}^{L} \bigcap g_{A}^{L}\right)_{\circ}$ ．
（iii）$f_{A}^{L} \subseteq g_{A}^{L} \operatorname{implies}\left(f_{A}^{L}\right)_{\circ} \supseteq\left(g_{A}^{L}\right)_{\circ}$ ．

Proof

（i）$\left(f_{A}^{L} \bigcup g_{A}^{L}\right)_{\circ}=\left(\left(f_{A}^{L} \bigcup g_{A}^{L}\right)^{C}\right)^{\circ}=\left(\left(f_{A}^{L}\right)^{C} \bigcap\left(g_{A}^{L}\right)^{C}\right)^{\circ}=\left(\left(f_{A}^{L}\right)^{C}\right)^{\circ} \bigcap\left(\left(g_{A}^{L}\right)^{C}\right)^{\circ}$ $=\left(f_{A}^{L}\right) \circ \bigcap\left(g_{A}^{L}\right) 。$
（ii）$\left(f_{A}^{L}\right)_{\circ} \cup\left(g_{A}^{L}\right)_{\circ}=\left(\left(f_{A}^{L}\right)^{C}\right)^{\circ} \cup\left(\left(g_{A}^{L}\right)^{C}\right)^{\circ} \subseteq\left(\left(f_{A}^{L}\right)^{C} \cup\left(g_{A}^{L}\right)^{C}\right)^{\circ}$ $=\left(\left(f_{A}^{L} \bigcap g_{A}^{L}\right)^{C}\right)^{\circ}=\left(f_{A}^{L} \bigcap g_{A}^{L}\right) 。$
（iii）$\left(g_{A}^{L}\right)_{\circ}=\left(\left(g_{A}^{L}\right)^{C}\right)^{\circ} \subseteq\left(\left(f_{A}^{L}\right)^{C}\right)^{\circ}=\left(f_{A}^{L}\right) 。$
Example 3．3．Now the given example to show that the statement of theorem 2（ii） may be strict or equal，Let $L_{A}=\left\{S_{l_{1}}, S_{l_{2}}, S_{l_{3}}, S_{l_{4}}, S_{l_{5}}, S_{l_{6}}, S_{l_{7}}\right\} ; A=$ $\left\{\rho_{1}, \rho_{2}\right\} ; \theta=\left\{f_{1 A}^{L}, f_{2 A}^{L}, f_{3 A}^{L}, f_{4 A}^{L}, L_{A}, \phi_{A}\right\}$

$$
\begin{aligned}
& f_{1 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{3}}, S_{l_{6}}\right\}\right),\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{5}}\right\}\right)\right\}, f_{2 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{6}}\right\}\right),\left(\rho_{2}, \phi\right)\right\} \\
& f_{3 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{2}}, S_{l_{3}}, S_{l_{5}}, S_{l_{6}}\right\}\right),\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{5}}, S_{l_{6}}\right\}\right)\right\} \text { and } \\
& f_{4 A}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{2}}, S_{l_{5}}, S_{l_{6}}\right\}\right),\left(\rho_{2},\left\{S_{l_{6}}\right\}\right)\right\}
\end{aligned}
$$

Figure 2：Complete lattice

For inclusion condition，
Now we take any two $\mathfrak{S} . \mathfrak{L}$ from the figure： 2,
$f_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{2}}, S_{l_{6}}\right\}\right),\left(\rho_{2},\left\{S_{l_{6}}\right\}\right)\right\}$ and
$g_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{2}}, S_{l_{3}}, S_{l_{5}}\right\}\right),\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{5}}\right\}\right)\right\}$
Then，$\left(f_{C}^{L} \bigcap g_{C}^{L}\right)=\left\{\left(\rho_{1},\left\{S_{l_{2}}\right\}\right),\left(\rho_{2}, \phi\right)\right\} .\left(f_{C}^{L}\right)_{\circ}=\phi_{A}$ and $\left(g_{C}^{L}\right)_{\circ}=f_{2 A}^{L}$ ， which implies $\left(f_{C}^{L}\right)_{\circ} \cup\left(g_{C}^{L}\right)_{\circ}=f_{2 A}^{L} .\left(f_{C}^{L} \bigcap g_{C}^{L}\right)$ 。is $f_{1 A}^{L}$ ．

Hence，$\left(f_{A}^{L}\right) 。 \cup\left(g_{A}^{L}\right) 。 \subset\left(f_{A}^{L} \bigcap g_{A}^{L}\right)_{\circ}$ ．
For Equal condition，
Now we take any two $\mathfrak{S} . \mathfrak{L}$ from the figure： 2 ，
$f_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{5}}, S_{l_{7}}\right\}\right),\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{7}}\right\}\right)\right\}$ and
$g_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{3}}, S_{l_{5}}, S_{l_{7}}\right\}\right),\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{5}}, S_{l_{7}}\right\}\right)\right\}$
Then，$\left(f_{C}^{L} \cap g_{C}^{L}\right)=\left\{\left(\rho_{1},\left\{S_{l_{5}}, S_{l_{7}}\right\}\right),\left(\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{7}}\right\}\right)\right\}\right.$ ．
$\left(f_{C}^{L}\right)_{\circ}=f_{2 A}^{L}$ and $\left(g_{C}^{L}\right) 。=f_{2 A}^{L}$ ，which implies $\left(f_{C}^{L}\right)_{\circ} \bigcup\left(g_{C}^{L}\right) 。=f_{2 A}^{L}$. $\left(f_{C}^{L} \bigcap g_{C}^{L}\right)$ 。is $f_{2 A}^{L}$ ．

Hence，$\left(f_{A}^{L}\right) 。 \cup\left(g_{A}^{L}\right)_{\circ}=\left(f_{A}^{L} \bigcap g_{A}^{L}\right)_{\circ}$ ．
Example 3．4．Now the given example to show that the statement of theorem 2（iii） may be strict or equal，Let us consider the lattice and $\mathfrak{S} . \mathfrak{L} . \mathfrak{T}$ given in Example： 3.3

For Equal condition，
Now we take any two $\mathfrak{S} . \mathfrak{L}$ from the figure： 2 ，
$f_{D}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{3}}, S_{l_{6}}\right\}\right),\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{5}}, S_{l_{6}}\right\}\right)\right\}$ and
$g_{D}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{1}}, S_{l_{3}}, S_{l_{5}}, S_{l_{6}}\right\}\right),\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{5}}, S_{l_{6}}\right\}\right)\right\}$
$\left(f_{D}^{L}\right)_{\circ}=\phi_{A}$ and $\left(g_{D}^{L}\right) 。=\phi_{A}$.
Hence，$f_{A}^{L} \subseteq g_{A}^{L} \operatorname{implies}\left(f_{A}^{L}\right)_{\circ}=\left(g_{A}^{L}\right)_{\circ}$ ．

G. Hari Siva Annam and T. Abinaya

For inclusion condition,
Now we take any two $\mathfrak{S} . \mathfrak{L}$ from the figure: 2,

$$
\begin{aligned}
& f_{B}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{4}}, S_{l_{5}}\right\}\right),\left(\rho_{2},\left\{S_{l_{2}}, S_{l_{3}}, S_{l_{6}}, S_{l_{7}}\right\}\right)\right\} \text { and } \\
& g_{B}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{2}}, S_{l_{4}}, S_{l_{5}}, S_{l_{7}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{2}}, S_{l_{3}}, S_{l_{5}}, S_{l_{6}}, S_{l_{7}}\right\}\right)\right\} \\
& \left(f_{B}^{L}\right)_{\circ}=f_{1 A}^{L} \text { and }\left(g_{B}^{L}\right)_{\circ}=f_{2 A}^{L} .
\end{aligned}
$$

Hence, $f_{A}^{L} \subseteq g_{A}^{L}$ implies $\left(f_{A}^{L}\right) 。 \supset\left(g_{A}^{L}\right)_{\circ}$.
Definition 3.3. In $\mathfrak{S . L . T . S}$, then the $\mathfrak{S} . \mathfrak{L}-\mathfrak{B}$ of $\mathfrak{S} . \mathfrak{L} f_{A}^{L}$ is denoted by $\left(f_{A}^{L}\right)^{B}$ and is defined as $\left(f_{A}^{L}\right)^{B}=\overline{f_{A}^{L}} \cap \overline{\left(f_{A}^{L}\right)^{C}}$.

Theorem 3.3. Let (L, θ, A) be a $\mathfrak{S . L . T . S : ~}$
(i) $\left(f_{A}^{L}\right)^{B} \cap\left(f_{A}^{L}\right)^{\circ}=f_{\phi}^{L}$
(ii) $\left(f_{A}^{L}\right)^{B} \bigcap\left(f_{A}^{L}\right)_{\circ}=f_{\phi}^{L}$

Proof

(i) $\left(f_{A}^{L}\right)^{B} \bigcap\left(f_{A}^{L}\right)^{\circ}=\left(\overline{f_{A}^{L}} \cap \overline{\left(f_{A}^{L}\right)^{C}}\right) \bigcap\left(f_{A}^{L}\right)^{\circ}$

$$
=\overline{f_{A}^{L}} \cap \overline{\left(f_{A}^{L}\right)^{C}} \bigcap\left(f_{A}^{L}\right)^{\circ}=f_{\phi}^{L}
$$

(ii) $\begin{aligned} &\left.\left(f_{A}^{L}\right)^{B} \cap\left(f_{A}^{L}\right)_{\circ}=\overline{f_{A}^{L}} \cap \overline{\left(f_{A}^{L}\right)^{C}} \cap\left(f_{A}^{L}\right)^{C}\right)^{\circ}=\overline{f_{A}^{L}} \cap \overline{\left(f_{A}^{L}\right)^{C}} \cap\left(\overline{\left.\left(f_{A}^{L}\right)\right)^{C}}\right. \\ &=f_{\phi}^{L}\end{aligned}$

Example 3.5. Now the given example for find the boundary, Let us consider the lattice and $\mathfrak{S} . \mathfrak{L} . \mathfrak{T}$ given in Example: 3.1

Now we take any $\mathfrak{S} . \mathfrak{L}$ from the figure:1,

$$
f_{C}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{2}}, S_{l_{8}}\right\}\right),\left(\rho_{2},\left\{S_{l_{1}}, S_{l_{3}}\right\}\right)\right\} \text { Then, }\left(f_{C}^{L}\right)^{B}=\left(f_{4 A}^{L}\right)^{C}
$$

Definition 3.4. Let (L, θ, A) be a $\mathfrak{S} . \mathfrak{L} . \mathfrak{T} . \mathfrak{S}$ over L, then the $\mathfrak{S} . \mathfrak{L}$ - $\mathfrak{B o r}$ of $\mathfrak{S} . \mathfrak{L} f_{A}^{L}$ is denoted by $\left(f_{A}^{L}\right)^{\bullet}$ and is defined as $\left(f_{A}^{L}\right)^{\bullet}=f_{A}^{L}-\left(f_{A}^{L}\right)^{\circ}$.

Theorem 3.4. Let (L, θ, A) be a $\mathfrak{S . L . T . S . ~ T h e n ~ t h e ~ f o l l o w i n g ~ h o l d : ~}$
(i) $\left(f_{A}^{L}\right) \bullet A \bigcap \overline{\left(L_{A}-f_{A}^{L}\right)}$
(ii) $\left(\phi_{A}^{L}\right)^{\bullet}=\phi_{A}^{L}$
(iii) $\left(f_{A}^{L}\right) \subseteq\left(\left(f_{A}^{L}\right)^{\circ}\right)^{C}$
(iv) $\left(f_{A}^{L}\right) \subseteq f_{A}^{L} \subseteq \overline{f_{A}^{L}}$

Proof
(i) $f_{A}^{L} \bigcap\left(\left(f_{A}^{L}\right)^{\circ}\right)^{C}=f_{A}^{L} \bigcap \overline{\left(f_{A}^{L}\right)^{C}}=f_{A}^{L} \bigcap \overline{\left(L_{A}-f_{A}^{L}\right)}$
(ii) $\phi_{A}^{L} \bigcap\left(\left(\phi_{A}^{L}\right)^{\circ}\right)^{C}=\left(\phi_{A}^{L}\right) \bigcap \overline{\left(\phi_{A}^{L}\right)^{C}}=\phi_{A}^{L}$
(iii) $f_{A}^{L}-\left(f_{A}^{L}\right)^{\circ}=f_{A}^{L} \bigcap\left(\left(f_{A}^{L}\right)^{\circ}\right)^{C} \subseteq\left(\left(f_{A}^{L}\right)^{\circ}\right)^{C}$
(iv) By definition of $\left(f_{A}^{L}\right)^{\bullet},\left(f_{A}^{L}\right)^{\bullet} \subseteq f_{A}^{L}$.
we know that, $f_{A}^{L} \subset \overline{f_{A}^{L}}$ Therefore, $\left(f_{A}^{L}\right)^{\bullet} \subseteq f_{A}^{L} \subseteq \overline{f_{A}^{L}}$

Example 3.6. Now the given example to show that the statement of theorem 4(iv) may be strict or equal, Let us consider the lattice and S.‥T given in Example: 3.3

We choose any two $\mathfrak{S} . \mathfrak{L}$ from the figure:2,

$$
g_{B}^{L}=\left\{\left(\rho_{1},\left\{S_{l_{2}}, S_{l_{3}}, S_{l_{5}}, S_{l_{6}}\right\}\right),\left(\rho_{2},\left\{S_{l_{4}}, S_{l_{5}}, S_{l_{6}}\right\}\right)\right\}
$$

Now, the Closure of g_{B}^{L} is L_{A}, Then border of g_{B}^{L}, is ϕ_{A}
Hence, $\left(g_{B}^{L}\right) \subset g_{B}^{L} \subset \overline{g_{B}^{L}}$.

4 Conclusions

In the present work, we defined and discussed some $\mathfrak{S . L}$ - sets of $\mathfrak{S . L . T . S . ~}$ We extended some basic results relating to $\mathfrak{S} . \mathfrak{L}-\mathfrak{I}, \mathfrak{S} . \mathfrak{L}$ - $\mathfrak{E}, \mathfrak{S} . \mathfrak{L}-\mathfrak{B}$, and $\mathfrak{S} . \mathfrak{L}$ - $\mathfrak{B o r}$ of $\mathfrak{S . L . T . S . ~ I n ~ t h e ~ i n t e r i o r ~ s e c t i o n , ~ i d e m p o t e n t ~ a n d ~ m o n o t o n i c i t y ~ r e s u l t s ~}$ are held. Formerly the intersection of the boundary and interior soft lattice gives the null set and the intersection of the boundary and exterior soft lattice should not give the non-empty soft sets. In end, this paper is the inception of a novel

G. Hari Siva Annam and T. Abinaya

structure. Further, we learned a few viewpoints, it will be needed to carry out a new seeking work to build future applications.

Acknowledgement

I would like to intently acknowledge the beneficial proposals, efforts, and precious time given by G. HARI SIVA ANNAM. Their valued supervision and feedback helped me to complete this article.

References

[1] C, a gman, N., Karatas s, S. and Enginoglu, S., 2011. Soft topology. Computers and Mathematics with Applications, 62(1), pp.351-358.
[2] Georgiou, D.N. and Megaritis, A.C., 2014. Soft set theory and topology. Applied General Topology, 15(1), pp.93-109.
[3] Hussain, S. and Ahmad, B., 2011. Some properties of soft topological spaces. Computers and Mathematics with Applications, 62(11), pp.40584067.
[4] Jobish, V.D., Babitha, K.V. and John, S.J., 2013. On soft lattice operations. J Adv Res Pure Math, 5(2), pp.71-86
[5] Karthika, M., Parimala, M., Jafari, S., Smarandache, F., Alshumrani, M., Ozel, C., and Udhayakumar, R. (2022). Neutrosophic complex $\alpha \Psi$ connectedness in neutrosophic complex topological spaces. Collected Papers. Volume XIV: Neutrosophics and other topics, 358
[6] Kiruthika, M. and Thangavelu, P., 2019. A link between topology and soft topology. Hacettepe Journal of Mathematics and Statistics, 48(3), pp.800804.
[7] Li, F., 2010. Soft lattices. Global Journal of Science Frontier Research, 56, pp.42-50.
[8] Maji, P.K., Biswas, R. and Roy, A.R., 2003. Soft set theory. Computers and Mathematics with Applications, 45(4-5), pp.555-562.
[9] Mani P, Muthusamy K, Jafari S, Smarandache F, Ramalingam U. DecisionMaking via Neutrosophic Support Soft Topological Spaces. Symmetry. 2018; 10(6):217. https://doi.org/10.3390/sym10060217.
[10] Onyeozili, I.A. and Gwary, T.M., 2014. A study of the fundamentals of soft set theory. International journal of scientific and technology research, 3(4), pp.132-143.
[11] Pai, S.S. and Baiju, T., 2021. On Soft Lattice Topological Spaces. Fuzzy Information and Engineering, 13(1), pp.1-16.
[12] Parimala, M., Arivuoli, D., and Udhayakumar, R. (2020). nI αg-closed sets and Normality via $n I \alpha g$-closed sets in Nano Ideal Topological Spaces. Punjab University Journal of Mathematics, 52(4).
[13] Rajasekaran, Ilangovan and Nethaji, Ochanan. (2019). Unified approach of several sets in ideal nanotopological spaces. 3. 70-78.
[14] Shabir, M. and Naz, M., 2011. On soft topological spaces. Computers and Mathematics with Applications, 61(7), pp.1786-1799.

[^0]: *Assistant Professor, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628003, Tamil Nadu, India. hsannam84@gmail.com. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India.
 ${ }^{\dagger}$ Research Scholar [21212102092011], PG and Research Department of Mathematics, Kamaraj College, Thoothukudi, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India. rvtpraba77@gmail.com.
 ${ }^{1}$ Received on August 12, 2022. Accepted on January 2, 2023. Published on January 10, 2023. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 41 \mathrm{i} 0.838$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

