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On decomposition of multistars into
multistars
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Abstract

The multistar Sw1,...,wn is the multigraph whose underlying graph is
an n-star and the multiplicities of its n edges are w1, ..., wn. Let G
and H be two multigraphs. An H-decomposition of G is a set D
of H-subgraphs of G, such that the sum of ω(e) over all graphs in
D which include an edge e, equals the multiplicity of e in G, for all
edges e in G. In this paper, we fully characterize S1,2,3, K1,m and Sml

decomposable multistars, where ml is m repeated l times.
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1 Introduction
If G and H are two simple graphs with out isolated vertices, then G is H-

decomposable or H divides G if there exists a partition of the edge set of G into
disjoint isomorphic copies of H .

The above definition can be extended to mutigraphs also. Let G and H be two
multigraphs. Then the corresponding H-decomposition problem is to decide for
a fixed H and an input G, whether such a partition exists. We can formally define
the concepts about multigraphs and the multigraph decomposition problems as
follows.

Definition 1.1. A multigraph (V,E,w) consists of a simple underlying graph
(V,E) and a multiplicity function w : E → N, where N is the set of natural
numbers.

The multigraph on an underlying graph G with constant multiplicity λ is de-
noted by λ.G and this is different from λG, denoting λ disjoint copies ofG. When
referring to a simple graph G as a multigraph we mean 1.G. An isomophism
between multigraphs is an isomophism between their underlying simple graphs
which peserves edge multiplicity.

Definition 1.2. A subgraph H of a multigraph G is a multigraph H whose under-
lying graph is a subgraph of that of G and its multiplicity function is dominated
by the multiplicity function of G, i.e. the multiplicity of an edge in H does not
exceed its multiplicity in G.

Definition 1.3. AnH-subgraph ofG is a subgraph of a multigraphG, isomorphic
to a multigraph H .

Definition 1.4. Let G and H be two multigraphs. An H-decomposition of G is a
set D of H-subgraphs of G, such that the sum of ω(e) over all graphs in D which
include an edge e, equals the multiplicity of e in G, for all edges e in G.

Definition 1.5. The multistar Sw1,w2,··· ,wn is the multigraph whose underlying
graph is an n-star and the multiplicities of its n edges are w1, w2, · · · , wn.

There are considerable number of papers dealing with an H-decomposition of
G and some them are provided in the reference [Shyu, 2013, Lin and Shyu, 1996,
Lin, 2010, Lee and Lin, 2005, Lee et al., 2005, Bryant et al., 2001, Bialostocki and
Roditty, 1982]. Priesler and Tarsi [Priesler and Tarsi, 2004] showed that, for any
multistar H (except a few cases), H-decomposition is NP -complete. Priesler and
Tarsi [Priesler and Tarsi, 2005] fully characterized S1,2-decomposable multistars
in the following theorem.
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Theorem 1.1. [Priesler and Tarsi, 2005] The multistar Sw1,w2,··· ,wn , n ≥ 2 is
S1,2-decomposable if and only if

1. Σn
i=1wi ≡ 0(mod 3)

2. The number of odd multiplicities among the wi is at most 1
3
(Σn

i=1wi)

3. The largest among the wi is at most twice the sum of all the others.

In this paper we fully characterize those multistars which are S1,2,3-decomposable,
K1,m-decomposable, S2m-decomposable and Sml-decomposable where ml de-
notes m repeated l times.

2 Main Results

2.1 S1,2,3 decomposability of Sw1,w2,w3

Theorem 2.1. Let w1 ≥ w2 ≥ w3 ≥ 2 be positive integers and n = w1+w2+w3

6
.

Then Sw1,w2,w3 is S1,2,3-decomposable if

1. w1 + w2 + w3 ≡ 0(mod 6)

2. 2 ≤ w1 − n ≤ 2n, 2 ≤ w2 − n ≤ 2n

3. 5w2 ≤ w1 + 7w3 − 12

4. w1 ≤ w2+w3−6 ifm and l−(m−1
2

) are odd wherem = w1−n, l = w2−n.

Proof. Consider the equations

3x1 + 2x2 + 1(n− (x1 + x2)) = w1

3y1 + 2y + 2 + 1(n− (y1 + y2)) = w2

3(n− (x1 + y1)) + 2(n− (x2 + y2)) + 1(n− (2n− (x1 + x2 + y1 + y2))) = w3

Let the above three equations be called as (A). Firstly we claim that under the
given conditions (1),(2),(3) and (4) we can find non negative integers x1, x2, y1, y2
satisfying equations (A) such that n− (xl +x2) ≥ 0, n− (y1 + y2) ≥ 0, n− (xl +
y1) ≥ 0, n − (x2 + y2) ≥ 0, n − [2n − (xl + x2 + y1 + y2)] ≥ 0. Let these five
inequalities be called as (B). The equations in (A) can be simplified as

2x1 + x2 = w1 − n (2.1.1)
2y1 + y2 = w2 − n (2.1.2)

2x1 + 2y1 + x2 + y2 = 4n− w3 (2.1.3)
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Since n = w1+w2+w3

6
, w1 − n + w2 − n = 4n − w3. Thus to prove our claim we

have to solve the equations ( 2.1.1), ( 2.1.2) such that all the inequalities in (B)
are satisfied. Observing ( 2.1.1) and ( 2.1.2), it is clear that they have a positive
integral solution such that all the inequalities in (B) are satisfied if and only if
w1 − n ≤ 2n and w2 − n ≤ 2n. By condition (2), these inequalities holds. Let
m = w1 − n, l = w2 − n.
Case 1: w2 − n ≤ n

Here we have to solve the equations 2x1 + x2 = m, 2y1 + y2 = l.
Subcase 1.1: m is even
Take x1 = m

2
, x2 = 0, y1 = 0, y2 = l. Thus x1+x2 = m

2
≤ n, y1+y2 = l ≤ n,

xl + y1 = m
2
≤ n, x2 + y2 = l ≤ n. So the only inequality in (B), which has to

be verified is n − (2n − (xl + x2 + y1 + y2)) ≥ 0. Since n − (xl + x2) ≥ 0 and
n−(y1 +y2) ≥ 0, xl +x2 +y1 +y2 ≤ 2n. Thus n−(2n−(xl +x2 +y1 +y2)) ≥ 0
⇔ xl +x2 + y1 + y2 ≥ n⇔ m

2
+ l ≥ n⇔ w1−n

2
+w2−n ≥ n⇔ w1 + 2w2 ≥ 5n

⇔ w1 + 2w2 ≥ 5(w1+w2+w3

6
) ⇔ 5w3 ≤ w1 + 7w2, which is always true, since

w1 ≥ w2 ≥ w3· Thus in this subcase all the inequalities in (B) are satisfied.
Subcase 1.2: m is odd
Take x1 = m−1

2
, x2 = 1, y1 = 1, y2 = l − 2. Here x1 + y1 = m−1

2
+ 1 ≤ n

[since m is odd and m ≤ 2n]. x2 + y2 = 1 + l − 2 = l − 1 ≤ n [since in this
subcase l = w2−n ≤ n], y1 + y2 = l− 1 ≤ n and x1 +x2 = m−1

2
+ 1 ≤ n. As in

the above subcase n− (2n− (x1 + x2 + y1 + y2)) ≥ 0⇔ x1 + x2 + y1 + y2 ≥ n
⇔ m − 1 + 2l ≥ 2n ⇔ w1 + 2w2 − 1 ≥ 5n ⇔ 5w3 + 6 ≤ w1 + 7w2. Since
w3 ≥ 2, w1 > 2 + n, w2 ≥ 2 + n, we get w1 ≥ 3, w2 ≥ 3, w3 ≥ 2. Also
w1 ≥ w2 ≥ w3. Thus 7w2 ≥ 5w3 + 2w3 ≥ 5w3 + 4. Thus w1 + 7w2 ≥
5w3 + 4 + w1 ≥ 5w3 + 7 > 5w3 + 6. Hence x1 + x2 + y1 + y2 ≥ n and thus
n− (2n− (x1 + x2 + y1 + y2)) ≥ 0. Thus in this subcase also all the conditions
in (B) are satisfied.
Case 2: w2 − n > n

Here also we have to solve the equations 2x1 + x2 = m, 2y1 + y2 = l.
Subcase 2.1: m is even and l − m

2
is even

Take x1 = m
2

, x2 = 0, y1 =
l−m

2

2
, y2 = m

2
. Here n− (xl + x2) = n− m

2
≥ 0,

since m
2
≤ n. n−(y1+y2) = n−(2l−m

4
+ m

2
) = n− 2l+m

4
. Thus n−(y1+y2) ≥ 0

⇔ 2l+m
4
≤ n⇔ 2(w2 − n) + w1 − n ≤ 4n⇔ 5w2 ≤ w1 + 7w3, which is true by

the given condition (3). Similarly n− (x1 + y1) ≥ 0 and n− (x2 + y2) ≥ 0. As in
the above case, n− (2n− (x1 + x2 + y1 + y2)) ≥ 0⇔ x1 + x2 + y1 + y2 ≥ n⇔
m
2

+ 2l−m
4

+ m
2
≥ n⇔ 3m + 2l ≥ 4n⇔ 3w1 + 2w2 ≥ 9n⇔ 3w3 ≤ 3w1 + w2,

which is always true since w1 ≥ w2 ≥ w3.
Subcase 2.2: m is even and l − m

2
is odd

Here take x1 = m
2

, x2 = 0, y1 =
l−m

2
+1

2
, y2 = m

2
− 1. We can easily verify

that n− (xl + x2) ≥ 0⇔ 5w2 ≤ w1 + 7w3 − 12, which is true by condition (3).
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Similarly n − (y1 + y2) ≥ 0. Also it easily follows that n − (x1 + y1) ≥ 0 and
n− (x2 + y2) ≥ 0. n− (2n− (x1 + x2 + y1 + y2)) ≥ 0⇔ 3w1 +w2 ≥ 3w3 + 4.
But w1 ≥ w2 ≥ w3 ≥ 2 and by condition (2), w1 ≥ n + 2 and n = w1+w2+w3

6
.

Thus w1 ≥ 4. Also 3w1 + w2 = w1 + 2w1 + w2 ≥ w1 + 3w3 ≥ 3w3 + 4 (since
w1 ≥ 4). Thus n− (2n− (x1 + x2 + y1 + y2)) ≥ 0 and hence all the inequalities
in (B) are satisfied.

Subcase 2.3: m is odd and l − m−1
2

is even

Take x1 = m−1
2

, x2 = 1, y1 =
l−m−1

2

2
, y2 = m−1

2
. n− (x1 +x2) = n− (m−1

2
+

1) ≥ 0 ⇔ 1 + m−1
2
≤ n. This is true since m ≤ 2n and m is odd. Similarly

n− (x2 + y2) ≥ 0. Also n− (x1 + y1) ≥ 0⇔ 5w2 ≤ w1 + 7w3 + 6, which is true
by condition (3). Similarly n−(y1+y2) ≥ 0. Also n−(2n−(x1+x2+y1+y2)) ≥ 0
⇔ 3w1 + w2 + 2 ≥ 3w3, which is always true since w1 ≥ w2 ≥ w3. Thus all the
inequalities in (B) are satisfied.

Subcase 2.4: m is odd and l − m−1
2

is odd

Take x1 = m−1
2

, x2 = 1, y1 =
l−m+1

2

2
, y2 = m+1

2
. n− (xl + x2) = n− m−1

2
+

1) = n − m+1
2

. Since m is odd and m ≤ 2n, m+1
2
≤ n. So n − (xl + x2) ≥ 0.

n − (x2 + y2) = n − (m+1
2

+ 1) ≥ 0 ⇔ w1 ≤ w2 + w3 − 6, which is true by
condition(4). Also we can verify that n− (xl + y1) ≥ 0 and n− (y1 + y2) ≥ 0 by
condition(3). Similarly n−(2n−(xl+x2+y1+y2)) ≥ 0⇔ 3w1+w2+6 ≥ 3w3,
which is always true. Hence all the conditions in (B) are satisfied in this subcase
also. Hence our claim is proved in both cases. Thus using equations (A), we can
properly partition w1 into x1 copies of 3, x2 copies of 2 and n− (x1 + x2) copies
of 1’s. w2 can be partitioned into y1copies of 3, y2 copies of 2 and n − (y1 + y2)
copies of 1. w3 can be partitioned into n − (x1 + y1) copies of 3, n − (x2 + y2)
copies of 2 and n− (2n− (x1 + x2 + y1 + y2)) copies of 1. Using these partitions
of w1, w2, w3, we can decompose Sw1,w2,w3 into copies of S1,2,3.2

2.2 K1,m decomposability of Sw1,w2,··· ,wn

Theorem 2.2. The multistar Sw1,w2,··· ,wn , w1 ≥ w2 ≥ · · · ≥ wn, is K1,m-
decomposable (n ≥ m) if and only if

1. Σn
i=1wi ≡ 0(mod m)

2. For each k = 1, 2, · · · ,m− 1, Σk
i=1wi ≤ k

m−k
(wk+1 + · · ·+ wn)

Proof. Suppose the multistar the multistar Sw1,w2,··· ,wn , w1 ≥ w2 ≥ · · · ≥ wn,
is K1,m-decomposable (n ≥ m). Then clealy Σn

i=1wi ≡ 0(mod m).
To prove (2), assume the contrary. Suppose that

∑k
i=1wi >

k
m−k

(wk+1 + · · ·+
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wn), for some k with 1 ≤ k ≤ m− 1. This implies

(m− k)
k∑

i=1

wi > k(wk+1 + · · ·+ wn)⇒ m

k∑
i=1

wi > k

n∑
i=1

wi

⇒
k∑

i=1

wi >
k

m
(

n∑
i=1

wi).

This is not possible, since 1
m

(
∑n

i=1wi) is the number of copies of K1,m to
which Sw1,w2,··· ,wn can be decomposed. Each copy of K1,m can contribute at most
k to

∑k
i=1wi. Thus

∑k
i=1wi ≤ k

m
(
∑n

i=1wi).
We prove sufficiency by induction on w =

∑n
i=1wi. For w = m, the multistar

is K1,m itself. If w ≥ 2m, one copy of K1,m is deleted from sw1,w2,··· ,wm by sub-
tracting m number of 1’s from the largest m multiplicities. The multistar obtained
after this process still satisfies conditions 1 and 2. Hence by induction the proof
follows.2

2.3 S2m decomposability of Sw1,w2,··· ,wn

Theorem 2.3. The multistar Sw1,w2,··· ,wn ,w1 ≥ w2 ≥ · · · ≥ wn, is S2m-decomposable
(n ≥ m) if and only if

1. Σn
i=1wi ≡ 0(mod 2m)

2. For 1 ≤ i ≤ n, wi ≡ 0(mod 2)

3. For each k = 1, 2, · · · ,m− 1, Σk
i=1wi ≤ k

m−k
(wk+1 + · · ·+ wn)

Proof. Assume that the multistar Sw1,w2,··· ,wm is S2m-decomposable. Then
as in the above theorems conditions 1 and 3 hold. Since Sw1,w2,··· ,wm is S2m-
decomposable, clearly wi ≡ 0(mod 2).

We prove sufficiency by induction on w =
∑n

i=1wi. For w = 2m, the mul-
tistar is S2m itself. If w ≥ 4m, delete one copy of S2m from Sw1,w2,··· ,wn by
subtracting m number of 2’s from the largest m multiplicities. The multistar ob-
tained after this deletion still satisfies all the three conditions. Hence by induction
the proof follows.2

The above two theorems can be generalized to characterize Sml-decomposable
multistars.

2.4 Sml decomposability of Sw1,w2,··· ,wn

Theorem 2.4. The multistar Sw1,w2,··· ,wn ,w1 ≥ w2 ≥ · · · ≥ wn, is Sml
-decomposable

(n ≥ l) if and only if
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1. Σn
i=1wi ≡ 0(mod lm)

2. For 1 ≤ i ≤ n, wi ≡ 0(mod m)

3. For each k = 1, 2, · · · , l − 1, Σk
i=1wi ≤ k

l−k
(wk+1 + · · ·+ wn)

Proof. Assume that the multistar Sw1,w2,··· ,wn is Smm-decomposable. Then
conditions 1,2 and 3 follows as in the above theorem.

The sufficiency can similarly be proved using induction by deleting one copy
of Smm from Sw1,w2,··· ,wn by subtracting l number ofm’s from the largest lmultiplicities.2

3 Conclusions
In this paper we have characterized those multistars which are S1,2,3-decomposable,

K1,m-decomposable, S2m-decomposable and Sml-decomposable.
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