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Abstract
This paper introduces a simple lossy image compression method based
on Ramanujan Sums cq(n) and the statistical measures of numerical
data such as mean and standard deviation. The Ramanujan Sum cq(n)
has been used in digital signal processing for a variety of applications
nowadays. Some of them include the recently developed image ker-
nels for edge detection, extraction of periodicity from signals, etc.
The presented compression algorithm is an extension of the edge de-
tection algorithm using an integer image kernel based on Ramanujan
Sums. We propose a block-based compression algorithm that detects
edges in the images using this image kernel and then compresses the
image by storing kernel operation values, the mean and standard devi-
ation for each block instead of pixel values. The proposed method has
the advantage of low computational complexity and shows its ability
in fast reconstruction and high compression that can be achieved for
different block sizes.
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1 Introduction
In the rapid popularization of the internet and social media, the role of a digital

image is indispensable. As we have to transmit a lot of information over commu-
nication networks, bandwidth reduction is necessary. To achieve this, audio and
video signals need to be compressed. Image or video signals in compressed form
are convenient for editing, storing, utilizing, and transmitting. Image compression
techniques can be classified into two categories. If the information retained after
decompression is 100%, it is called lossless compression otherwise lossy. If we
take a pixel in an image at random there is a good chance that its neighbours will
have the same intensity or very similar intensity. Typically hence, image com-
pression is based on the fact that the neighbouring pixels are highly correlated
([Salomon, 2007], [Sayood, 2012]). Most image compression methods exploit
this feature to obtain efficient compression.

Lossless compression can be achieved with the techniques like Run Length
Encoding (RLE), Huffman coding, Arithmetic coding etc.([Gallager, 1978], [Jain,
1989], [Taubman and Marcellin, 2012], [Witten et al., 1987]). Lossy techniques
include transform coding methods such as Discrete Cosine Transform (DCT),
JPEG, JPEG2000 etc.([Pennebaker and Mitchell, 1992], [Gonzalez and Woods,
2008], [Goyal, 2001]). Polynomial-based compression is another lossy compres-
sion method ([Sadeh, 1996],[Eden et al., 1986]). Sajikumar S et al., [Sajikumar
and Anilkumar, 2017] introduced a compression scheme using Chebyshev poly-
nomials. The proposed compression algorithm differs from the standard compres-
sion algorithms in its low computational complexity and fast reconstruction.

Lossy compression techniques are tested for their performance based on three
commonly used measures, the Root Mean Square Error (RMSE), Peak Signal
to Noise Ratio (PSNR) and the Compression Ratio (CR). The RMSE between
original image f(x, y) and reconstructed image f̂(x, y) of size M ×N is defined
by [Joshi, 2018]:

RMSE =

√√√√ 1

MN

M−1∑
x=0

N−1∑
y=0

[
f(x, y)− f̂(x, y)

]2 (1)

For an 8- bit gray level image,

PSNR = 10 log10

( 2552

MSE

)
(dB) (2)

CR =
compressed image size

uncompressed image size
% (3)

An image kernel is a matrix used to obtain effects like blurring, sharpening,
outlining, etc. Computer vision applications of image kernel mainly include fea-
ture extraction and edge detection. A geometric perspective of kernel methods
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can be seen in [Lampert, 2009]. Zhang et al., studies various non-local kernel
regression for image and video restoration tasks [Zhang et al., 2010]. Odone et
al., describes methods for building kernels from binary strings for image match-
ing [Odone et al., 2005]. In 2016, Krishnaprasad P et al., [Krishnaprasad and
Ramanujan, 2016] presented an image kernel based on Ramanujan Sums to detect
edges. For each 3 × 3 block of pixels in the image, they multiplied each pixel
by the corresponding entry of the 3× 3 kernel matrix constructed from c3(n) and
then takes the sum. This sum is considered as a new pixel in the image.

Ramanujan Sums cq(n) is a family of trigonometric sums defined by Srini-
vasa Ramanujan in 1918 [Ramanujan, 1918]. In the last fifteen years, Ramanujan
Sums have aroused some interest in signal processing. Cohen initially introduced
Ramanujan Sums to the signal processing community ([Cohen, 1955], [Cohen,
1958]). In 1950, he observed that the DFT coefficients of even symmetric signals
can be computed by integer-valued weighting coefficients. Later it was proved
that these integer-valued coefficients are nothing but the well-known Ramanujan
Sums.

The rest of the paper is organized as follows. A brief description of the Ra-
manujan Sum is given in section 2. Image kernel construction and the proposed
compression algorithm are given in sections 3 and 4 respectively. Results and
discussion are included in section 5 and section 6 concludes the paper.

2 Review of Ramanujan Sums

The Ramanujan Sum cq(n) has been used by mathematicians to derive many
important infinite series expansions for arithmetic functions in number theory
[Apostol, 1976]. Interestingly, this sum has many properties which are attractive
from the point of view of digital signal processing. Srinivasa Ramanujan defined
the qth Ramanujan Sum by

cq(n) =

q∑
k=1

(k,q)=1

W kn
q =

q∑
k=1

(k,q)=1

W−kn
q (4)

where Wq = e−i2π/q, i =
√
−1 and (k, q) denotes the gcd of k and q. Here the

sum runs over those k satisfying (k, q) = 1 means that we are considering all the
integers which are coprime to q in the summation.

For example, if q = 8 then k ∈ {1, 3, 5, 7} so that

c8(n) = ei2nπ/8 + ei6nπ/8 + ei10nπ/8 + ei14nπ/8
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In number theory, the number of integers less than or equal to q and coprime
to q is called the Euler’s totient function φ(q) Apostol [1976]. Since 1, 3, 5, 7 are
coprime to 8, φ(8) = 4.

So the sum given in equation (4) has precisely φ(q) terms and it is clear that
cq(0) = φ(q). Also

cq(n+ q) =

q∑
k=1

(k,q)=1

ei2nπk/q.ei2πk =

q∑
k=1

(k,q)=1

ei2nπk/q = cq(n)

That is cq(n) is periodic with period q.

If (k, q) = 1, we have (q − k, q) = 1. Therefore,

(W k
q )

∗ = W−k
q = W−(q−k)

q = W k
q

where ∗ is the complex conjugate. This implies that the summation (4) is real
valued and it can also be written as :

cq(n+ q) =

q∑
k=1

(k,q)=1

cos
2nπk

q
(5)

From (5), cq(n) = cq(−n) shows that cq(n) is symmetric. Thus cq(n) is a real,
symmetric, and periodic sequence in n.

For 0 ≤ n ≤ q − 1, first few Ramanujan sequences are

c1(n) = 1

c2(n) = 1,−1
c3(n) = 2,−1,−1
c4(n) = 2, 0,−2, 0
c5(n) = 4,−1,−1,−1,−1

Note that cq(n) is integer-valued and further properties can be seen in [Vaidyanathan,
2014].

3 Image kernel
Krishnaprasad et al., [Krishnaprasad and Ramanujan, 2016], has introduced a

kernel matrix Mq of size q × q constructed from cq(n) by considering the circular
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shifts of the q elements
cq(0), cq(1), · · · , cq(q−1) in each row. The first row of the kernel matrix contains
the q elements in the order cq(0), cq(1), · · · , cq(q − 1)

where cq(r) =
q∑

k=1
(k,q)=1

ei2πkr/q for 0 ≤ r ≤ q − 1.

The second-row elements are cq(q−1), cq(0), cq(1), · · · , cq(q−2) and so on. Thus

Mq =


cq(0) cq(1) cq(2) .... cq(q − 1)

cq(q − 1) cq(0) cq(1) .... cq(q − 2)
...

...
... ...

...
cq(1) cq(2) cq(3) .... cq(0)



4 Proposed method

Partition the input image into non-overlapping blocks of size q × q. Test im-
ages of size 256 × 256 with 8- bit gray levels between 0 and 255 are considered.
Multiply each pixel in the q × q block with the corresponding elements of the
kernel Mq and take their sum. This sum is stored for edge detection. Represent
the entire block of pixel values with this sum obtained. After the edge detection
process, we move on to the compression part. In this step, we are computing
the mean and standard deviation of each block of pixels to obtain the texture at
decompression. Two different ways of compressing an image with the statistical
measures of pixel values are proposed.

A. Method 1

For each q× q block, a block value is computed by adding the kernel multipli-
cation sum which is obtained at the edge detection stage, the mean and standard
deviation of each block of pixels. Represent the entire block with this sum at the
reconstruction stage. By varying the block size we can compress the image at
different compression levels.

B. Method 2

Instead of taking the sum of three quantities to represent each block, consider
the kernel sum and the mean value only. Thus we need to store only two values in
place of q2 pixels and hence high compression is achieved.
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Experimental results with the test images are given in Tables 1-3 and Figures
1-2. In both methods, no quantization or postprocessing is done at the reconstruc-
tion step.

Algorithm

Step 1 Load an input gray image.

Step 2 Partition the image matrix into non-overlapping blocks of size q × q.

Step 3 For each block compute the elementwise product sum with the kernel ma-
trix and the pixel values of the q× q block. Also find the mean and standard
deviation of the q2 pixels. Store these values for the reconstruction of each
block.

Step 4 Replace the q2 gray values by the elementwise product sum computed in
Step 3 to detect edges.

Step 5 Replace the q2 gray values by the sum of the three quantities stored in Step
3 to compress the image.

OR

Replace the q2 gray values by the sum of the elementwise product sum and
the mean to achieve high compression.

5 Results and Discussion
Edge detection results for the test images of different block sizes 2× 2, 3× 3,

4× 4 are given in Figure 1. Edge detection with 2× 2 blocks shows better results
as compared to others.

In the first method , we replace q2 pixel values with three quantities. Hence in
2 × 2, 3 × 3, and 4 × 4 blocks compression ratios are 75%, 33.33%, and 18.75%
respectively. But in the second method, we need to store only two quantities in-
stead of q2 values in each block. Thus the compression ratios are 50% for 2 × 2
blocks, 22.22% for 3× 3 blocks, and 12.5% for 4× 4 blocks. From Figure 2, and
Tables 1-3 we can conclude that method 2 shows better CR with reasonable recon-
structed image quality measures PSNR and RMSE. The test image Rice achieves
an appreciable PSNR 30.3117(dB) with RMSE 7.7796 in the case of 2×2 blocks.
As the quality measures PSNR decreases and RMSE increases with an increase of
the block size, the algorithm works better with smaller blocks.
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Experrimental results shows that PSNR values are greater than 22(dB) and
RMSE is less than 20 for different test images when we apply the second method
of compression. In practical applications this is an acceptable range at the CR
50%. Also, as the kernel opertion doesn’t involve usual convolution product at
the edge detection stage the number of additions and multiplications required is
reduced and hence saves a lot of computation time.

Test Image Bolck Size Block Value PSNR(dB) RMSE
Lena 2× 2 method 1 22.8412 18.3857

2× 2 method 2 24.8995 14.5066
Cameraman 2× 2 method 1 20.7047 23.5127

2× 2 method 2 22.6443 18.8073
Aerial 2× 2 method 1 19.9407 25.6747

2× 2 method 2 22.3203 19.5221
Rice 2× 2 method 1 27.7290 10.4734

2× 2 method 2 30.3117 7.7796

Table 1: Compression quality measures with 2× 2 blocks using methods 1& 2

Test Image Bolck Size Block Value PSNR(dB) RMSE
Lena 3× 3 method 1 16.9428 36.2579

3× 3 method 2 18.0869 31.7830
Cameraman 3× 3 method 1 14.9823 45.4389

3× 3 method 2 15.8706 41.0294
Aerial 3× 3 method 1 14.3263 49.0033

3× 3 method 2 15.1876 44.3774
Rice 3× 3 method 1 21.5605 21.3067

3× 3 method 2 23.6949 16.7801

Table 2: Compression quality measures with 3× 3 blocks using methods 1& 2
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Test Image Bolck Size Block Value PSNR(dB) RMSE
Lena 4× 4 method 1 12.5169 60.3522

4× 4 method 2 12.8137 58.3253
Cameraman 4× 4 method 1 10.5412 75.7666

4× 4 method 2 10.9338 72.4182
Aerial 4× 4 method 1 8.7710 92.8943

4× 4 method 2 9.0363 90.0997
Rice 4× 4 method 1 16.8793 36.5237

4× 4 method 2 17.5469 33.8217

Table 3: Compression quality measures with 4× 4 blocks using methods 1& 2

Figure 1: The first column: orinal images; the second column: edges by M2; the
third column: edges by M3; the fourth column: edges by M4.
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Figure 2: The first column: orinal images; the second column: reconstructed im-
age using method 2 at the CR 50%; the third column: reconstructed image using
method 2 at the CR 22.22%; the fourth column: reconstructed image using method
2 at the CR 12.5%.

6 Conclusions

In this paper, we presented an edge detection and compression algorithm based
on Ramanujan Sums and measures of central tendency and dispersion such as
mean and standard deviation. The edge detection algorithm using kernels con-
structed from Ramanujan Sums has been extended to a compression algorithm.
Here the compression is achieved by replacing each block of pixels with a single
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value obtained by adding edges with texture. The advantage of this method is its
low computational complexity and fast reconstruction.
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