Weaker Forms of Nano Irresolute and Its Contra Functions

A.Yuvarani * S. Vijaya[†] P. Santhi[‡]

Abstract

In this paper the concept of some weaker forms of irresolute and contra irresolute functions in Nano Topological spaces are studied and its related characteristics are discussed. Also we introduced the notion called contra nano alpha irresolute function, contra nano semi irresolute function, contra nano pre irresolute function and its properties are examined. Finally, we have revealed some applications related to recent scenario of online teaching and COVID-19 which can be expressed as nano irresolute functions and contra irresolute functions respectively.

Keywords: Ns-irresolute function, Np-irresolute function, contra N α -irresolute function, contra Ns-irresolute function, contra Np-irresolute function.

2020 AMS subject classifications: 54B05¹

^{*}The American College, Madurai, India; yuvamaths2003@gmail.com.

[†]Thiagarajar College, Madurai, India; viviphd.11@gmail.com.

[‡]The Standard Fireworks Rajaratnam College for Women, Sivakasi, India; saayphd.11@gmail.com.

¹Received on April 18, 2022. Accepted on August 25, 2022. Published on September 25, 2022. doi: 10.23755/rm.v43i0.764. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.

This paper is published under the CC-BY licence agreement.

1 Introduction

In 1982 Pawlak [Pawlak, 1982] investigated about approximate operations, equality and inclusion on sets. In [Crossley and Hildebrand, 1972], irresolute functions was introduced and analysed by Crossley and Hildebrand in topological spaces. Weak and Strong forms of irresolute functions in topology were discussed by Maio and Noiri [Maio and Noiri, 1988]. The conception of nano-topology was initiated by Lellis Thivagar [Thivagar and Richard, 2013b], [M. Lellis Thivagar and Richard, 2013] and [M. Lellis Thivagar and Devi, 2017]. Also in [Thivagar and Richard, 2013a], nano continuous functions, nano interior and nano closure was look over by Lellis and Carmel Richard. Bhuvaneshwari and Ezhilarasi[Bhuvaneshwari and Ezhilarasi, 2016] introduced irresolute maps and semigeneralized irresolute maps in nano topological spaces. New functions called Nsirresolute and Np-irresolute functions are originated and look into its behaviour in this article. Further the notions called contra N α -irresolute function, contra Ns-irresolute function, contra Np-irresolute function were introduced and examined their properties. Throughout this article we use the notation NTS, N-open, N α -open, Ns-open, Np-open, N α -continuous, Ns-continuous, Np-continuous for "Nano Topological spaces, Nano open, Nano α -open, Nano semi-open, Nano Preopen sets, Nano α -continuous, Nano semi-continuous, Nano pre-continuous" respectively. Similar notation is used for their respective closed sets.

2 Nano Irresolute Functions

Definition 2.1. Let U_1 and U_2 be NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. Then h: $U_1 \rightarrow U_2$ is called

- 1. Ns-irresolute if $h^{-1}(S)$ is Ns-open set in U_1 for each Ns-open set S in U_2 ,
- 2. Np-irresolute if $h^{-1}(S)$ is Np-open set in U_1 for each Np-open set S in U_2 .

Example 2.1. Take $U_1 = \{w, x, y, z\}$ with $U_1/R = \{\{x, z\}, \{y, w\}\}$ and $X = \{x, z\}$. Then $\tau_R(X) = \{U_1, \phi, \{x, z\}\}$. Let $U_2 = \{q, r, s, t\}$ with $U_2/R' = \{\{q\}, \{r, s\}, \{t\}\}$ and $Y = \{q, t\}$. Then $\tau_{R'}(Y) = \{U_2, \phi, \{q, t\}\}$. We define $h : (U_1, \tau_R(X)) \rightarrow (U_2, \tau_{R'}(Y))$ as h(x) = q, h(y) = r, h(z) = t, h(w) = s. Then the inverse image of any Ns-open in U_2 is Ns-open in U_1 and the inverse image of any Np-open in U_2 is Np-open in U_1 . Therefore h is Ns-irresolute and Np-irresolute.

Theorem 2.1. Let U_1 and U_2 be the NTS with reference to $\tau_R(X)$ and $\tau_{R'}(Y)$ and $h: U_1 \to U_2$ be a mapping. Then the statements given below are equivalent.

1. *h* is $N\alpha$ -irresolute.

- 2. $h^{-1}(S)$ is N α -closed in U_1 , for each N α -closed set S in U_2 .
- *3.* $h(N\alpha cl(S)) \subseteq N\alpha cl(h(S))$ for each $S \subseteq U_1$.
- 4. $N\alpha cl(h^{-1}(S)) \subseteq h^{-1}(N\alpha cl(S))$ for each $S \subseteq U_2$.
- 5. $h^{-1}(N\alpha int(S)) \subseteq (N\alpha int(h^{-1}(S)) \text{ for each } S \subseteq U_2.$
- 6. *h* is $N\alpha$ -irresolute for each $x \in U_1$.

Proof. (i) \implies (ii). It is obvious.

(ii) \implies (iii). Let $S \subseteq U_1$. Then, $N\alpha cl(h(S))$ is a N α -closed set of U_2 . By (ii), $h^{-1}(N\alpha cl(h(S)))$ is a N α -closed set in U_1 and $N\alpha cl(S) \subseteq N\alpha cl(h^{-1}h(S)) \subseteq$ $N\alpha cl(h^{-1}(N\alpha cl((h(S)))) = h^{-1}(N\alpha cl(h(S)))$. So $h(N\alpha cl(h(S)) \subseteq N\alpha cl(h(S))$.

(iii) \implies (iv). Let S be a subset of U₂. By (iii) $h(N\alpha cl(h^{-1}(S))) \subseteq N\alpha cl(hh^{-1}(S))$ $\subseteq N\alpha cl(S)$. So $N\alpha cl(h^{-1}(S)) \subseteq h^{-1}h(N\alpha cl(h^{-1}(S))) \subseteq h^{-1}(N\alpha cl(S))$.

(iv) \implies (v). Let S be a subset of U₂. By (iv), $h^{-1}(N\alpha cl(U_2-S)) \supseteq N\alpha cl(h^{-1}(U_2-S)) = N\alpha cl(U_1-h^{-1}(S))$. Since U₁-N $\alpha cl(U_1-S) = N\alpha int(S)$, then $h^{-1}(N\alpha int(S)) = h^{-1}(U_2-N\alpha cl(U_2-S)) = U_1-h^{-1}(N\alpha cl(U_2-S)) \subseteq U_1-N\alpha cl(U_1-h^{-1}(S)) = N\alpha int(h^{-1}(S))$.

(v) \implies (vi). Let S be a N α -open set of U₂, then S = N α int(S). By (v), $h^{-1}(S) = h^{-1}(N\alpha int(S)) \subseteq N\alpha int(h^{-1}(S)) \subseteq h^{-1}(S)$. So, $h^{-1}(S) = N\alpha int(h^{-1}(S))$. Thus, $h^{-1}(S)$ is a N α -open set of U. Therefore h is N α -irresolute.

(i) \implies (vi). Let h be N α -irresolute, $x \in U_1$ and any N α -open set S of U_2 , such that $h(x) \subseteq S$. Then $x \in h^{-1}(S) = N\alpha int(h^{-1}(S))$. Let $B = h^{-1}(S)$, then B is a N α -open set of U_1 and so $h(B) = hh^{-1}(S) \subseteq S$. Thus h is N α -irresolute for each $x \in U_1$.

(vi) \implies (i). Let S be a N α -open set of U₂, $x \in h^{-1}(S)$. Then $h(x) \in S$. By hypothesis there exists a N α -open set B of U₁ such that $x \in B$ and $h(B) \subseteq S$. Hence $x \in B \subseteq h^{-1}(h(B)) \subseteq h^{-1}(S)$ and $x \in B = N\alpha int(B) \subseteq N\alpha int(h^{-1}(S))$. So, $h^{-1}(S) \subseteq N\alpha int(h^{-1}(S))$. Hence $h^{-1}(S) = N\alpha int(h^{-1}(S))$. Thus h is N α -irresolute. \Box

Theorem 2.2. Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$ and h: $U_1 \to U_2$ be a 1-1 and onto function. Then h is $N\alpha$ -irresolute iff $N\alpha$ int $(h(S)) \subseteq h(N\alpha$ int(S)) for each $S \subseteq of U_1$.

Proof. Let S be any subset of U₁. By Theorem 2.1 and since h is 1-1 and onto, $h^{-1}(N\alpha int(h(S))) \subseteq N\alpha int(h^{-1}(h(S))) = N\alpha int(S)$. So, $hh^{-1}(N\alpha int(h(S))) \subseteq h(N\alpha int(S))$. Thus $N\alpha int(h(S)) \subseteq h(N\alpha int(S))$.

Conversely, Let S be a N α -open set of U₂. Then S = N α int(S). By hypothesis, $h(N\alpha$ int($h^{-1}(S)$)) $\supseteq N\alpha$ int($h(h^{-1}(S)$)) = N α int(S) = S. Thus we get $h^{-1}h(N\alpha$ int $(h^{-1}(S))) \supseteq h^{-1}(S)$. Since h is 1-1 and onto, $N\alpha$ int($h^{-1}(S)$)= $h^{-1}h(N\alpha$ int($h^{-1}(S)$)) $\supseteq h^{-1}(S)$. Hence $h^{-1}(S) = N\alpha$ int($h^{-1}(S)$). So $h^{-1}(S)$ is N α -open set of U. Thus his N α -irresolute. \Box **Lemma 2.1.** Let U_1 be a NTS with respect to $\tau_R(X)$ then

- 1. $N\alpha cl(S) \subseteq Ncl(S)$ for every subset S of U_1 ,
- 2. $Ncl(S) = N\alpha cl(S)$ for every α -open subset S of U_1 .

Theorem 2.3. Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$ and h: $U_1 \to U_2$ be a $N\alpha$ -irresolute. Then $Ncl(h^{-1}(S)) \subseteq h^{-1}(Ncl(S))$ for every $S \subseteq U_2$.

Proof. Let S be any N-open subset of U₂. Since h is N α -irresolute and N α cl(h^{-1} (S)) is equal to Ncl($h^{-1}(A)$). By Theorem 2.1, N α cl($h^{-1}(S)$) $\subseteq h^{-1}(N\alpha$ cl(S)) and by Lemma 2.1 $h^{-1}(N\alpha$ cl(S) $\subseteq h^{-1}(Ncl(S))$. Then N α cl($h^{-1}(S)$) $\subseteq h^{-1}(Ncl(S))$. Therefore Ncl($h^{-1}(S)$) $\subseteq h^{-1}(Ncl(S))$. \Box

Theorem 2.4. Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. Then $h: U_1 \to U_2$ is a Ns- irresolute iff for each Ns-closed subset $h^{-1}(S)$ is Ns-closed in U_1 .

Proof. If h is Ns-irresolute, then $h^{-1}(B)$ is Ns-open in U₁ for each Ns-open set B ⊆ U₂. If S is any Ns-closed subset of U₂, then U₂−S is Ns-open. Thus $h^{-1}(U_2-S)$ is Ns-open in U₁, but $h^{-1}(U_2-S) = U_1 - h^{-1}(S)$ so that $h^{-1}(S)$ is Ns-closed in U₁. Conversely, if for all Ns-closed set S ⊆ U₂, $h^{-1}(S)$ is Ns-closed in U₁ and if B is any Ns-open subset of U₂, then U₂−B is Ns-closed. Also $h^{-1}(U_2-B) = U_1 - h^{-1}(B)$ which is Ns-closed in U₁. Therefore $h^{-1}(B)$ is Ns-open set in U₁. Hence h is Ns-irresolute.□

Theorem 2.5. If $h: U_1 \to U_2$ and $g: U_2 \to U_3$ is Ns-irresolute(Np-irresolute) then $g \circ h: U_1 \to U_3$ is Ns-irresolute(Np-irresolute).

Proof. (i) If $A \subseteq U_3$ is Ns-open(Np-open), then $g^{-1}(S)$ is Ns-open(Np-open) set in U_2 because g is Ns-irresolute(Np-irresolute). Consequently since h is Nsirresolute(Np-irresolute), $h^{-1}(g^{-1}(S)) = (g \circ h)^{-1}(S)$ is Ns-open(Np-open) set in U_1 . Hence $g \circ h$ is Ns-irresolute(Np-irresolute).

Theorem 2.6. If $h: U_1 \to U_2$ is $N\alpha$ -irresolute(Ns-irresolute, Np-irresolute) and $g: U_2 \to U_3$ is $N\alpha$ -continuous(Ns-continuous, Np-continuous) then $g \circ h: U_1 \to U_3$ is $N\alpha$ -continuous(Ns-continuous, Np-continuous).

Proof. Let $S \subseteq U_3$ is N-open. Since g is N α -continuous(Ns-continuous, Npcontinuous), $g^{-1}(S)$ is N α -open(Ns-open, Np-open)set in U₂. Consequently since h is N α -irresolute(Ns-irresolute, Np-irresolute), $h^{-1}(g^{-1}(S)) = (g \circ h)^{-1}(S)$ is N α open(Ns-open, Np-open) set in U₁. Hence $g \circ h$ is N α -continuous(Ns-continuous, Np-continuous). \Box **Theorem 2.7.** Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. A function $h: U_1 \to U_2$ is

- 1. Ns-irresolute and Np-irresolute then h is $N\alpha$ -irresolute,
- 2. N α -continuous iff it is Ns-continuous and Np-continuous.

Proof. It is obvious.

3 Nano Contra Irresolute Functions

Here we introduce contra irresolute functions and its characteristics are discussed. The notations used are NC α -open, NCs-open, NCp-open for "Nano contra α -open, Nano contra semi-open, Nano contra pre-open functions" respectively.

Definition 3.1. Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. Then $h: U_1 \to U_2$ is said to be

- 1. NC α -open if h(S) is N α -closed in U₂ for each N-open S in U₁,
- 2. NCs-open if h(S) is Ns-closed in U_2 for each N-open S in U_1 ,
- *3. NCp-open if* h(S) *is Np-closed in* U_2 *for each N-open S in* U_1 *.*
- **Example 3.1.** 1. Let $U_1 = \{j,k,l\}$ with $U_1/R = \{\{l\},\{j,k\}\}$ and $X = \{k,l\}$. Then $\tau_R(X) = \{U_1, \phi, \{l\}, \{j,k\}\}$. Let $U_2 = \{x,y,z\}, U_2/R' = \{\{y\}, \{x,z\}\}$ and $Y = \{y,z\}$. Subsequently $\tau_{R'}(Y) = \{VU_2, \phi, \{y\}, \{x,z\}\}$. We label $h : (U_1, \tau_R(X)) \rightarrow (U_2, \tau_{R'}(Y))$ as h(j) = x, h(k) = z, h(l) = y. Subsequently h(S) is N α -closed in U_2 for every N-open set S in U_1 . Hence h is $NC\alpha$ -open.
 - 2. Let $U_1 = \{j,k,l,m\}$ with $U_1/R = \{\{j\},\{l\},\{k,m\}\}$ and $X = \{j,k\}$. Subsequently $\tau_R(X) = \{U_1,\phi,\{j\},\{k,m\},\{j,k,m\}\}$. Let $U_2 = \{p,q,r,s\}$ with $U_2/R' = \{\{p\},\{s\},\{q,r\}\}$ and $Y = \{p,r\}$. Subsequently $\tau_{R'}(Y) = \{U_2,\phi,\{p\},\{q,r\},\{p,q,r\}\}$. We label $h : (U_1, \tau_R(X)) \to (U_2, \tau_{R'}(Y))$ as h(j) = s, h(k) = r, h(l) = p, h(m) = q. Then h(S) is Ns-closed in U_2 for every N-open set S in U_1 . Hence h is NCs-open.
 - 3. Let $U_1 = \{j,k,l,m\}$ with $U_1/R = \{\{l\},\{m\},\{j,k\}\}$ and $X = \{j,l\}$. Subsequently $\tau_R(X) = \{U_1,\phi,\{l\},\{j,k\},\{j,k,l\}\}$. Let $U_2 = \{p,q,r,s\}$ with $U_2/R' = \{\{q\},\{r\},\{p,s\}\}$ and $Y = \{p,r\}$. Subsequently $\tau_{R'}(Y) = \{U_2,\phi,\{r\},\{p,s\},\{p,r,s\}\}$. We define $h : (U_1, \tau_R(X)) \to (U_2, \tau_{R'}(Y))$ as h(j) = q, h(k) = s, h(l) = p, h(m) = r. Then h(S) is Np-closed in U_2 for every N-open set S in U_1 . Hence h is NCp-open.

Definition 3.2. Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. Then $h : U_1 \to U_2$ is said to be $CN\alpha$ -irresolute(CNs-irresolute, CNp-irresolute) if $h^{-1}(S)$ is $N\alpha$ -closed(Ns-closed, Np-closed)set in U_1 for every $N\alpha$ -open set(Ns-open, Np-open) in U_2 .

- **Example 3.2.** 1. Let $U_1 = \{j,k,l,m\}$ with $U_1/R = \{\{j\},\{k\},\{l\},\{m\}\}$ and $X = \{j\}$. Then $\tau_R(X) = \{U_1,\phi,\{j\}\}$. Let $U_2 = \{w,x,y,z\}$ with $U_2/R' = \{\{w\},\{x\},\{y\},\{z\}\}\}$ and $Y = \{x,y,z\}$. Then $\tau_{R'}(Y) = \{V,\phi,\{x,y,z\}\}$. We label $h : (U_1, \tau_R(X)) \to (U_2, \tau_{R'}(Y))$ as h(j) = w, h(k) = x, h(l) = y, h(m) = z. Then $h^{-1}(S)$ is Ns-closed in U_1 for every Ns-open set S in U_2 . Therefore h is $CN\alpha$ -irresolute and CNs-irresolute.
 - 2. Let $U_1 = \{p,q,r\}$ with $U_1/R = \{\{p\},\{q,r\}\}$ and $X=\{q,r\}$. Then $\tau_R(X) = \{U_1,\phi,\{q,r\}\}$. Let $U_2 = \{j,k,l\}$ with $U_2/R' = \{\{j\},\{k,l\}\}$ and $Y = \{j\}$. Then $\tau_{R'}(Y) = \{U_2,\phi,\{j\}\}$. We define $h : (U_1,\tau_R(X)) \to (U_2, \tau_{R'}(Y))$ as h(p) = j, h(q) = k, h(r) = l. Then $h^{-1}(S)$ is Np-closed in U_1 for every Np-open set S in U_2 . So h is CNp-irresolute.

Theorem 3.1. Consider U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. Then $h: U_1 \to U_2$ is $CN\alpha$ -irresolute iff for each $N\alpha$ -closed subset S of U_2 , $h^{-1}(S)$ is $N\alpha$ -open in U_1 .

Proof. If h is CN α -irresolute, then for each N α -open subset B in U₂, $h^{-1}(B)$ is N α -closed in U₁. If S is any N α -closed subset in U₂, then U₂- S is N α -open. Thus $h^{-1}(U_2 - S)$ is N α -closed but $h^{-1}(U_2 - S) = U_1 - h^{-1}(S)$ so that $h^{-1}(S)$ is N α -open in U₁.

Conversely, if, for all N α -closed subsets S of U₂, $h^{-1}(S)$ is N α -open in U₁ and if B is any N α -open subset of U₂, then U₂ – B is N α -closed. Also $h^{-1}(U_2 - B) = U_1 - h^{-1}(B)$ is N α -open. Thus $h^{-1}(B)$ is N α -closed in U₁. Hence h is CN α -irresolute. \Box

Corolary 3.1. Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. Then $h: U_1 \to U_2$ is CNs-irresolute(CNp-irresolute) if and only if for each Ns-closed subset(Np-closed subset) S of U_2 , $h^{-1}(S)$ is Ns-open(Np-open) in U_1 .

Theorem 3.2. If the functions $h: U_1 \to U_2$ and $g: U_2 \to U_3$ are $CN\alpha$ -irresolute then $g \circ h: U_1 \to U_3$ is $N\alpha$ -irresolute.

Proof. If $S \subseteq U_3$ is N α -open, then $g^{-1}(S)$ is N α -closed in U_2 because g is CN α -irresolute. Consequently since h is CN α -irresolute, $h^{-1}(g^{-1}(S))=(g\circ h)^{-1}(S)$ is N α -open set in U_1 , by corollary 4.6. Hence goh is N α -irresolute. \Box

Corolary 3.2. If the functions $h: U_1 \to U_2$ and $g: U_2 \to U_3$ are CNs-irresolute (CNp-irresolute) then $g \circ h: U_1 \to U_3$ is Ns-irresolute(Np-irresolute).

Theorem 3.3. If the function $h: U_1 \to U_2$ is $CN\alpha$ -irresolute and the function $g: U_2 \to U_3$ is $NC\alpha$ -continuous then $g \circ h: U_1 \to U_3$ is $N\alpha$ -continuous.

Proof. Let $S \subseteq U_3$ is N-open. Since g is NC α -continuous, $g^{-1}(S)$ is N α -closed in U₂. Consequently since h is CN α -irresolute, $h^{-1}(g^{-1}(S))=(g\circ h)^{-1}(S)$ is N α -open set in U₁, by theorem 4.5. Hence $g\circ h$ is N α -continuous.

Corolary 3.3. If the function $h: U_1 \to U_2$ is CNs-irresolute(CNp-irresolute) and the function $g: U_2 \to U_3$ is NCs-continuous(NCp-continuous) then $g \circ h: U_1 \to U_3$ is Ns-continuous(Np-continuous).

Theorem 3.4. Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. Then $h: U_1 \to U_2$ is CNs-irresolute and CNp-irresolute then h is CN α -irresolute.

Proof. It is obvious.

Theorem 3.5. Let U_1 and U_2 be the NTS with respect to $\tau_R(X)$ and $\tau_{R'}(Y)$. Then $h: U_1 \to U_2$ is $CN\alpha$ -irresolute then it is $NC\alpha$ -continuous.

Proof. Consider the N-open set $T \subseteq U_2$. Which implies T is a N α -open set in U_2 . But h is CN α -irresolute So $h^{-1}(T)$ is a N α -closed set in U_1 . It shows that h is NC α -continuous function. \Box

4 Applications

Finally, we discuss the application of nano irresolute functions and its contra functions.

Example 4.1. Advances in technology and some pandemic situations allow students to study entirely online. Consider the impact of e-learning on students characteristics, as a function of, the innovative strategies used in online teaching. Let us consider some of the strategies used in online teaching are powerpoint presentation (P), videos (V), mind map (M), Online Quiz (Q), Group discussion (G) and its impact on students characteristics are Intellectually curious (I), Good time management (T), Self-driven (S), Enhanced Communication skills (C). Let $U_1 = \{P, V, M, Q, G\}$ be the universe of the innovative strategies used in online teaching with $U_1/R = \{\{P, V\}, \{M, G\}, M\}$

 $\{Q\}\}$ and $X_1 = \{P,Q\}$. Subsequently $\tau_R(X_1) = \{U_1, \phi, \{Q\}, \{P,V\}, \{P,V,Q\}\}$. Let $U_2 = \{I,T,S,C\}$ be the universe on students characteristics with $U_2/R' = \{\{I,S\}, \{T,C\}\}$ and $X_2 = \{T,C\}$. Then $\tau_{R'}(X_2) = \{U_2, \phi, \{T,C\}\}$. We define $h : (U_1, \tau_R(X_1)) \rightarrow (U_2, \tau_{R'}(X_2))$ as h(P) = C, h(V) = C, h(M) = I, h(Q) = T and h(G) = S. Then for every $N\alpha$ -open set in U_2 , inverse image is $N\alpha$ -open set in U_1 and also for every Ns-open set in U_2 , inverse image is Ns-open set in U_1 . Hence h is $N\alpha$ -irresolute

A. Yuvarani, S. Vijaya, P. Santhi

and Ns-irresolute. Thus, the impact of e-learning on students characteristics, as a function of the innovative strategies used in online teaching, are $N\alpha$ -irresolute and Ns-irresolute function.

Example 4.2. The main cause of illness is the infectious diseases. However, some initial precautions may help to prevent infections. If not, it leads to serious medical conditions and sometimes to death. Consider the precautionary measures to be adopted to prevent affecting from COVID-19, as a function of, its symptoms. Let the symptoms of COVID-19 are Dry cough (K), Fever (F), Shortness of Breath (B), Loss of Taste/Smell (L) and the precautionary measures to be adopted are Sanitizing (S), Social distancing (D), Wearing mask (M), Boosting Immunity power (I). Let $U_1 = \{K,F,B,L\}$ be the universe of symptoms of COVID-19 with $U_1/R = \{\{K\},\{F\},\{B\},\{L\}\}\)$ and $X_1 = \{K\}$. Then $\tau_R(X_1) = \{U_1, \phi, \{K\}\}$. Let $U_2 = \{S,D,M,I\}\)$ be the universe of the precautionary measures to be adopted with $U_2/R' = \{\{S\},\{D\},\{M\},\{I\}\}\)$ and $X_2 = \{D,M,I\}$. Then $\tau_{R'}(X_2) = \{U_2, \phi, \{D,M,I\}\}\)$. We define $h: (U_1, \tau_R(X_1)) \rightarrow (U_2, \tau_{R'}(X_2))\)$ as h(K) = S, h(F) = D, h(B) = M and h(L) = I. Then for every N\$\alpha\$-open set in U_2 , inverse image is N\$\alpha\$-closed set in U_1 and also for every N\$\alpha\$-open set in U_2 , inverse image is N\$\alpha\$-closed set in U_1 . Thus h is contra N\$\alpha\$-irresolute and contra N\$\scriptoresolute.

Thus, the precautionary measures to be adopted to prevent affecting from COVID-19, as a function of its symptoms, are contra $N\alpha$ -irresolute and contra Ns-irresolute function.

5 Conclusions

Through the above discussions we have summarized the conceptulation of irresolute functions and contra irresolute functions in NTS along with examples. Further, We have revealed some applications related to current scenario of online teaching and COVID-19 which can be expressed as nano irresolute functions and contra irresolute functions respectively. Thus these notions can be applied in many real time situations.

References

- K. Bhuvaneshwari and A. Ezhilarasi. On nano semi-generalized irresolute maps in nano topological spaces. *International Journal of Mathematical Archive*, 7(3):68–75, 2016.
- S. Crossley and S. Hildebrand. Semi topological properties. *Fundamenta Mathematicae*, 74:233–254, 1972.

- S. J. M. Lellis Thivagar and V. S. Devi. On new class of contra continuity in nano topology. *Italian Journal of Pure and Applied Mathematics*, 41:1–12, 2017.
- S. J. M. Lellis Thivagar and C. Richard. Remarks on weak forms of nano continuity. *IISTE*, 3(7):1–13, 2013.
- G. D. Maio and T. Noiri. Weak and strong forms of irresolute functions. *Rend.Circ.Mat.Palermo*, 18:255–273, 1988.
- Z. Pawlak. Rough sets. International Journal of Computer and Information Sciences, 11(5):341–356, 1982.
- M. L. Thivagar and C. Richard. On nano continuity. *Mathematical Theory and Modelling*, 3(7):32–37, 2013a.
- M. L. Thivagar and C. Richard. On nano forms of weakly open sets. *International Journal of Mathematics and Statistics Invention*, 1(1):31–37, 2013b.