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Abstract

Many studies have been carried out on the roots of graph polynomi-
als such as the matching polynomials, the characteristic polynomial,
the chromatic polynomial, and many others. In this paper, we study
the real roots of the complement degree polynomials of some graphs.
Moreover, we investigate the location of the roots of the complement
degree polynomials of some graphs.
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1 Introduction
In mathematics, a graph polynomial is a graph invariant whose values are

polynomials. In algebraic graph theory, invariants of this kind are explored [Shi
et al., 2016]. These are some crucial graph polynomials: characteristic polyno-
mial, chromatic polynomial, dichromatic polynomial, flow polynomial, Ihara zeta
function, Martin polynomial, matching polynomial, reliability polynomial, Tutte
polynomial. There is a lot of research on the roots of graph polynomials, in-
cluding the characteristic polynomial, the chromatic polynomial, the matching
polynomial, and many others. The location and nature of the roots have been
important research areas for several graph polynomials. Recently, the present au-
thors[Safeera and Kumar, a] introduced the complement degree polynomial of a
graph.

Definition 1.1. Let G = (V,E) be a finite simple graph of order n and let
CD(G, i) be the set of vertices of degree i in complement graph G and let Cdi(G) =
|CD(G, i)|. Then complement degree polynomial of G is the polynomial:

CD[G, x] =

∆(G)∑
i=δ(G)

Cdi(G)xi, (1)

where δ(G) and ∆(G) respectively denote the minimum degree and maximum
degree of the complement graph G [Safeera and Kumar, a].

The authors also derived the complement degree polynomial of some well-
known graphs and some graph operations [Safeera and Kumar, a,b]. In this paper,
we study the real roots of the complement degree polynomial of some graphs
obtained in [Safeera and Kumar, a]. In particular, we investigate the location of
the roots of the polynomials so obtained.

2 Main Results
The roots of several graph polynomials have drawn a lot of interest, both for

what they represent and what their nature and location indicated. In this section,
we investigate the roots of the complementary degree polynomial investigated in
[Safeera and Kumar, a].

Definition 2.1. The roots of polynomial defined in equation (1) are called cd-roots
of G. The number of real cd-roots of a graph G where the multiplicities counted,
is denoted by cd(G).
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Theorem 2.1. Zero is a cd-root of a complement degree polynomial of a graph G
with n vertices if and only if ∆(G) ≤ n− 2.

Proof. Let G be a graph of order n and zero is a cd-root of the polynomial
CD[G, x]. If G has a vertex, say v which is adjacent to all other vertices, then v is
an isolated vertex in G. This implies that CD[G, x] has a constant term. This is a
contradiction because zero is a cd-root of CD[G, x]. Therefore, G has no vertices
adjacent to all other vertices.

Conversely, assume that ∆(G) ≤ n − 2. Then δ(G) ≥ 1. Equivalently,
Cd0(G) = 0. This tells us that the constant term of CD[G, x] is zero, and hence
the result follows.2

Corolary 2.1. If G has no isolated vertices, then zero is a root of CD[G, x] with
multiplicity δ(G).

Theorem 2.2. If G is the non complete graph of order n, then zero is the only
cd-root of CD[G, x] if and only if G is a regular graph.

Proof. First, assume that zero is the only cd-root of a graph G with n vertices.
Then it follows that the complement degree polynomial of G is CD[G, x] = nxr.
This implies that the degree of every vertex in G is the same. Equivalently, G is
regular.

Conversely, assume that G is a r-regular graph. Then we have CD[G, x] =
nxn−r−1. It follows that zero is only cd-root of CD[G, x]. 2

Corolary 2.2. If G is the r-regular graph with n vertices, then cd(G) = n−r−1.

Theorem 2.3. Let G be a graph with n vertices. Then

(1) CD[G, x] is a strictly increasing function in [0,∞).

(2) Let G be a graph and H be any spanning subgraph of G. Then the degree
of CD[G, x]) is less than or equal to the degree of CD[H, x].

(3) Let G be a graph and H be any induced subgraph of G. Then the degree of
CD[G, x]) greater than equal to the degree of CD[H, x].

(4) Let G be a graph of order n with t isolated vertices in G and r isolated
vertices in G. Then Cd0(G) = r and Cdn−1(G) = t.

Proof Proof of the above result follows from the definition of complement
degree polynomial of a graph.

Theorem 2.4. For a cosplitting graph CS(G) of r-regular graph G with n ver-
tices, cd(CS(G)) = n.
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Proof. Observe that CD[CS(G), x] = nxn−1(1 + xr) [Safeera and Kumar,
a]. It is clear that x = 0 is a cd-root of G with multiplicity n − 1. Note that the
polynomial 1 + xr has no real roots if r is even and one real root if r is odd. Thus
we have,

cd(CS(G)) =

{
n− 1 if r is even,
n if r is odd

. This completes the proof.2

Theorem 2.5. For a path graph Pn,

cd(Pn) =

{
0, n = 2

n− 2, n ≥ 3.

Proof. For a path graph Pn, we have [Safeera and Kumar, a]:

CD[Pn, x] =

{
2xn−2, n = 2

(n− 2)xn−3 + 2xn−2, n ≥ 3
.

Here we consider two cases:
If n = 2, then CD[P2, x] = 2, which has no zeros. If n > 2, then we have
CD[Pn, x] = xn−3(2x + n − 2). Obviously, x = 0 is the cd-root of CD[Pn, x]
with multiplicity n− 3 and x = −(n− 2)/2 is the another cd-root of CD[Pn, x].
Thus

cd(Pn) =

{
0, n = 2

n− 2, n ≥ 3.

This completes the proof.2

Theorem 2.6. Let G be a graph with order n and G=G∪G∪ . . .∪G (m times).
Then cd(G) = n(m− 1) + cd(G).

Proof. Let G be a graph of order n and G=G ∪G ∪ . . . ∪G (m times). Then,
CD[G, x] = mx(m−1)nCD[G, x]. Observe that x = 0 is a zero of CD[G, x] of
multiplicity n(m−1). Consequently, cd(G) = n(m−1)+cd(G). This completes
the proof.2

Theorem 2.7. For a ladder graph Ln, cd(Ln) = 2n− 3 for n ≥ 2.

Proof. Obviously, cd-roots of CD[Ln, x] are x = 0 with multiplicity 2n − 4
and x = −n− 2/2 with multiplicity one. Hence the result follows.2

Theorem 2.8. For a cocktail party graph CPn, cd(CPn) = 3 for n ≥ 2.
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Proof. In [Safeera and Kumar, a], the authors proved that CD[CPn, x] =
2x2(2+(n−2)x). It follows that CD[CPn, x] has cd-roots x = 0 with multiplicity
2 and x = −2/(n− 2) with multiplicity one. Thus cd(CPn) = 3. Hence the proof
follows.2

Theorem 2.9. If S(G) is a splitting graph of a graph G with n vertices, then
cd(S(G)) ≥ 1.

Proof. Observe that CD[S(G), x] do not have a constant term(see [Safeera
and Kumar, a]). Hence the result2.

Theorem 2.10. For a bull graph Bl, cd(Bl) = 1.

Proof. Note that CD[Bl, x] = x(2x2 + x + 2) [Safeera and Kumar, a]. The
roots of this polynomial are x = 0, −1±i

√
15

4
. Obviously, x = 0 is the only real

root of CD[Bl, x]. Hence the result follows.2

Theorem 2.11. For a sunlet graph Sln, cd(Sln) = 2n− 4 for n ≥ 3 .

Proof. Note that CD[Sln, x] = nx2n−4(1+ x2) [Safeera and Kumar, a]. Then
the cd-roots are x = 0 with multiplicity 2n − 4 and x = ±i. Thus cd(Sln) =
2n− 4.2

Theorem 2.12. For a tadpole graph Tm,n, cd(Tm,n) = m+ n− 2 for m ≥ 3 and
n ≥ 1.

Proof. Note that CD[Tm,n, x] = xm+n−4(x2 + (m + n − 2)x + 1) [Safeera
and Kumar, a]. Since the discriminant of the polynomial x2+(m+n−2)x+1 is
always greater than or equal to zero, it follows that cd(Tm,n) = m + n − 2. This
completes the proof.2

Theorem 2.13. For a bistar graph Bn,n (n ≥ 1),

cd(Bn,n) =

{
n if n is even
n+ 1 if n is odd.

Proof. Note that CD[Bn,n, x] = 2xn(nxn + 1). If n is even, then nxn + 1 has
only complex roots. If n is odd, then nxn + 1 has only one real root and n − 1
complex roots. Hence ,

cd(Bn,n) =

{
n if n is even
n+ 1 if n is odd.

This completes the proof.2
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Theorem 2.14. For a web graph Wbn, cd(Wbn) = 3n− 4 for n ≥ 3.

Proof. Note that CD[Wbn, x] = nx3n−5(x3 + x+1). Obviously, the cd-roots
of CD[Wbn, x] are 0 with multiplicity 3n − 5, −0.68233, 0.34116 ± 1.16154i.
Hence cd(Wbn) = 3n− 4.2

Theorem 2.15. For a armed crown graph Cn

⊙
Pm,

cd(Cn

⊙
Pm) =

{
n(m+ 1)− 4, if m=1,2
n(m+ 1)− 2, if m≥ 3.

Proof. Note that CD[Cn

⊙
Pm, x] = x2 + (m − 1)x + 1. For m = 1, 2,

the zeros of x2 + (m − 1)x + 1 are complex numbers. If m > 2, the zeros of
x2 + (m− 1)x+ 1 are real numbers. Thus

cd(Cn

⊙
Pm) =

{
n(m+ 1)− 4 if m=1,2
n(m+ 1)− 2 if m≥ 3.

This completes the proof.2

Theorem 2.16. For a sungraph Sn, n ≥ 3,

cd(Sn) =

{
n− 2, if n is odd
n− 1, if n is even.

Proof. Note that CD[Sn, x] = nxn−2(xn−1+1). Since xn−1+1 has real roots
if and only if n is even. This tells us that the real cd-roots of CD[Sn, x] are 0 and
−1 if n is even. If n is odd x = 0 is the only real root of CD[Sn, x]. Therefore,
we have

cd(Sn) =

{
n− 2, if n is odd
n− 1, if n is even.

This completes the proof.2

Theorem 2.17. For a bipartite cocktaill party graph bn(n ≥ 2), we have cd(Bn) =
n.

Proof. The result follows from the fact that CD[Bn, x] = 2nxn.2
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3 Location of the cd-roots of the some graphs

In this section, we investigate the location of the roots of some complement
degree polynomials. Here need the following result [Prasolov, 2009].

Theorem 3.1. Let f(z) = zn+a1z
n−1+ . . .+an, where ai ∈ C. Then, inside the

circle |z| = 1 +max|ai|, there are exactly n roots of f , multiplicities counted.

Theorem 3.2. All the cd-roots of the gear graph Gn lie inside the circle with
center (0, 0) and radius n+ 1.

Proof. Observe that CD[Gn, x] = xn + nx2n−3 + nx2n−2. In this case
max|ai| = n, where a′is are the coefficients of CD[Gn, x] for i = 1, 2, . . . , 2n−2.
Then by theorem 3.1, the result follows.2

Theorem 3.3. All the cd-roots of the wheel graph Wn lie inside the circle with
center (0, 0) and radius n.

Proof. It follows from the fact that CD[Wn, x] = (n− 1)xn−4 + 1.2

Theorem 3.4. All the cd-roots of the bull graph Bl lie on the unit circle centered
at the origin.

Proof. Note that the cd-roots of Bl are x = 0, −1±i
√
15

4
. These three roots lie

on the unit circle centered at the origin.2

Theorem 3.5. All the cd-roots of the sunlet graph Sln lies in the disk |z| ≤ 1.

Proof. The cd-roots of the sunlet graph CD[Sln, x] are x = 0 and x = ±i.
Hence the result follows. 2

Theorem 3.6. All the cd-roots of the sun graph Sn lies in the disk |z| ≤ 1.

Proof. Note that CD[Sn, x] = nx2n−3 + nxn−2 = nxn−2(xn−1 + 1). Obvi-
ously, roots of xn−1 + 1 lie on the unit circle. Hence the result.2

4 Conclusions

In this paper, we introduced cd-roots of the complement degree polynomial
of some graphs. Moreover, we investigated the location of the cd- roots of some
complementary degree polynomials.
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