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metric spaces using multiplicative
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Abstract

Alam and Imdad have presented a novel application of the Banach
contraction principle on a complete metric spaces with a binary rela-
tion. We have extended the concept of binary relation with the mul-
tiplicative contraction in a complete metric spaces. We have also in-
cluded corollary to demonstrate our results.
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1 Introduction
In many scientific domains, particularly in fixed point theory, the concept of a

metric space is extremely useful. This notion has been generalised in numerous di-
rections in recent years, and many notions of a metric-type space have been intro-
duced (b-metric, dislocated space, generalised metric space, quasi-metric space,
symmetric space, etc.).The Banach contraction principle’s [3]contraction condi-
tion has been generalised to numerous forms in the last fifty years. Furthermore,
the metric space in the Banach contraction principle has been generalised to a va-
riety of generalised metric spaces. Many authors researched other sorts of fixed
point theorems in metric spaces later on, as seen by the and references therein.
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2 Preliminaries
We give the required background material needed to prove our results in this

part to make our exposition self-contained. In what follows, N,N0, Q and R de-
note the sets of positive integers, non-negative integers, rational numbers and real
numbers, respectively.
Aftab and Alam [1] proved new relation-theoretic fixed point theorems on metric
spaces in 2015, and then inferred comparable findings in metric spaces.
Metric spaces are sets in which there is a defined a notion of ’distance between
pair of points’. The concept of metric spaces was formulated in 1906 by M.Frechet
[7] ,though the definition presently in use given by the German mathematician, Fe-
lix Hausdorff.

Definition 2.1. Let M be a non empty arbitrary set and d be a real function from
M ×M into R+ such that for all u, v, w ∈ M we have

1. d(u, v) ≥ 0,

2. d(u, v) = 0 ⇐⇒ u = v,

3. d(u, v) = d(v, u) and

4. d(u,w) ≤ d(u, v) + d(v, w),

Here (M,d) is called a metric in R and (R, d) is a metric space.

Example 2.1. 1. d(u, v) = |u− v| is a metric space in R.

2. If d(u, v) defined by

d(u, v) = {1 if u ̸= v

0 if u = v}

Definition 2.2. [10] Let M be a nonempty set. A subset R of M2 is called a
binary relation on M . Notice that for each pair u, v ∈ M , one of the following
conditions holds:

1. (u, v) ∈ R; which amounts to saying that “u is R-related to v” or “u re-
lates to v under R”. Sometimes, we write uRv instead of (u, v) ∈ R ;

2. (u, v) /∈ R; which means that “u is not R-related to v” or “u does not
relate to v under R”.
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Definition 2.3. [10] Let R be a binary relation defined on a nonempty set M
and u, v ∈ M . We say that u and v are R -comparative if either (u, v) ∈ R or
(v, u) ∈ R. We denote it by [u, v] ∈ R.

Definition 2.4. [6, 10, 11, 12, 15] A binary relation R defined on a nonempty set
M is called

1. reflexive if (u, u) ∈ R for all u ∈ M ,

2. irreflexive if (u, u) /∈ R for all u ∈ M ,

3. symmetric if (u, v) ∈ R implies (v, u) ∈ R,

4. antisymmetric if (u, v) ∈ R implies (v, u) /∈ R,

5. transitive if (u,w) ∈ R and (w, v) ∈ R implies (u, v) ∈ R,

6. complete, connected or dichotomous if [l, n] ∈ R for all l,m ∈ M ,

7. weakly complete, weakly connected or trichotomous if [u, v] ∈ R or u = v
for all u, v ∈ M .

8. strict order or sharp order if R is irreflexive and transitive,

9. near-order if R is antisymmetric and transitive,

10. pseudo-order if R is reflexive and antisymmetric,

11. quasi-order or preorder if R is reflexive and transitive,

12. partial order if R is reflexive, antisymmetric and transitive,

13. simple order if R if weakly complete strict order,

14. weak order if R is complete preorder,

15. total order, linear order or chain if R is complete partial order,

16. tolerance if R is reflexive and symmetric,

17. equivalence if R is reflexive, symmetric and transitive.

Definition 2.5. [4] Let M be a nonempty set and R a binary relation on M . A
sequence {un} ⊂ M is called R-preserving if

(un, un+1) ∈ R ∀n ∈ N0
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The notion of d- self closeness of a partial order ⪯ defined by Turinici [16] is
extended to an arbitrary binary relation in the following lines.
Now, we state and prove our main result, which is as follows:

Theorem 2.1. Let (M,d) be a complete metric space, R a binary relation on
M and T a self-mapping on M . Suppose that the following conditions hold: a)
M(f ;R) is nonempty,
b) R is f -closed,
c) either f is continuous or R is p-self-closed,
d) there exists λ ∈ [0, 1)d(f(u), f(v)) ≤ d(u, v)λ forallu, v ∈ M with(u, v) ∈
R
Then f has a fixed point. Moreover, if e) Υ(u, v, Rs) is nonempty, for each
u, v ∈ M ,
then f has a unique fixed point.

Proof. Consider a point u0 ∈ M . Now we define a sequence {un} of Picard
iterates, i.e., un = fun−1 for n = 1, 2, ... From the multiplicative contraction
property [13] of f for all n ∈ N0. As (u0, fu0) ∈ R, using condition (b), we get

(fu0, f
2u0), (f

2u0, f
3u0), ..., (f

nu0, f
n+1u0), ... ∈ R

so that
(un, un+1) ∈ R n ∈ N0. (1)

Thus the sequence {un} is R-preserving. Applying the contractivity condition (d)
to equation (1), we deduce, for all n ∈ N0, that

d(un+1, un) ≤ d(un, un−1)
λ ≤ d(un−1, un−2)

λ2 ≤ ... ≤ d(u1, u0)
λn

.

which by induction yields that

d(un+1, un+2) ≤ d(u0, fu0)
λn+1

n ∈ N0. (2)

Using equation (2) and triangular inequality, for all n ∈ N0, p ∈ N, p ≥ 2, we
have

d(un+1, un+p) ≤ d(un+1, un+2) + d(un+2, un+3) + ...+ d(un+p−1, un+p)

≤ d(u1, u0)
λn+1+...+λp

≤ d(u1, u0)
λp

1−λ

This implies that d(un, up) → 1 as (n, p → ∞). Hence the sequence (xn) =
(fnu0) is multiplicative Cauchy. By the completeness of M , there is z ∈ M such
that un → z as n → ∞. Moreover,
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d(fz, z) ≤ d(fun, fz).d(fun, z) ≤ d(un, z)
λ.d(fun, z) → 1 as n → ∞,

which implies d(fz, z) = 0. Therefore this says that z is a fixed point of f ; that is
fz = z.
Now, if there is another point y such that fy = y, then

d(z, y) = d(fz, fy) ≤ d(z, y)λ.

Therefore d(z, y) = 0 and y = z. This implies that z is the unique fixed point of
f .
Alternatively, let us assume that R is d-self-closed. As un is an R-preserving
sequence and

un →d u,

there exists a subsequence {unk
} of {un} with

[unk
, u] ∈ R k ∈ N0

Using (d), [unk
, u] ∈ R and un →d u, we obtain

d(unk+1, fu) = d(funk
, fu) ≤ d(unk

, u)λ → 1 as k → ∞

so that unk+1 →d f(u). Again, owing to the uniqueness of limit, we get f(u) = u
so that u is a fixed point of f . To prove uniqueness, take u, v ∈ F (f), i.e.,

f(u) = u and f(v) = v. (3)

By assumption (d), there exists a path (say {z0, z1, z2, ..., zk}) of some finite length
k in Rs from u to v so that

z0 = u, zk = v, [zi, zi+1] ∈ R foreach i(0 ≤ i ≤ k − 1). (4)

As R is f -closed, we have

[fnzi, f
nzi+1] ∈ R foreach i(0 ≤ i ≤ k − 1) and for each n ∈ N0.

(5)
Making use of equations (3),(4),(5),, triangular inequality and assumption (d), we
obtain

d(u, v) = d(fnz0, f
nzk) ≤

∑i=0
k−1 d(f

nzi, f
nzi+1)

≤
∑i=0

k−1 d(f
n−1zi, f

n−1zi+1)
λ

≤
∑i=0

k−1 d(f
n−2zi, f

n−2zi+1)
λ2
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≤ ... ≤
∑i=0

k−1 d(zi, zi+1)
λn

→ 0 as n → ∞

so that u = v. Hence f has a unique fixed point.2

Corolary 2.1. Let (M,d) be a complete metric space. For ϵ with ϵ > 1 and
u0 ∈ M , consider the multiplicative closed ball, Bϵ(u0). Suppose the mapping
f : M → M satisfies the contraction condition

d(f(u), f(v)) ≤ d(u, v)λ forallu, v ∈ Bϵ(u0)

where λ ∈ [0, 1) is a constant R is a relation such that d(fu0, u0) ≤ ϵ1−λ. Then
f has a unique fixed point in Bϵ(u0).

Corolary 2.2. Let (M,d) be a complete metric space. If a mapping f : M → M
satisfies for some positive integer n,

d(fnu, fnv) ≤ d(u, v)λ for all u, v ∈ M ,

where λ ∈ [0, 1) is a constant, then f has a unique fixed point in M .

Theorem 2.2. Let (M,d) be a complete metric space, R a binary relation on
M and T a self-mapping on M . Suppose that the following conditions hold: a)
M(f ;R) is nonempty,
b) R is f -closed,
c) either f is continuous or R is p-self-closed,
d) there exists λ ∈ [0, 1

2
) d(fu, fv) ≤ (d(f(u, v).d(fv, u))λforallu, v ∈

M with(u, v) ∈ R
Then f has a fixed point. Moreover, if e) Υ(u, v, Rs) is nonempty, for each u, v ∈
M ,
then f has a unique fixed point.

Proof. Consider a point u0 ∈ M . Now we define a sequence {un} of Picard
iterates, i.e., un = fun−1 for n = 1, 2, ... From the multiplicative contraction
property of f for all n ∈ N0. As (u0, fu0) ∈ R, using condition 2, we get

(fu0, f
2u0), (f

2u0, f
3u0), ..., (f

nu0, f
n+1u0), ... ∈ R

we have

d(un+1, un) = d(fun, fun−1) ≤ (d(fun, un).d(fun−1, un−1))
λ

= (d(un+1, un).d(un, un−1))
λ
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Thus we have

d(un+1, un) ≤ (d(un, un−1))
λ

1−λ = d(un, un−1)
h,

where h = λ
1−λ

. For n > m, Using triangular inequality, for all n ∈ N0,m ∈
N,m ≥ m, we have

d(un, um) ≤ d(un, un−1).d(un−1, un−2)...d(um+1, um)

≤ d(u1, u0)
hn−1+hn−2+...+hm ≤ d(u1, u0)

hm

1−h

This implies d(un, um) → 1 as (n,m → ∞). Hence (un) is a Cauchy sequence.
By the completeness of M , there is z ∈ M such that un → z as n → ∞. Since

d(fz, z) ≤ d(fun, fz).d(fun, z)

≤ (d(fun, un).d(fz, z))
λ.d(un+1, z),

we have

d(un+1, un) ≤ (d(un, un−1))
λ

1−λ = d(un, un−1)
h,

where h = λ
1−λ

. For n > m, Using triangular inequality, for all n ∈ N0,m ∈
N,m ≥ m, we have

d(un, um) ≤ d(un, un−1).d(un−1, un−2)...d(um+1, um)

≤ d(u1, u0)
hn−1+hn−2+...+hm ≤ d(u1, u0)

hm

1−h

This implies d(un, um) → 1 as (n,m → ∞). Hence (un) is a Cauchy sequence.
By the completeness of M , there is z ∈ M such that un → z as n → ∞. Since

d(fz, z) ≤ d(fun, fz).d(fun, z)

≤ (d(fun, un).d(fz, z))
λ.d(un+1, z),

we have

d(fz, z) ≤ (d(fun, un)
λ.d(un+1, z))

1
1−λ → 1 as n → ∞.

Hence d(fz, z) = 0. This implies fz = z. Finally, it is easy to prove that the fixed
point of f is unique.
Alternatively, let us assume that R is d-self-closed. As {un} is an R-preserving
sequence and

un →d u,
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there exists a subsequence {unk
} of {un} with

[unk
, u] ∈ R k ∈ N0

Using (d), [unk
, u] ∈ R and unk

→d u, we obtain

d(unk+1, fu) = d(funk
, fu) ≤ (d(unk+1, u).d(unk

, u))λ → 1 as k → ∞

so that unk+1 →d f(u). Again, owing to the uniqueness of limit, we obtain f(u) =
u, so that u is a fixed point of f .

To prove uniqueness, take u, v ∈ F (f), i.e.,

f(u) = u and f(v) = v. (6)

By assumption (e), there exists a path (say{z0, z1, z2, ..., zk}) of some finite length
k in Rs from u to v so that

z0 = u, zk = v, [zi, zi+1] ∈ R for each i(0 ≤ i ≤ k − 1). (7)

As R is f -closed, we have

[fnzi, f
nzi+1] ∈ R for each i(0 ≤ i ≤ k−1) and for each n ∈ N0.

(8)
Making use of equations (6),(7),(8),, triangular inequality and assumption (d) we
obtain

d(u, v) = d(fnz0, f
nzk) ≤

∑i=0
k−1 d(f

nzi, f
nzi+1)

≤
∑i=0

k−1(d(f
n−1zi, f

n−1zi+1).d(f
n−1zi+1, f

n−1zi))
λ

≤
∑i=0

k−1(d(f
n−2zi, f

n−2zi+1).d(f
n−2zi+1, f

n−2zi))
λ2

≤ ... ≤
∑i=0

k−1(d(zi, zi+1).d(zi+1, zi))
λn

→ 0 as n → ∞

so that u = v. Hence f has a unique fixed point.2

Theorem 2.3. Let (M,d) be a complete metric space, R a binary relation on
M and T a self-mapping on M . Suppose that the following conditions hold: a)
M(f ;R) is nonempty,
b) R is f -closed,
c) either f is continuous or R is p-self-closed,
d) there exists λ ∈ [0, 1

2
) d(fu, fv) ≤ (d(f(u, u).d(fv, v))λforallu, v ∈

M with(u, v) ∈ R
Then f has a fixed point. Moreover, if e) Υ(u, v, Rs) is nonempty, for each u, v ∈
M ,
then f has a unique fixed point.
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Proof. Consider a point u0 ∈ M . Now we define a sequence {un} of Picard
iterates, i.e., un = fun−1 for n = 1, 2, ... From the multiplicative contraction
property of f for all n ∈ N0. As (u0, fu0) ∈ R, using condition 2, we get

(fu0, f
2u0), (f

2u0, f
3u0), ..., (f

nu0, f
n+1u0), ... ∈ R

we have

d(un+1, un) = d(fun, fun−1) ≤ (d(fun, un).d(fun−1, un−1))
λ

= (d(un+1, un).d(un, un−1))
λ

Thus we have

d(un+1, un) ≤ d(un, un−1))
λ

1−λ = d(un, un−1)
h,

where h = λ
1−λ

. For n > m, Using triangular inequality, for all n ∈ N0,m ∈
N,m ≥ m, we have

d(un, um) ≤ d(un, un−1).d(un−1, un−2)...d(um+1, um)

≤ d(u1, u0)
hn−1+hn−2+...+hm ≤ d(u1, u0)

hm

1−h

This implies d(un, um) → 1 as (n,m → ∞). Hence (un) is a Cauchy sequence.
By the completeness of M , there is z ∈ M such that un → z as n → ∞. Since

d(fz, z) ≤ d(fun, fz).d(fun, z)

≤ (d(fun, un).d(fz, z))
λ.d(un+1, z),

we have

d(fz, z) ≤ (d(fun, un)
λ.d(un+1, z))

1
1−λ → 1 as n → ∞.

Hence d(fz, z) = 0. This implies fz = z. Finally, it is easy to prove that the fixed
point of f is unique.
Alternatively, let us assume that R is d-self-closed. As {un} is an R-preserving
sequence and

un →d u,

there exists a subsequence {unk
} of {un} with

[unk
, u] ∈ R k ∈ N0

Using (d), [unk
, u] ∈ R and unk

→d u, we obtain
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d(unk+1, fu) = d(funk
, fu) ≤ (d(unk+1, u).d(unk

, u))λ → 1 as k → ∞

so that unk+1 →d f(u). Again, owing to the uniqueness of limit, we obtain f(u) =
u, so that u is a fixed point of f .

To prove uniqueness, take u, v ∈ F (f), i.e.,

f(u) = u and f(v) = v. (9)

By assumption (e), there exists a path (say{z0, z1, z2, ..., zk}) of some finite length
k in Rs from u to v so that

z0 = u, zk = v, [zi, zi+1] ∈ R foreach i(0 ≤ i ≤ k − 1). (10)

As R is f -closed, we have

[fnzi, f
nzi+1] ∈ R foreach i(0 ≤ i ≤ k − 1) and for each n ∈ N0.

(11)
Making use of equations (9),(10),(11), triangular inequality and assumption (d),
we obtain

d(u, v) = d(fnz0, f
nzk) ≤

∑i=0
k−1 d(f

nzi, f
nzi+1)

≤
∑i=0

k−1(d(f
n−1zi, f

n−1zi+1).d(f
n−1zi+1, f

n−1zi))
λ

≤
∑i=0

k−1(d(f
n−2zi, f

n−2zi+1).d(f
n−2zi+1, f

n−2zi))
λ2

≤ ... ≤
∑i=0

k−1(d(zi, zi+1).d(zi+1, zi))
λn

→ 0 as n → ∞

so that u = v. Hence f has a unique fixed point.2
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