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Abstract

Black-Scholes model derived by Black and Scholes is worldwide used
mathematical model for valuing option price. This model brings a
new quantitative approach for researcher to finding theoretical val-
ues of options. They derived a model of European options for plain
vanilla payoffs. Black-Scholes model derived from Black-Scholes
differential equation, which is parabolic in nature. In this paper, a
well-known, accurate, simple, semi-analytical method, Adomian de-
composition method (ADM) is used for Black-Scholes differential
equation for standard power payoffs. This model is the generalization
of plain vanilla payoffs. Further, it can be seen that the cumulative
distribution function of standard normal random variable is used in
the closed form formulas of standard power options, while our for-
mulas do not involve any term regarding random variable. In fact our
formulas are impressive, fruitful and very close to the closed form
formulas. Numerical results shows that our approach gives very ac-
curate results.
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1 Introduction

In finance, risk is one of the serious factor for all traders in financial mar-
kets. Financial derivatives are used to manage risk significantly. In fact, financial
derivatives minimized risk by transferring it to the other traders or financial insti-
tutes which are linked with the asset price. Financial derivatives are the contracts
between two parties or financial institutes. Options, Futures, Forwards are exam-
ples of financial derivatives. Option is one of the important derivatives for not only
investors or traders but also for economic point of view. Options help to diversify
the portfolios of investors. Option is a contract to buy or sell the underlying as-
set at pre-determined price and pre-determined date. The pre-determined price is
known as the striking price and pre-determined date is known as expiry date of
option. Two types of options are available due to its trading strategies. One is
European and the other is American. European option is exercised at the expiry
date only, while American option can be exercised before expiry date. Further,
option can be classified in two types, namely call and put. Call (put) option gives
holder the right to buy (sell) the underlying asset at striking price and expiry date.
Acquiring such type of freedom one has to sacrifices by paying some amount at
the beginning of the contract. This amount is known as option price or premium.
Nowadays, option pricing become one of the crucial problem in financial world.
The economists Black and Scholes obtained formula of option pricing for plain
vanilla payoffs in 1973, which is known as Black-Scholes model. The amounts
max{S − K, 0} and max{K − S, 0} are known as plain vanilla payoffs, where
S is the value of asset price at expiry date of option and K is the striking price
of option. Due to widely acceptance of this model, Black and Scholes awarded
by a Nobel prize in 1997. After that, many researcher worked with different pay-
offs [Dedania and Ghevariya, 2013a,b, Ghevariya and Thakkar, 2019, R. J. Haber,
P .J. Schonbucher and Wilmott, 1999, Haug, 2007, P. Wilmott, S. Howison and
Dewynne, 1993]. Black-Scholes model derived from Black-Scholes differential
equation using boundary conditions. This equation is a second order linear partial
differential equation of parabolic in nature. The solution of Black-Scholes equa-
tion become intrinsic goal of many researchers. So different methods have been
used to solve Black-Scholes equation to get approximate or closed form solu-
tions with various payoffs like binomial method (See P. Wilmott, S. Howison and
Dewynne [2002]), projected differential transform method (PDTM) [S. O. Edeki
, O. O. Ugberbor and Owoloko, 2015, S. O. Edeki , R. M. Jena, O. P. Ogundile
and Chakraverty, 2021, Ghevariya, 2020, 2022b], homotopy perturbation method
(HPM) [Ghevariya, 2022a], Mellin transform [Fadugba and Nwozo, 2016, Ghe-
variya, 2018, 2019, Panini and Srivastav, 2004], etc. In this paper, we presented
a model by solving Black-Scholes differential equation for standard power pay-
offs, max{Sp − K} and max{K − Sp}, where p ∈ (0,∞) using Adomian de-
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composition method (ADM). This model is the generalization of model for plain
vanilla payoffs by taking p = 1. Section-2 deals with the introduction of ADM. In
section-3, the derivation of Black-Scholes model for standard power options us-
ing ADM has been discussed. Section-4 deals with comparisons of option prices
of closed form formulas and using ADM. Discussions related to derived models
have been given in section-5. Conclusion is given in the last section.

2 Adomian Decomposition Method (ADM)

The ADM is a simple, semi-analytical and accurate method used for solv-
ing linear as well as nonlinear differential equations. The ADM was introduced
by George Adomian (See Adomian [1986, 1994]). In recent years, this method
is very popular in applied mathematics, in particular, area related to initial and
boundary value problems. The approach of this method is to decompose nonlinear
differential operator into series of polynomials known as Adomian polynomials.
The advantage of this method is to provide an efficient and accurate solution in
terms of series which converges to the exact solution in most of the cases. The
convergence of series has been discussed in [Cherruault and Adomian, 1993,
Cherruault, 1989]. In this section, we discuss basic idea about ADM. For that,
consider general form of partial differential equation

Ly[u(x, y)] +R[u(x, y)] +N [u(x, y)] = g(x, y), (1)

where Ly is an invertible operator which is differentiable with respect to y, R is
a linear operator, N is a nonlinear operator and g is any function. Let u(x, 0) =
f(x) be initial condition satisfying by Equation (1). Note that Equation (1) can be
written as

u(x, y) = f(x) + L−1
y [g(x, y)]− L−1

y [R[u(x, y)]]− L−1
y [N [u(x, y)]], (2)

where L−1
y =

∫ y

0
(·)dy. The ADM defines the solution of Equation (1) in terms of

series given by

u(x, y) =
∞∑
n=0

un(x, y). (3)

Further, ADM assumes the nonlinear term, N can be represented by

N [u(x, y)] =
∞∑
n=0

An(u0, ..., un), (4)
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where An’s are known as Adomian polynomials. Adomian polynomials can be
defined by the general formula

An(u0, ..., un) =
1

n!

dn

dρn

[
N
( n∑

l=0

ρlul

)]
ρ=0

.

In particular, A0, A1, A2 determined as

A0 = N [u0(x, y)]

A1 = u1
d

du0

N [u0(x, y)]

A2 = u2
d

du0

N [u0(x, y)] +
u2
1

2!

d2

du2
0

N [u0(x, y)].

Substituting values of u and N from Equations (3) and (4) into Equation (2), we
get

∞∑
n=0

un(x, y) = f(x)+L−1
y [g(x, y)]−L−1

y R
[ ∞∑
n=0

un(x, y)
]
−L−1

y

[ ∞∑
n=0

An(u0, ..., un)
]
.

(5)
From Equation (5), we obtain the following recurrence relation given by

u0(x, y) = f(x) + L−1
y [g(x, y)] and

ul+1(x, y) = L−1
y R[ul(x, y)]− L−1

y [Al(u0, ...un)], l = 0, 1, 2, ...

Hence, the solution of Equation (1) can be written as

u(x, y) = lim
n→∞

n∑
l=0

ul(x, y).

3 Adomian Decomposition Method for Standard Power
Options

In this section, we derive Black-Scholes model for the standard power payoff
functions in the money. That means for call (put) option, the striking price is less
(greater) than the asset price.

Theorem 3.1. The solution of Black-Scholes equation using ADM of European
call option for the standard power payoff function, max{Sp−K, 0} (p ∈ (0,∞))
is

C1(S, t) = Spe(p−1)(r+ 1
2
pσ2)(T−t) −Ke−r(T−t), S ≥ K. (6)
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Proof. The Black-Scholes equation (see P. Wilmott, S. Howison and Dewynne
[2002, P.76]) is given by

∂C1

∂t
+

1

2
σ2S2∂

2C1

∂S2
+ rS

∂C1

∂S
− rC1 = 0 (7)

with C1(S, t) → S if S → ∞, C1(0, t) = 0 and C1(S, T ) = max{Sp − K, 0},
where C1 denotes price of call option, S is the asset price at time t, K is the
striking price, T is an expiry date, σ is the volatility and r is the rate of interest
which is constant during expiry date of option. Take S = K

1
p ex, T − t = 2τ

σ2 ,
C1(S, t) = Ku(x, τ), the Equation (7) reduces to

∂u

∂τ
=

∂2u

∂x2
+ (k − 1)

∂u

∂x
− ku, (8)

where k = 2r
σ2 . Now C1(S, T ) = max{Sp −K, 0} gives

u(x, 0) = max{epx − 1, 0}. (9)

Now, we find solution of Equation (8) with initial condition given in Equation (9)
using ADM. Note that the Equation (8) can be written as

Lτ [u(x, τ)]−R[u(x, τ)] = 0, (10)

where Lτ = ∂
∂τ

and R = ∂2

∂x2 + (k − 1) ∂
∂x

− k. Taking L−1
τ =

∫ τ

0
(·)dτ on both

sides of Equation (10), we get

u(x, τ) = max{epx − 1, 0}+ L−1
τ R[u(x, τ)]. (11)

Consider solution of Equation (10) as

u(x, τ) =
∞∑
n=0

un(x, τ). (12)

From Equations (11) and (12), we obtain

∞∑
n=0

un(x, τ) = max{epx − 1, 0}+ L−1
τ R

[ ∞∑
n=0

un(x, τ)
]
. (13)

Recurrence relation can be obtained from Equation (13) as

u0(x, τ) = max{epx − 1, 0} and
un+1(x, τ) = L−1

τ R[un(x, τ)], n = 0, 1, 2, 3, ... (14)
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Taking n = 0, 1, 2, .. in Equation (14), we get

u1(x, τ) = [(p− 1)(p+ k) + k]τepx − kτ max{epx − 1, 0}

u2(x, τ) =
[[
(p− 1)(p+ k)

]2 − k2
]τ 2
2!
epx +

(kτ)2

2!
max{epx − 1, 0}

...

un(x, τ) =
[[
(p− 1)(p+ k)

]n − (−1)nkn
]τn
n!

epx

+(−1)n
(kτ)n

n!
max{epx − 1, 0}

Hence, solution of Equation (10) can be written as

u(x, τ) =
∞∑
n=0

un(x, τ)

=
∞∑
n=0

[[
(p− 1)(p+ k)

]n − (−1)nkn
]τn
n!

epx

+(−1)n
(kτ)n

n!
max{epx − 1, 0}

=

{
epx+[(p−1)(p+k)]τ − e−kτ , x ≥ 0

0, x < 0.

But we have x = ln
(

S

K
1
p

)
, τ = 1

2
σ2(T − t), k = 2r

σ2 and C1(S, t) = Ku(x, τ).
Thus the above Equation reduces to

C1(S, t) = Spe(p−1)(r+ 1
2
pσ2)(T−t) −Ke−r(T−t), S ≥ K.

2

Theorem 3.2. The solution of Black-Scholes equation using ADM of European
put option for the standard power payoff function, max{K − Sp, 0} (p ∈ (0,∞))
is

P1(S, t) = Ke−r(T−t) − Spe(p−1)(r+ 1
2
pσ2)(T−t), S ≤ K. (15)

Proof. The Black-Scholes equation (see P. Wilmott, S. Howison and Dewynne
[2002, P.76]) is given by

∂P1

∂t
+

1

2
σ2S2∂

2P1

∂S2
+ rS

∂P1

∂S
− rP1 = 0 (16)

with P1(S, t) → 0 if S → ∞, P1(0, t) = e−r(T−t) and P1(S, T ) = max{K −
Sp, 0}, where P1 denotes price of put option, K is the striking price, S is the
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asset price at time t, K is the striking price, T is an expiry date, σ is the volatility
and r is the rate of interest which is constant during expiry date of option. Take
S = K

1
p ex, T − t = 2τ

σ2 , P1(S, t) = Ku(x, τ), the Equation (16) reduces to

∂u

∂τ
=

∂2u

∂x2
+ (k − 1)

∂u

∂x
− ku, (17)

where k = 2r
σ2 . Now P1(S, T ) = max{K − Sp, 0} gives

u(x, 0) = max{1− epx, 0}. (18)

Now, we find solution of Equation (17) with initial condition given in Equation
(18) using ADM. Note that the Equation (17) can be written as

Lτ [u(x, τ)]−R[u(x, τ)] = 0, (19)

where Lτ = ∂
∂τ

and R = ∂2

∂x2 + (k − 1) ∂
∂x

− k. Taking L−1
τ =

∫ τ

0
(·)dτ on both

sides of Equation (19), we get

u(x, τ) = max{1− epx, 0}+ L−1
τ R[u(x, τ)]. (20)

Consider solution of Equation (19) as

u(x, τ) =
∞∑
n=0

un(x, τ). (21)

From Equations (20) and (21), we obtain
∞∑
n=0

un(x, τ) = max{1− epx, 0}+ L−1
τ R

[ ∞∑
n=0

un(x, τ)
]
. (22)

Recurrence relation can be obtained from Equation (22) as

u0(x, τ) = max{1− epx, 0} and
un+1(x, τ) = L−1

τ R[un(x, τ)], n = 0, 1, 2, 3, ... (23)

Taking n = 0, 1, 2, .. in Equation (23), we get

u1(x, τ) = −kτ max{1− epx, 0} − [k + (p− 1)(p+ k)]τepx

u2(x, τ) =
(kτ)2

2!
max{1− epx, 0}+

[[
k2 − (p− 1)(p+ k)

]2]τ 2
2!
epx

...

un(x, τ) = (−1)n
(kτ)n

n!
max{1− epx, 0}

+(−1)n
[
kn − (−1)n

[
(p− 1)(p+ k)

]n]τn
n!

epx
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Hence, solution of Equation (19) can be written as

u(x, τ) =
∞∑
n=0

un(x, τ)

=
∞∑
n=0

(−1)n
(kτ)n

n!
max{1− epx, 0}

+(−1)n
[
kn − (−1)n

[
(p− 1)(p+ k)

]n]τn
n!

epx

=

{
e−kτ − epx+[(p−1)(p+k)]τ , x ≤ 0

0, x > 0.

But we have x = ln
(

S

K
1
p

)
, τ = 1

2
σ2(T − t), k = 2r

σ2 and P1(S, t) = Ku(x, τ).
Thus the above Equation reduces to

P1(S, t) = Ke−r(T−t) − Spe(p−1)(r+ 1
2
pσ2)(T−t), S ≤ K.

2

The closed form formulas of standard power options are stated in the next re-
sult. It can be seen that these formulas consist the distribution function of standard
normal random variable.

Theorem 3.3. Haug [2007, P.119] European option pricing formulas for stan-
dard power payoff functions are

C2(S, t) = Spe(p−1)(r+ 1
2
pσ2)(T−t)Φ(d1)−Ke−r(T−t)Φ(d2) and (24)

P2(S, t) = Ke−r(T−t)Φ(−d2)− Spe(p−1)(r+ 1
2
pσ2)(T−t)Φ(−d1), (25)

where d1 =
ln
(

S

K1/p

)
+(r+(p− 1

2
)σ2)(T−t)

σ
√
T−t

, d2 = d1 − pσ
√
T − t and Φ(·) is cdf of

standard normal random variable.

4 Comparisons
In this section, we analyze prices of call and put options from ADM with the

closed form solutions. For that, we consider the expiry date, T = 1, the risk-free
interest rate, r = 0.08 and the volatility, σ = 0.3. For Figure 1, we consider initial
value of asset price, S = 100 and the present time, t = 0. Figure 1(a) represents
comparisons of call option values from Equations (6) and (24) for striking price,
K = 90, while Figure 1(b) represents comparisons of put option values from
Equations (15) and (25) for K = 110 against different values of p. Moreover,
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Figure 1 shows that Equations (6) and (15) are valid for p ≥ 1.0 and p ≤ 1.0,
respectively. This can be justified due to the term containing pth power of asset
price in the formulas. Also, it can be seen that formulas of call options from
Equations (6) and (24) are coincide for p > 0.9, while formulas for put options
from Equations (15) and (25) are coincide for p < 0.9. Further, Figures 2 &
3 define the absolute and relative errors of call and put option values given in
Figure 1. Also, Figure 4 represents call and put option values against p and time
to expiration. The singularity near p = 0.9 can be observed in all the Figures.
In Figure 3, it can be seen that the relative error of call values is not more than
0.5%, when p ≥ 1.1, while error for put option is not more than 0.035%, when
p ≤ 0.85. Moreover, by approaching expiry date of options, Figure 4, represents
absolute and relative errors of call and put options for larger and smaller values of
p, respectively.
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5 Discussion
Any Black-Scholes model rooted with the Nobel prize celebrated model for

plain vanilla payoffs has an importance in finance. Hence, the techniques used
to derive either exact or approximate values for Black-Scholes model for vari-
ous payoffs have been studied. One of the simple and powerful technique to get
approximation is ADM. The model derived in this paper is the generalization of
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plain vanilla payoffs by considering p = 1. Further, this model for call and put
options involve well known functions namely exponential and polynomial while
the exact formulas involve terms regarding random variable which is quite diffi-
cult to handle. Numerical comparisons shows that the model derived in this paper
is quite accurate in the deleted neighborhood of p = 0.9.

6 Conclusion

This paper deals with the derivation of Black-Scholes models of standard
power options using ADM. It can be observed that the ADM method is quite
simple, straightforward and powerful technique for solving Black-Scholes differ-
ential equation. On the other hand, the limitations of this methods are that this
method applied to nonlinear equations does not seems to be fast enough to get
accurate solution and the convergence of the series involved in the method needs
to be checked. Moreover, it can be seen that the closed form formulas of standard
power options given by Equations (24) & (25) involve the cdf of standard normal
random variable, while the formulas derived using ADM given by Equations (6)
& (15) do not involve any term regarding random variable. Hence, these formu-
las are very simple to handle and also they are very close to the exact solutions.
Further, it has been verified by numerically that for larger values of p, our for-
mula for call option fit with the exact solution, while for smaller values of p, put
option fit with the exact solution. It might be interesting to derive Black-Scholes
model having payoffs max{p(S) − K, 0} and max{K − p(S)} for call and put

options, respectively, where p(x) =
n∑

k=0

akx
k (ai ∈ [0,∞), 1 ≤ i ≤ n, n ∈ N).

Obviously, this model will be the generalization of the model derived in this paper.

Conflict of interest: Author has no conflict of interest.
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