Common fixed point theorem for weakly compatible mappings in S_{m} metric space

Mallaiah Katta *
Srinivas Veladi ${ }^{\dagger}$

Abstract

In the present paper, at first, we study the structure of the newly S_{m} - metric space, which is a combination of S-metric space and multiplicative metric space. We have proved a common fixed point theorem for four self-maps in S_{m} metric space with a new contraction condition by applying the concepts of weakly compatible mappings, semi-compatible mappings, and reciprocally continuous mappings. Further, we also provide some examples to support our results.

Keywords: Multiplicative metric space, S-metric space, S_{m}-metric space, weakly compatible mappings, reciprocally continuous mappings, and semi-compatible mappings.
2020 AMS subject classifications: $\mathbf{5 4 H} \mathbf{2 5}{ }^{1}$

[^0]
Mallaiah K and Srinivas V

1 Introduction

The notion of multiplicative metric space (MMS) was first developed by Bashirove [1]. Following that, several theorems came to light in this area of MMS [2] ,[3] and [4]. On the other side, Sedghi.S et al.[5] presented a new structure to S-metric space which modified D-metric and G-metric spaces, and then several fixed point theorems [6] and [7] were obtained. Pant et al. [8] generalized the notion of reciprocally continuous mapping which is weaker than continuous and compatible mappings. Recently, Mukesh Kumar Jain [9] introduced a more general form of semi-compatible mappings and proved many fixed point theorems in metric space.
In this article, we use a new generalized metric space referred to as S_{m}-metric space, which is a combination of both MMS and S -metric space. Using this concept, we establish a common fixed point theorem by applying weakly compatible mappings(WCM), reciprocally continuous mappings, and semi-compatible mappings. Furthermore, some examples are also discussed to support our conclusions.

2 Preliminaries:

Now we give some definitions and examples which are used in this theorem.
Definition 2.1. [1] "Let χ be a non-empty set and $\delta: \chi^{2} \rightarrow \mathbb{R}^{+}$be a multiplicative metric space (MMS) satisfying the properties :
(i) $\delta(\psi, \phi) \geq 1$ and $\delta(\psi, \phi)=1 \Longleftrightarrow \psi=\phi$
(ii) $\delta(\psi, \phi)=\delta(\phi, \psi)$
(iii) $\delta(\psi, \phi) \leq \delta(\psi, \sigma) \delta(\sigma, \phi), \forall \psi, \phi, \sigma \in \chi$."

Definition 2.2. [5] " Let χ be a non-empty set defined $S: \chi^{3} \rightarrow[0, \infty)$ satisfying:
(i) $S(\psi, \phi, \sigma) \geq 0$
(ii) $S(\psi, \phi, \sigma)=0 \Longleftrightarrow \psi=\phi=\sigma$
(iii) $S(\psi, \phi, \sigma) \leq S(\psi, \psi, \rho)+S(\phi, \phi, \rho)+S(\sigma, \sigma, \rho), \forall \psi, \phi, \sigma, \rho \in \chi$.

A mapping S together with $\chi,(\chi, S)$ is called a S-metric space."
Definition 2.3. [10] " Let χ be a non-empty set .A function $S_{m}: \chi^{3} \rightarrow \mathbb{R}^{+}$ satisfying the conditions :
(i) $S_{m}(\psi, \phi, \sigma) \geq 1$
(ii) $S_{m}(\psi, \phi, \sigma)=1 \Longleftrightarrow \psi=\phi=\sigma$
(iii) $S_{m}(\psi, \phi, \sigma) \leq S_{m}(\psi, \psi, \rho) S_{m}(\phi, \phi, \rho) S_{m}(\sigma, \sigma, \rho), \forall \psi, \phi, \sigma, \rho \in \chi$.

The pair $\left(\chi, S_{m}\right)$ is called as S_{m}-metric space".
Definition 2.4. [10] "Let $\left(\chi, S_{m}\right)$ be a S_{m}-metric space, a sequence $\left\{\psi_{\theta}\right\} \in \chi$ is said to be
(i) cauchy sequence $\Longleftrightarrow S_{m}\left(\psi_{\theta}, \psi_{\theta}, \psi_{l}\right) \rightarrow 1$, for all $\theta, l \rightarrow \infty$;
(ii) convergent $\Longleftrightarrow \exists \psi \in \chi$ such that $S_{m}\left(\psi_{\theta}, \psi_{\theta}, \psi\right) \rightarrow 1$ as $\theta \rightarrow \infty$;
(iii) is complete if every cauchy sequence is convergent."

Definition 2.5. [11]" Two self-maps M and K of a S_{m} metric space are said to be
(i) Compatible: if

$$
\lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, K M \psi_{\theta}\right)=1
$$

whenever there exist a sequence $\left\{\psi_{\theta}\right\} \in \chi$ such that

$$
\lim _{\theta \rightarrow \infty} S_{m}\left(M \psi_{\theta}, K \psi_{\theta}, \omega\right)=1 \text { for some } \omega \in \chi
$$

(ii) Weakly- compatible mappings: if they commute at their coincidence points,

$$
\text { i.e. } \omega \in \chi, S_{m}(M \omega, M \omega, K \omega)=1, \Longrightarrow S_{m}(M K \omega . M K \omega, K M \omega)=1 . "
$$

Definition 2.6. [9] "Two self maps M and K of S_{m}-metric space are said to be Semi- compatible: if

$$
\lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, K \omega\right)=1
$$

whenever there exists a sequence $\left\{\psi_{\theta}\right\} \in X$ such that

$$
\lim _{\theta \rightarrow \infty} S_{m}\left(M \psi_{\theta}, K \psi_{\theta}, \omega\right)=1 \text { for all } \omega \in \chi . "
$$

Mallaiah K and Srinivas V

Now we present an example in which semi-compatible is weaker than compatible.

Example 2.6.1

Consider $\chi=[0, \infty)$ with $S_{m}(\psi, \phi, \sigma)=e^{|\psi-\phi|+|\phi-\sigma|+|\sigma-\psi|}$, for every $\psi, \phi, \sigma \in$ χ. Define two self maps M and K as

$$
M(\psi)= \begin{cases}\frac{\cos ^{2}(\pi \psi)+1}{2} & \text { if } 0<\psi \leq \frac{1}{2} \\ \sin (\pi \psi) & \text { if } \frac{1}{2}<\psi \leq 3\end{cases}
$$

and
$K(\psi)= \begin{cases}\frac{2 \sin (\pi \psi)-1}{2} & \text { if } 0<\psi \leq \frac{1}{2} ; \\ 1-\sin (\pi \psi) & \text { if } \frac{1}{2}<\psi \leq 3 .\end{cases}$
Consider a sequence $\left\{\psi_{\theta}\right\}$ as $\psi_{\theta}=\left\{\frac{\pi}{2}-\frac{1}{\theta}\right\}$ for $\theta \geq 0$.
Then
$\lim _{\theta \rightarrow \infty} M\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} M\left(\frac{1}{2}-\frac{1}{\theta}\right)=\lim _{\theta \rightarrow \infty} \frac{\cos ^{2} \pi\left(\frac{1}{2}-\frac{1}{\theta}\right)+1}{2}=\lim _{\theta \rightarrow \infty} \frac{\sin ^{2}\left(\frac{\pi}{\theta}\right)+1}{2}=\frac{1}{2}$
and
$\lim _{\theta \rightarrow \infty} K\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} K\left(\frac{1}{2}-\frac{1}{\theta}\right)=\lim _{\theta \rightarrow \infty} \frac{2 \sin \pi\left(\frac{1}{2}-\frac{1}{\theta}\right)-1}{2}=\lim _{\theta \rightarrow \infty} \frac{2 \cos \left(\frac{\pi}{\theta}\right)-1}{2}=\frac{1}{2}$.
Therefore $\lim _{\theta \rightarrow \infty} M \psi_{\theta}=\lim _{\theta \rightarrow \infty} K \psi_{\theta}=\frac{1}{2}=\omega$ (say).
Now
$\lim _{\theta \rightarrow \infty} M K\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} M\left(\frac{2 \cos \frac{\pi}{\theta}-1}{2}\right)=\lim _{\theta \rightarrow \infty} \frac{\cos ^{2} \pi\left(\frac{2 \cos \frac{\pi}{\theta}-1}{2}\right)+1}{2}=\frac{\cos ^{2} \frac{\pi}{2}+1}{2}=\frac{1}{2}$
and

$$
\begin{aligned}
\lim _{\theta \rightarrow \infty} K M\left(\psi_{\theta}\right)= & \lim _{\theta \rightarrow \infty} K\left(\frac{\sin ^{2} \frac{\pi}{\theta}+1}{2}\right)=\lim _{\theta \rightarrow \infty}\left[1-\sin \pi\left(\frac{\sin ^{2} \frac{\pi}{\theta}+1}{2}\right)\right]=0 . \\
& \therefore \lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, K M \psi_{\theta}\right) \neq 0 .
\end{aligned}
$$

This implies these two self-maps M and K are not compatible.
But $K(\omega)=K\left(\frac{1}{2}\right)=\frac{1}{2}$.

$$
\text { Therefore } \lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, K \omega\right)=\lim _{\theta \rightarrow \infty} S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=1
$$

Hence these two self maps M and K are semi-compatible but not compatible.

Definition 2.7. [8] "Two self-maps M, K of S_{m}-metric space are said to be reciprocally continuous if

$$
\lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, M \omega\right)=1 \text { and } \lim _{\theta \rightarrow \infty} S_{m}\left(K M \psi_{\theta}, K M \psi_{\theta}, K \omega\right)=1
$$

whenever there exist a sequence $\left\{\psi_{\theta}\right\} \in \chi$ such that

$$
\lim _{\theta \rightarrow \infty} S_{m}\left(M \psi_{\theta}, K \psi_{\theta}, \omega\right)=1 \text { some } \omega \in \chi . "
$$

Now we present an example in which satisfies reciprocally continuous is weaker but not compatible.

Example 2.7.1 Consider $\chi=(0, \infty)$ with $S_{m}(\psi, \phi, \sigma)=e^{|\psi-\phi|+|\phi-\sigma|+|\sigma-\psi|}$, for every $\psi, \phi, \sigma \in \chi$. Define two self maps M and K as

$$
M(\psi)= \begin{cases}\psi^{2}+2 & \text { if } 0<\psi \leq 1 \\ 4-\psi & \text { if } 1<\psi \leq 3\end{cases}
$$

and

$$
K(\psi)= \begin{cases}1-2 \psi & \text { if } 0<\psi \leq 1 \\ \psi-2 & \text { if } 1<\psi \leq 3\end{cases}
$$

Consider a sequence $\left\{\psi_{\theta}\right\}$ as $\psi_{\theta}=\left\{3-\frac{1}{\theta}\right\}$, for $\theta \geq 0$.
Now

$$
\begin{gathered}
\lim _{\theta \rightarrow \infty} M\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty}\left[4-\left(3-\frac{1}{\theta}\right)\right]=1 \text { and } \lim _{\theta \rightarrow \infty} K\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty}\left[\left(3+\frac{1}{\theta}\right)-2\right]=1 \\
\therefore \lim _{\theta \rightarrow \infty} M \psi_{\theta}=\lim _{\theta \rightarrow \infty} K \psi_{\theta}=1=\omega_{1} \neq \phi
\end{gathered}
$$

Also

$$
\lim _{\theta \rightarrow \infty} M K\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} M\left[\left(3-\frac{1}{\theta}\right)-2\right]=\lim _{\theta \rightarrow \infty} M\left(1-\frac{1}{\theta}\right)=3
$$

and

$$
\begin{gathered}
\lim _{\theta \rightarrow \infty} K M\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} K\left(4-\left(3-\frac{1}{\theta}\right)=\lim _{\theta \rightarrow \infty} K\left(1+\frac{1}{\theta}\right)=-1 .\right. \\
\therefore \lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, K M \psi_{\theta}\right)=S_{m}(3,3,-1) \neq 1 .
\end{gathered}
$$

This gives the self maps M and K are not compatible in S_{m} - metric space.
Moreover, $M\left(\omega_{1}\right)=3$ and $K\left(\omega_{1}\right)=-1$.
Which gives

$$
\lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, M \omega_{1}\right)=S_{m}(3,3,3)=1
$$

Mallaiah K and Srinivas V

and

$$
\lim _{\theta \rightarrow \infty} S_{m}\left(K M \psi_{\theta}, K M \psi_{\theta}, K \omega_{1}\right)=S_{m}(-1,-1,-1)=1
$$

This implies the self-maps M and K are reciprocally continuous but not compatible in S_{m} metric space.

Now we proceed to the main theorem.

3 Main Theorem

Theorem 3.1. Let M, H, K, and J be self-mapping of a complete S_{m}-metric space satisfying the following
(3.1.1) $M(\chi) \subseteq J(\chi)$ and $H(\chi) \subseteq K(\chi)$
(3.1.2)

$$
\begin{aligned}
S_{m}(M \psi, M \psi, H \phi) \leq & \left\{\operatorname { m a x } \left[S_{m}(M \psi, M \psi, K \psi) S_{m}(H \phi, H \phi, J \phi),\right.\right. \\
& S_{m}(M \psi, M \psi, J \phi) S_{m}(K \psi, K \psi, H \phi) \\
& S_{m}(M \psi, M \psi, J \phi) S_{m}(H \phi, H \phi, J \phi) \\
& \left.\left.S_{m}(M \psi, M \psi, K \psi) S_{m}(H \phi, H \phi, K \psi)\right]\right\}^{\lambda} \\
& \text { where } \lambda \in\left(0, \frac{1}{2}\right)
\end{aligned}
$$

(3.1.3) the pair M and K are reciprocally continuous and semi-compatible,
(3.1.4) the pair H and J are weakly compatible.

Then the self-maps M, H, K, and J have a unique common fixed point in χ.

Proof:

Let there is a point $\psi_{0} \in \chi$, and the sequence $\left\{\psi_{\theta}\right\}$ be defined as $M \psi_{0}=J \psi_{1}=$ ϕ_{0}. For this point ψ_{1} then there exists $\psi_{2} \in \chi$ such that $H \psi_{1}=K \psi_{2}=\phi_{1}$. In general, by induction choose $\psi_{\theta+1}$, construct a sequence $\left\{\phi_{\theta}\right\} \in \chi$ such that

$$
\phi_{2 \theta}=M \psi_{2 \theta}=J \psi_{2 \theta+1} \text { and } \phi_{2 \theta+1}=H \psi_{2 \theta+1}=K \psi_{2 \theta+2}, \text { for } \theta \geq 0 .
$$

S_{m} metric space

On putting $\psi=\psi_{2 \theta}$ and $\phi=\phi_{2 \theta+1}$ in (3.1.2) we get.

$$
\begin{aligned}
& S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta+1}\right)=S_{m}\left(M \psi_{2 \theta}, M \psi_{2 \theta}, H \psi_{2 \theta+1}\right) \\
& \leq \max \left\{S_{m}\left(M \psi_{2 \theta}, M \psi_{2 \theta}, \theta \psi_{2 \theta}\right) S_{m}\left(H \psi_{2 \theta+1}, H \psi_{2 \theta+1}, J \psi_{2 \theta+1}\right),\right. \\
& S_{m}\left(M \psi_{2 \theta}, M \psi_{2 \theta}, J \psi_{2 \theta+1}\right) S_{m}\left(H \psi_{2 \theta+1}, H \psi_{2 \theta+1}, \theta \psi_{2 \theta}\right), \\
& S_{m}\left(M \psi_{2 \theta}, M \psi_{2 \theta}, J \psi_{2 \theta+1}\right) S_{m}\left(H \psi_{2 \theta+1}, H \psi_{2 \theta+1}, J \psi_{2 \theta+1}\right), \\
& \left.S_{m}\left(M \psi_{2 \theta}, M \psi_{2 \theta}, K \psi_{2 \theta}\right) S_{m}\left(H \psi_{2 \theta+1}, H \psi_{2 \theta+1}, K \psi_{2 \theta}\right)\right\}^{\lambda} \\
& S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta+1}\right) \leq \max \left\{S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta-1}\right) S_{m}\left(\phi_{2 \theta+1}, \phi_{2 \theta+1}, \phi_{2 \theta}\right),\right. \\
& S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta}\right) S_{m}\left(\phi_{2 \theta+1}, \phi_{2 \theta+1}, \phi_{2 \theta-1}\right), \\
& S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta}\right) S_{m}\left(\phi_{2 \theta+1}, \phi_{2 \theta+1}, \phi_{2 \theta}\right), \\
& \left.S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta-1}\right) S_{m}\left(\phi_{2 \theta+1}, \phi_{2 \theta+1}, \phi_{2 \theta-1}\right)\right\}^{\lambda}
\end{aligned}
$$

this implies that

$$
S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta+1}\right) \leq S_{m}\left(\phi_{2 \theta-1}, \phi_{2 \theta-1}, \phi_{2 \theta+1}\right)^{\lambda} .
$$

$$
\begin{gathered}
S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta+1}\right) \leq\left\{S_{m}\left(\phi_{2 \theta-1}, \phi_{2 \theta-1}, \phi_{2 \theta}\right) S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta+1}\right)\right\}^{\lambda} . \\
S_{m}^{1-\lambda}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta+1}\right) \leq S_{m}^{\lambda}\left(\phi_{2 \theta-1}, \phi_{2 \theta-1}, \phi_{2 \theta}\right) . \\
S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta+1}\right) \leq S_{m}^{\frac{\lambda}{1-\lambda}}\left(\phi_{2 \theta-1}, \phi_{2 \theta-1}, \phi_{2 \theta}\right) . \\
S_{m}\left(\phi_{2 \theta}, \phi_{2 \theta}, \phi_{2 \theta+1}\right) \leq S_{m}^{p}\left(\phi_{2 \theta-1}, \phi_{2 \theta-1}, \phi_{2 \theta}\right) . \text { where } p=\frac{\lambda}{1-\lambda} .
\end{gathered}
$$

Now this gives

$$
S_{m}\left(\phi_{\theta}, \phi_{\theta}, \phi_{\theta+1}\right) \leq S_{m}^{p}\left(\phi_{\theta-1}, \phi_{\theta-1}, \phi_{\theta}\right) \leq S_{m}^{p^{2}}\left(\phi_{\theta-2}, \phi_{\theta-2}, \phi_{\theta-1}\right) \leq \cdots S_{m}^{p^{n}}\left(\phi_{0}, \phi_{0}, \phi_{n}\right) .
$$

By using triangular inequality

$$
S_{m}\left(\phi_{\theta}, \phi_{\theta}, \phi_{n}\right) \leq S_{m}^{p^{\theta}}\left(\phi_{0}, \phi_{0}, \phi_{l}\right) \leq S_{m}^{p^{\theta+1}}\left(\phi_{0}, \phi_{0}, \phi_{n}\right) \leq \cdots S_{m}^{p^{n-1}}\left(\phi_{0}, \phi_{0}, \phi_{n}\right)
$$

Mallaiah K and Srinivas V

$$
S_{m}\left(\phi_{\theta}, \phi_{\theta}, \phi_{n}\right) \leq S_{m}^{\frac{p^{\theta}}{1-p}}\left(\phi_{0}, \phi_{0}, \phi_{l}\right) \text { for all } \theta \geq 1 .
$$

Hence $\left\{\phi_{\theta}\right\}$ is a cauchy sequence in S_{m}-metric space.
Since the self-maps, M and K are weakly reciprocally continuous.

$$
\begin{equation*}
\lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, M \omega\right)=1 \text { or } \lim _{\theta \rightarrow \infty} S_{m}\left(K M \psi_{\theta}, K M \psi_{\theta}, \theta \omega\right)=1 \tag{1}
\end{equation*}
$$

Also, the pair (M, K) is semi compatible, we have

$$
\begin{equation*}
\lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, K \omega\right)=1 \tag{2}
\end{equation*}
$$

From (1) and (2) we get

$$
\begin{equation*}
S_{m}(M \omega, M \omega, K \omega)=1 \tag{3}
\end{equation*}
$$

Since $M(\chi) \subseteq J(\chi)$ which gives then there exists $\nu \in \chi$ such that $J \nu=M \psi_{\theta}$, since $M \psi_{\theta} \rightarrow \omega$ as $\theta \rightarrow \infty$. Which implies

$$
\begin{equation*}
S_{m}(J \nu, J \nu, \omega)=1 \tag{4}
\end{equation*}
$$

Now, we have to prove $S_{m}(J \nu, H \nu, \omega)=1$.
Substitute $\psi=\psi_{\theta}$ and $\phi=\nu$ in (3.1.2) we have

$$
\begin{gathered}
S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, H \nu\right) \leq\left\{\operatorname { m a x } \left[S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, K \psi_{\theta}\right) S_{m}(H \nu, H \nu, J \nu),\right.\right. \\
\\
S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, J \nu\right) S_{m}\left(K \psi_{1}, K \psi_{1}, H \nu\right), \\
\\
S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, J \nu\right) S_{m}(H \nu, H \nu, J \nu), \\
\left.\left.S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, K \psi_{\theta}\right) S_{m}\left(H \nu, H \nu, K \psi_{\theta}\right)\right]\right\}^{\lambda} \\
S_{m}(\omega, \omega, H \nu) \leq \\
\left\{\operatorname { m a x } \left[S_{m}(\omega, \omega, \omega) S_{m}(H \nu, H \nu, \omega), S_{m}(\omega, \omega, \omega) S_{m}(\omega, \omega, H \nu)\right.\right. \\
\left.\left.S_{m}(\omega, \omega, \omega) S_{m}(H \nu, H \nu, \omega), S_{m}(\omega, \omega, \omega) S_{m}(H \nu, H \nu, \omega)\right]\right\}^{\lambda} \\
S_{m}(\omega, \omega, H \nu) \leq\left\{\left(S_{m}(\omega, \omega, H \nu)\right\}^{\lambda}\right. \\
S_{m}^{(1-\lambda)}(\omega, \omega, H \nu) \leq 1 \Longrightarrow S_{m}(H \nu, H \nu, \omega)=1 \\
\therefore S_{m}(J \nu, H \nu, \omega)=1 .
\end{gathered}
$$

S_{m} metric space

Since the pair (H.J) is WCM and ν is a coincidence point then $H J \nu=J H \nu$

$$
\begin{equation*}
S_{m}(H \omega, H \omega, J \omega)=1 \tag{5}
\end{equation*}
$$

Substitute $\psi=\psi_{\theta}$ and $\phi=\omega$ in (3.1.2) we have

$$
\begin{aligned}
& S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, H \omega\right) \leq \\
& \left\{\operatorname { m a x } \left[S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, K \psi_{\theta}\right) S_{m}(H \omega, H \omega, J \omega),\right.\right. \\
& S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, J \omega\right) S_{m}\left(K \psi_{1}, K \psi_{1}, H \omega\right), \\
& S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, J \omega\right) S_{m}(H \omega, H \omega, J \omega), \\
& \left.\left.S_{m}\left(M \psi_{\theta}, M \psi_{\theta}, K \psi_{\theta}\right) S_{m}\left(H \omega, H \omega, K \psi_{\theta}\right)\right]\right\}^{\lambda}
\end{aligned}
$$

also

$$
\begin{aligned}
& S_{m}(H \omega, \omega, \omega) \leq \\
& \left\{\operatorname { m a x } \left[S_{m}(\omega, \omega, \omega) S_{m}(H \omega, H \omega, \omega), S_{m}(\omega, \omega, \omega) S_{m}(\omega, \omega, H \omega),\right.\right. \\
& \left.\left.S_{m}(\omega, \omega, \omega) S_{m}(H \omega, H \omega, \omega), S_{m}(\omega, \omega, \omega) S_{m}(H \omega, H \omega, \omega)\right]\right\}^{\lambda}
\end{aligned}
$$

and this gives

$$
\begin{gather*}
S_{m}(H \omega, \omega, \omega) \leq S_{m}(H \omega, \omega, \omega)^{\lambda} \\
S_{m}^{(1-\lambda)}(H \omega, \omega, \omega) \leq 1 \Longrightarrow H \omega=\omega \\
\therefore S_{m}(H \omega, J \omega, \omega)=1 . \tag{6}
\end{gather*}
$$

Replace $\psi=\omega$ and $\phi=\nu$ in (3.1.2) then we have

$$
\begin{aligned}
S_{m}(M \omega, M \omega, H \nu) \leq & \left\{\operatorname { m a x } \left[S_{m}(M \omega, M \omega, K \omega) S_{m}(J \nu, H \nu, H \nu),\right.\right. \\
& S_{m}(M \omega, M \omega, J \nu) S_{m}(K \omega, K \omega, H \nu), \\
& S_{m}(M \omega, M \omega, J \nu) S_{m}(J \nu, J \nu, H \nu), \\
& \left.\left.S_{m}(M \omega, M \omega, K \omega) S_{m}(H \nu, H \nu, K \omega)\right]\right\}^{\lambda}
\end{aligned}
$$

Mallaiah K and Srinivas V

$$
\begin{align*}
& S_{m}(M \omega, M \omega, \omega) \leq\left\{\operatorname { m a x } \left[S_{m}(M \omega, M \omega, M \omega) S_{m}(\omega, \omega, \omega)\right.\right. \\
& S_{m}(M \omega, M \omega, \omega) S_{m}(M \omega, M \omega, \omega) \\
& S_{m}(M \omega, M \omega, \omega) S_{m}(\omega, \omega, \omega) \\
&\left.\left.S_{m}(M \omega, M \omega, M \omega) S_{m}(\omega, \omega, M \omega)\right]\right\}^{\lambda} \\
& S_{m}(M \omega, M \omega, \omega) \leq\left\{S_{m}(M \omega, M \omega, \omega)\right\}^{\lambda} \\
& S_{m}^{(1-\lambda)}(M \omega, M \omega, \omega) \leq 1 \Longrightarrow M \omega=\omega \\
& \therefore S_{m}(M \omega, J \omega, \omega)=1 \tag{7}
\end{align*}
$$

From (6) and (7) we get

$$
\begin{equation*}
M \omega=J \omega=H \omega=K \omega=\omega . \tag{8}
\end{equation*}
$$

Therefore " ω " is a common fixed point of M, H, K, and J.

Uniqueness

Let ρ be one more fixed point, we assume that $\rho \neq \omega$ then we have

$$
M \rho=K \rho=H \rho=J \rho=\rho .
$$

In the condition (3.1.2) put $\psi=\omega$ and $\phi=\rho$ we get

$$
\begin{gathered}
S_{m}(M \omega, M \omega, H \rho) \leq\left\{\operatorname { m a x } \left[S_{m}(M \omega, M \omega, K \omega) S_{m}(H \rho, H \rho, J \rho),\right.\right. \\
\\
S_{m}(M \omega, M \omega, J \rho) S_{m}(K \omega, K \omega, H \rho), \\
S_{m}(M \omega, M \omega, J \rho) S_{m}(H \rho, H \rho, J \rho), \\
\left.\left.S_{m}(M \omega, M \omega, K \omega) S_{m}(H \rho, H \rho, K \omega)\right]\right\}^{\lambda} \\
S_{m}(\omega, \omega, \rho) \leq \\
\left\{\operatorname { m a x } \left[S_{m}(\omega, \omega, \omega) S_{m}(\rho, \rho, \rho), S_{m}(\omega, \omega, \rho) S_{m}(\omega, \omega, \rho),\right.\right. \\
\left.\left.S_{m}(\omega, \omega, \rho) S_{m}(\rho, \rho, \rho), S_{m}(\omega, \omega, K \omega) S_{m}(\rho, \rho, \omega)\right]\right\}^{\lambda} \\
S_{m}(\omega, \omega, \rho) \leq\left\{S_{m}(\omega, \omega, \rho)\right\}^{\lambda}
\end{gathered}
$$

this implies that $S_{m}(\omega, \omega, \rho)=1 \Longrightarrow \omega=\rho$.
This shows that " ω " is the unique common fixed point of M.H.J and K.

Now, the following example substantiates our theorem.

Example 3.2

Suppose $\chi=(0,1), S_{m}$ - metric space by $S_{m}(\psi, \phi, \sigma)=e^{|\psi-\phi|+|\phi-\sigma|+|\sigma-\psi|}$, when $\psi, \phi, \sigma \in \chi$. Define $\mathrm{M}, \mathrm{K}, \mathrm{H} \mathrm{J}: \chi X \chi \rightarrow \chi$ as follows

$$
\begin{gathered}
M(\psi)= \begin{cases}\frac{2-\psi}{5} & \text { if } 0<\psi \leq \frac{1}{3} ; \\
\psi & \text { if } \frac{1}{3}<\psi<1 .\end{cases} \\
K(\psi)= \begin{cases}1-2 \psi & \text { if } 0<\psi \leq \frac{1}{3} ; \\
\frac{1+\psi}{2} & \text { if } \frac{1}{3}<\psi<1 .\end{cases} \\
H(\psi)= \begin{cases}3 \psi^{2}-3 \psi+1 & \text { if } 0<\psi \leq \frac{1}{3} ; \\
\frac{2+\psi}{7} & \text { if } \frac{1}{3}<\psi<1 .\end{cases} \\
J(\psi)= \begin{cases}1-6 \psi^{2} & \text { if } 0<\psi \leq \frac{1}{3} ; \\
1-\psi & \text { if } \frac{1}{3}<\psi<1 .\end{cases}
\end{gathered}
$$

Then $M(\chi)=\left(\frac{1}{3}, 1\right] \subseteq J(\chi)=(0,1]$ and $H(\chi)=\left(\frac{1}{3}, 1\right] \subseteq K(\chi)=\left(\frac{1}{3}, 1\right]$.
Therefore the condition (3.1.1) holds.
Consider a sequence $\left\{\psi_{\theta}\right\}$ as $\psi_{\theta}=\left\{\frac{1}{3}-\frac{1}{\theta}\right\}$ as $\theta \geq 0$.

$$
\text { Then } \lim _{\theta \rightarrow \infty} M\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} M\left(\frac{1}{3}-\frac{1}{\theta}\right)=\lim _{\theta \rightarrow \infty} \frac{2-\left(\frac{1}{3}-\frac{1}{\theta}\right)}{5}=\frac{1}{3}
$$

and

$$
\begin{gathered}
\lim _{\theta \rightarrow \infty} K(\psi \theta)=\lim _{\theta \rightarrow \infty} K\left(\frac{1}{3}-\frac{1}{\theta}\right)=\lim _{\theta \rightarrow \infty}\left[1-2\left(\frac{1}{3}-\frac{1}{\theta}\right)\right]=\frac{1}{3} . \\
\text { Therefore } \lim _{\theta \rightarrow \infty} M\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} K\left(\psi_{\theta}\right)=\frac{1}{3}=\omega_{1} .
\end{gathered}
$$

Further

$$
\lim _{\theta \rightarrow \infty} H\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} H\left(\frac{1}{3}-\frac{1}{\theta}\right)=\lim _{\theta \rightarrow \infty}\left[3\left(\frac{1}{3}-\frac{1}{\theta}\right)^{2}-3\left(\frac{1}{3}-\frac{1}{\theta}\right)+1\right]=\frac{1}{3}
$$

and

$$
\begin{gathered}
\lim _{\theta \rightarrow \infty} J\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} J\left(\frac{1}{3}-\frac{1}{\theta}\right)=\lim _{\theta \rightarrow \infty}\left[1-6\left(\frac{1}{3}-\frac{1}{\theta}\right)^{2}\right]=\frac{1}{3} . \\
\text { Therefore } \lim _{\theta \rightarrow \infty} H\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} J\left(\psi_{\theta}\right)=\frac{1}{3}=\omega_{1} .
\end{gathered}
$$

Mallaiah K and Srinivas V

Moreover

$$
\lim _{\theta \rightarrow \infty} M K\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} M\left[1-\left(\frac{2}{3}-\frac{2}{\theta}\right)\right]=\lim _{\theta \rightarrow \infty} M\left(\frac{1}{3}+\frac{2}{\theta}\right)=\frac{1}{3}
$$

and

$$
\begin{gathered}
\left.\lim _{\theta \rightarrow \infty} K M\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} K\left(\frac{1}{3}+\frac{1}{5 \theta}\right)=\lim _{\theta \rightarrow \infty} \frac{1+2\left(\frac{1}{3}+\frac{1}{5 \theta}\right.}{2}\right)=\frac{2}{3} . \\
\therefore \lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, K M \psi_{\theta}\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right) \neq 1
\end{gathered}
$$

which implies that the pair (M, K) is not compatible.
Furthermore

$$
\lim _{\theta \rightarrow \infty} H J\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} H\left(\frac{1}{3}+\frac{4}{\theta}-\frac{1}{\theta^{2}}\right)=\lim _{\theta \rightarrow \infty}\left(\frac{2+\left(\frac{1}{3}+\frac{4}{\theta}-\frac{1}{\theta^{2}}\right.}{7}\right)=\frac{1}{3}
$$

and

$$
\lim _{\theta \rightarrow \infty} J H\left(\psi_{\theta}\right)=\lim _{\theta \rightarrow \infty} J\left(\frac{1}{3}+\frac{4}{\theta}-\frac{1}{\theta^{2}}\right)=\lim _{\theta \rightarrow \infty}\left[1-\left(\frac{1}{3}+\frac{4}{\theta}-\frac{1}{\theta^{2}}\right)\right]=\frac{2}{3}
$$

Therefore $\lim _{\theta \rightarrow \infty} S_{m}\left(H J \psi_{\theta}, H J \psi_{\theta}, J H \psi_{\theta}\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right) \neq 1$.
Which shows that the pair (H, J) is not compatible .
Also $M\left(\frac{1}{3}\right)=\frac{1}{3}, K\left(\frac{1}{3}\right)=\frac{1}{3}$.
This implies $\lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, M \omega_{1}\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1$

$$
\text { and } \lim _{\theta \rightarrow \infty} S_{m}\left(K M \psi_{\theta}, K M \psi_{\theta}, K \omega_{1}\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1
$$

This shows that the pair (M, K) is reciprocally continuous in S_{m} metric space.

$$
\text { Also } \lim _{\theta \rightarrow \infty} S_{m}\left(M K \psi_{\theta}, M K \psi_{\theta}, K \omega_{1}\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1 \text {. }
$$

This shows that the pair (M, K) is semi-compatible in S_{m} metric space.
Hence the inequality (3.1.3)holds.

Further

$$
S_{m}\left(H\left(\frac{1}{3}\right), J\left(\frac{1}{3}\right), \frac{1}{3}\right)=1 \text { and } S_{m}\left(H J\left(\frac{1}{3}\right), J H\left(\frac{1}{3}\right), \frac{1}{3}\right)=1 .
$$

S_{m} metric space

This implies that $S_{m}\left(H J\left(\frac{1}{3}\right), H J\left(\frac{1}{3}\right), J H\left(\frac{1}{3}\right)\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1$. Which indicates that the pair (H, J) is weakly compatible.

Now, we prove the condition (3.1.2) in various cases

CASE-I

Let $\psi, \phi \in\left[0, \frac{1}{2}\right]$,while we have $S_{m}(\psi, \phi, \sigma)=e^{|\psi-\sigma|+|\phi-\sigma|}$.
Take $\psi=\frac{1}{4}$ and $\phi=\frac{1}{5}$ then $M\left(\frac{1}{4}\right)=\frac{7}{20}, K\left(\frac{1}{4}\right)=\frac{1}{2}, H\left(\frac{1}{5}\right)=\frac{13}{25}$ and $J\left(\frac{1}{5}\right)=\frac{19}{25}$ substitute the above values in (3.1.2)

$$
\left.\begin{array}{l}
S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{13}{25}\right) \leq \\
\left\{\operatorname { m a x } \left[S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{1}{2}\right) S_{m}\left(\frac{13}{25}, \frac{13}{25}, \frac{19}{25}\right), S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{19}{25}\right) S_{m}\left(\frac{13}{25}, \frac{13}{25}, \frac{1}{2}\right),\right.\right. \\
\left.\left.S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{19}{25}\right) S_{m}\left(\frac{13}{25}, \frac{13}{25}, \frac{19}{25}\right), S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{1}{2}\right) S_{m}\left(\frac{13}{25}, \frac{13}{25}, \frac{1}{2}\right)\right]\right\}^{\lambda} \\
\text { wehavee } e^{0.34} \leq\left\{\max \left[e^{0.3} e^{0.48}, e^{0.82} e^{0.34}, e^{0.3} e^{0.04}, e^{0.82} e^{0.48}\right]\right\}^{\lambda}
\end{array}\right\} \begin{aligned}
& e^{0.34} \leq\left\{\max \left[e^{0.78}, e^{1.16}, e^{0.0 .34}, e^{1.3}\right]\right\}^{\lambda} \Longrightarrow e^{0.34} \leq e^{1.16 \lambda} \\
& \quad \text { which gives } \lambda=0.2 \text { where } \lambda \in\left(0, \frac{1}{3}\right) .
\end{aligned}
$$

CASE-II

Let $\psi, \phi \in\left(\frac{1}{2}, 1\right]$, then $S_{m}(\psi, \phi, \sigma)=e^{|\psi-\sigma|+|\phi-\sigma|}$.
Take $\psi=\frac{1}{2}$ and $\phi=\frac{1}{2}$ then $M\left(\frac{1}{2}\right)=\frac{1}{2}, K\left(\frac{1}{2}\right)=\frac{3}{4}, H\left(\frac{1}{2}\right)=\frac{5}{14}$ and $J\left(\frac{1}{2}\right)=\frac{1}{2}$ substitute the above values in (3.1.2)

$$
\begin{aligned}
& S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{5}{14}\right) \leq \\
& \left\{\operatorname { m a x } \left[S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{4}\right) S_{m}\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{2}\right), S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) S_{m}\left(\frac{5}{14}, \frac{5}{14}, \frac{3}{4}\right),\right.\right. \\
& \left.\left.S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) S_{m}\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{2}\right), S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{4}\right) S_{m}\left(\frac{5}{14}, \frac{5}{14}, \frac{3}{4}\right)\right]\right\}^{\lambda}
\end{aligned}
$$

which implies that

$$
\begin{gathered}
e^{0.285} \leq\left\{\max \left[e^{0.5} e^{0.285}, e^{0.0} e^{0.786}, e^{0.0} e^{0.28}, e^{0.5} e^{0.786}\right]\right\}^{\lambda} \\
e^{0.285} \leq\left\{\max \left[e^{0.785}, e^{0.786}, e^{0.28}, e^{1.286}\right]\right\}^{\lambda} \Longrightarrow e^{0.285} \leq e^{1.286 \lambda}
\end{gathered}
$$

Mallaiah K and Srinivas V

which gives $\lambda=0.22$ where $\lambda \in\left(0, \frac{1}{2}\right)$.

CASE-III

Let $\psi, \phi \in\left(\frac{1}{2}, 1\right]$, then $S_{m}(\psi, \phi, \sigma)=e^{|\psi-\sigma|+|\phi-\sigma|}$
Take $\psi=\frac{1}{4}$ and $\phi=\frac{1}{2}$ then $M\left(\frac{1}{4}\right)=\frac{7}{20}, K\left(\frac{1}{4}\right)=\frac{1}{2}, H\left(\frac{1}{5}\right)=\frac{5}{14}$ and $J\left(\frac{1}{5}\right)=\frac{1}{2}$ substitute the above values in (3.1.2)

$$
\begin{aligned}
& S_{m}\left(\frac{7}{20}, 0 \frac{7}{20}, \frac{5}{14}\right) \leq \\
& \left\{\operatorname { m a x } \left[S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{1}{2}\right) S_{m}\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{2}\right), S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{1}{2}\right) S_{m}\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{2}\right),\right.\right. \\
& \left.\left.S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{1}{2}\right) S_{m}\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{2}\right), S_{m}\left(\frac{7}{20}, \frac{7}{20}, \frac{1}{2}\right) S_{m}\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{2}\right)\right]\right\}^{\lambda}
\end{aligned}
$$

which implies that

$$
\begin{gathered}
e^{0.014} \leq\left\{\max \left[e^{0.3} e^{0.28}, e^{0.3} e^{0.28}, e^{0.3} e^{0.28}, e^{0.3} e^{0.28}\right]\right\}^{\lambda} \\
e^{0.014} \leq\left\{\max \left[e^{0.58}, e^{0.58}, e^{0.58}, e^{0.58}\right]\right\}^{\lambda} \Longrightarrow e^{0.014} \leq e^{0.5 .8 \lambda} \\
\text { this gives that } \lambda=0.14 \text { where } \lambda \in\left(0, \frac{1}{2}\right) .
\end{gathered}
$$

Hence the inequality (3.3.2) holds.
It can be seen that " $\frac{1}{2}$ " is a unique common fixed point for four self mappings M, KH, and J .

4 Conclusions

In this article, we established a common fixed point theorem in S_{m}-metric space by using weakly-compatible mappings, semi-compatible mappings, and reciprocally continuous mappings for four self-maps. Furthermore, our results are also justified with suitable examples.

References

[1] Agamirza E Bashirov, Emine Mısırlı Kurpınar, and Ali Özyapıcı. Multiplicative calculus and its applications. Journal of mathematical analysis and applications, 337(1):36-48, 2008.
[2] Afrah AN Abdou. Common fixed point results for compatible-type mappings in multiplicative metric spaces. J. Nonlinear Sci. Appl, 9:2244-2257, 2016.
[3] Nihal Yılmaz Özgür and Nihal Taş. Some generalizations of fixed-point theorems on s-metric spaces. In Essays in Mathematics and its Applications, pages 229-261. Springer, 2016.
[4] Ravi P Agarwal, Erdal Karapınar, and Bessem Samet. An essential remark on fixed point results on multiplicative metric spaces. Fixed point theory and applications, 2016(1):1-3, 2016.
[5] Shaban Sedghi, N Shobkolaei, M Shahraki, and T Došenović. Common fixed point of four maps in s-metric spaces. Mathematical Sciences, 12(2):137-143, 2018.
[6] Somkiat Chaipornjareansri. Fixed point theorems for generalized weakly contractive mappings in s-metric space. Thai Journal of Mathematics, pages 50-62, 2018.
[7] Nguyen Van Dung. On coupled common fixed points for mixed weakly monotone maps in partially ordered s-metric spaces. Fixed Point Theory and Applications, 2013(1):1-17, 2013.
[8] RP Pant. Common fixed points of four mappings. Bull. Cal. Math. Soc., 90:281-286, 1998.
[9] Mukesh Kumar Jain and Mohammad Saeed Khan. Generalization of semi compatibility with some fixed point theorems under strict contractive condition. Applied Mathematics E-Notes, 17:25-35, 2017.
[10] K Mallaiah and V Srinivas. Common fixed point of four maps in sm-metric space. International Journal of Analysis and Applications, 19(6):915-928, 2021.
[11] MA Al-Thagafi and Naseer Shahzad. Generalized i-nonexpansive selfmaps and invariant approximations. Acta Mathematica Sinica, English Series, 24(5):867-876, 2008.

[^0]: *JN Government Polytechnic, Hyderabad, India; kamanilayam951@ gmail.com.
 ${ }^{\dagger}$ University college of science OU, Hyderabad,India; srinivasmaths 4141 @ gmail.com.
 ${ }^{1}$ Received on August 8, 2022. Accepted on December 1, 2022. Published on January 2, 2023. DOI: 10.23755/rm.v39i0.808. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

