On extended quasi-MV algebras

Mengmeng Liu*
Hongxing Liu ${ }^{\dagger}$

Abstract

In this paper, we introduce a new algebraic structure called extended quasi-MV algebras, which are generalizations of quasi-MV algebras. The notions of ideals, ideal congruences and filters in Equasi-MV algebras were introduced and their mutual relationships were investigated. There is a bijection between the set of all ideals and the set of all ideal congruences on an Equasi-MV algebra.

Keywords: Equasi-MV algebras; Quasi-MV algebras; Idempotent elements; Ideal congruences; Filters
2020 AMS subject classifications: $03 \mathrm{G} 27^{1}$

[^0]Mengmeng Liu, Hongxing Liu

1 Introduction

MV-algebras were introduced by Chang Chang [1958] as an algebraic counterpart of infinite valued logic. There are many papers on MV-algebras. Also, many algebraic structures are defined, which extend the notion of MV-algebras. Quantum computation logics M. L. Dalla Chiara and Leporini [2005] received more attention in recent years, which are new forms of quantum logics G. Cattaneo and Leporini [2004]. These logics determine the meaning of a sentence with a mixture of quregisters M. L. Dalla Chiara and Greechie [2013]. Corresponding to quantum computational, Ledda, Konig, Paoli and Giuntini introduced the notion of quasi-MV algebras in A. Ledda and Giuntini [2006], which are generalizations of MV-algebras. The element 0 in a quasi-MV algebra is not necessarily a neutral element of the operation \oplus. Since then, many authors continued to study quasi-MV algebras. For example, Ledda etc. studied some properties of quasi-MV algebras and $\sqrt{ }{ }^{\prime}$ quasi-MV algebras F. Bou and Freytes [2008], F. Paoli and Freytes [2009]; Chen introduced pseudo-quasi-MV algebras which are non-commutative generalizations of quasi-MV algebras Liu and Chen [2016].

EMV-algebras (extended MV-algebras) Dvurečenskij and Zahiri [2019] are also generalizations of MV-algebras. An EMV-algebra does not necessarily have a top element. Dvurečenskij and Zahiri gave some properties of EMV-algebras. The notions of ideals, congruences and filters in EMV-algebras were also introduced and the relationships between them were investigated. One of the main results is that every EMV-algebra can be embedded into an EMV-algebra with a top element. Liu presented EBL-algebras in Liu [2020], which extended the notion of BL-algebras. The author gave some properties of EBL-algebras. Also, the concepts of ideals, congruences and filters were introduced and the relationships between them were studied.

Inspired by Dvurečenskij and Zahiri [2019], we shall give the definition of Equasi-MV algebras. In these algebras, 0 is not necessarily the neutral element and the complement element of 0 does not necessarily exist. The structure of this paper is as follows. In Sect.2, we give some definitions and results of quasi-MV algebras. In Sect.3, we introduce Equasi-MV algebras and present some examples of Equasi-MV algebras. In Sect.4, we define ideals and ideal congruences in Equasi-MV algebras. And we study the relationships between them. In Sect.5, we introduce the notions of filters and prime ideals. Moreover, every Equasi-MV algebra has at least one maximal ideal.

2 Preliminaries

In this section, we will give some notions and results on quasi-MV algebras, which will be used in the following.

A quasi-MV algebra A . Ledda and Giuntini [2006] is an algebra $\mathbf{A}=\left\langle A, \oplus{ }_{\mathrm{C}}, \prime, 0,1\right\rangle$ of type $\langle 2,1,0,0\rangle$ satisfying the following conditions:

QMV1) $x \oplus(y \oplus z)=(x \oplus z) \oplus y$;
QMV2) $x^{\prime \prime}=x$;
QMV3) $x \oplus 1=1$;
QMV4) $\left(x^{\prime} \oplus y\right)^{\prime} \oplus y=\left(y^{\prime} \oplus x\right)^{\prime} \oplus x$;
QMV5) $(x \oplus 0)^{\prime}=x^{\prime} \oplus 0$;
QMV6) $(x \oplus y) \oplus 0=x \oplus y$;
QMV7) $0^{\prime}=1$.
In any quasi-MV algebra \mathbf{A}, we can define the following operations:
$x \otimes y=\left(x^{\prime} \oplus y^{\prime}\right)^{\prime} ; x$ ש $y=x \oplus\left(x^{\prime} \otimes y\right) ; x \cap y=x \otimes\left(x^{\prime} \oplus y\right)$.
It is obvious that $x \uplus y=(x \uplus y) \oplus 0$ and $x \cap y=(x \cap y) \oplus 0$. Moreover, we can also define an binary relation \leqslant on A as follows: $x \leqslant y$ iff $x \cap y=x \oplus 0$. The relation \leqslant is a preordering of A, but not a partial ordering.

Lemma 2.1. [A. Ledda and Giuntini, 2006, Lemma 8] Let A be a quasi-MV algebra. For all $x, y, z \in A$, the following statements are equivalent.
(i) $x \leqslant y$;
(ii) $x^{\prime} \oplus y=1$;
(iii) $x \uplus y=y \oplus 0$.

In the following, we give some properties of quasi-MV algebras, including a few properties of preordering \leqslant and the operations \cap and \mathbb{U}.

Lemma 2.2. [A. Ledda and Giuntini, 2006, Lemma 11] Let A be a quasi-MV algebra. For all $x, y, z, w \in A$:
(i) $x \oplus 0 \leqslant y \oplus 0, y \oplus 0 \leqslant x \oplus 0$ imply $x \oplus 0=y \oplus 0 ; ~(v i) x \leqslant x \oplus 0$ and $x \oplus 0 \leqslant x$;
(ii) $x \leqslant y$ and $z \leqslant w$ imply $x \oplus z \leqslant y \oplus w$;
(vii) $x \otimes y \leqslant z$ iff $x \leqslant y^{\prime} \oplus z$;
(iii) $x \leqslant y$ and $z \leqslant w$ imply $x \otimes z \leqslant y \otimes w$;
(viii) if $x \leqslant y$, then $y^{\prime} \leqslant x^{\prime}$;
(iv) $x \leqslant y$ and $z \leqslant w$ imply $x \cap z \leqslant y \cap w$;
(ix) $0 \leqslant x, x \leqslant 1$.
(v) $x \leqslant y$ and $z \leqslant w$ imply $x \uplus z \leqslant y \uplus w$;

Lemma 2.3. [A. Ledda and Giuntini, 2006, Lemma 12] Let A be a quasi-MV

Mengmeng Liu, Hongxing Liu

algebra. For all $x, y, z \in A$:
(i) $x \cap y=y \cap x$;
(vii) $x \otimes(y \uplus z)=(x \otimes y) \mathbb{U}(x \otimes z)$;
(ii) $x \mathbb{U} y=y \mathbb{\uplus} x$;
(viii) $x \cap(y \cap z)=(x \cap y) \cap z$;
(iii) $x \cap y \leqslant x, y$ and $x, y \leqslant x \uplus y$;
(ix) $x \uplus(y \uplus z)=(x \uplus y) \mathbb{U} z$;
(iv) if $x \leqslant y$, z, then $x \leqslant y \cap z$;
(x) $x \leqslant x \cap x$ and $x \cap x \leqslant x$;
(v) if $x, y \leqslant z$, then $x \uplus y \leqslant z$;
(xi) $(x \cap y)^{\prime}=x^{\prime} \mathbb{U} y^{\prime}$ and $(x \uplus y)^{\prime}=x^{\prime} \cap y^{\prime}$.
(vi) $x \oplus(y \cap z)=(x \oplus y) \cap(x \oplus z)$;

The following lemma gives the distributivity between \cap and $\mathbb{ש}$ on quasi-MV algebras.

Lemma 2.4. Let \mathbf{A} be a quasi-MV algebra. For all $x, y, z \in A$,
(i) $(x \uplus y) \cap z=(x \cap z) ש(y \cap z)$;
(ii) $(x \cap y) \mathbb{U} z=(x \uplus z) \cap(y \mathbb{ש})$;
(iii) $x \cap(y \oplus z) \leqslant(x \cap y) \oplus(x \cap z)$;
(iv) $(x \uplus y) \otimes(x \uplus z) \leqslant x \uplus(y \otimes z)$.

Proof. (i) For any $x, y \in A$, we have $x, y \leqslant x \uplus y$ and so $x \cap z, y \cap z \leqslant(x \uplus y) \cap z$ by Lemma 2.2 (iv). It follows from Lemma 2.3 (v) that $(x \cap z) \mathbb{U}(y \cap z) \leqslant(x \uplus y) \cap z$. Conversely, we have

$$
\begin{aligned}
(x \uplus y) \cap & =(x \uplus y) \otimes\left((x \oplus y)^{\prime} \oplus z\right) \\
& =(x \uplus y) \otimes\left(\left(x^{\prime} \oplus z\right) \cap\left(y^{\prime} \oplus z\right)\right)(\text { Lemma } 2.3 \text { (xi) and (vi)) } \\
& \leqslant\left(x \otimes\left(x^{\prime} \oplus z\right)\right) \uplus\left(y \otimes\left(y^{\prime} \oplus z\right)\right) \text { (Lemma } 2.3 \text { (vii) and (iii)) } \\
& =(x \cap z) \uplus(y \cap z) .
\end{aligned}
$$

Then $((x \cap z) \oplus(y \cap z)) \oplus 0 \leqslant((x ש y) \cap z) \oplus 0$ and $((x ש y) \cap z) \oplus 0 \leqslant$ $((x \cap z) ש(y \cap z)) \oplus 0$. Note that $((x \cap z) ש(y \cap z)) \oplus 0=(x \cap z) ש(y \cap z)$ and $((x \uplus y) \cap z) \oplus 0=(x \uplus y) \cap z$. It follows that $(x \cap z) ש(y \cap z)=(x \uplus y) \cap z$ by Lemma 2.2 (i).

Similarly, we can prove (ii).
(iii) For any $x, y, z \in A$, since $x \leqslant x \oplus 0 \leqslant x \oplus y$, we have

$$
\begin{aligned}
(x \cap y) \oplus(x \cap z) & =((x \cap y) \oplus x) \cap((x \cap y) \oplus z)(\text { Lemma } 2.3(\mathrm{vi})) \\
& =(x \oplus x) \cap(y \oplus x) \cap(x \oplus z) \cap(y \oplus z) \\
& \geqslant x \cap x \cap x \cap(y \oplus z) \\
& =(x \oplus 0) \cap x \cap(y \oplus z)(\text { Lemma } 2.3(\mathrm{x})) \\
& =(x \oplus 0) \cap(y \oplus z) .
\end{aligned}
$$

Note that $(x \oplus 0) \cap(y \oplus z)=x \cap(y \oplus z)$. It follows that $x \cap(y \oplus z) \leqslant(x \cap y) \oplus(x \cap z)$.
(iv) For any $x, y, z \in A$, it follows from $(x \otimes y)^{\prime} \oplus y=x^{\prime} \oplus y^{\prime} \oplus y=1$ that
$x \otimes y \leqslant y$. Then we have

$$
\begin{aligned}
& (x \uplus y) \otimes(x \uplus z)=((x \mathbb{ש} y) \otimes x) \mathbb{ש}((x \mathbb{ש} y) \otimes z)(\text { Lemma } 2.3 \text { (vii)) } \\
& =(x \otimes x) \oplus(y \otimes x) ש(x \otimes z) \oplus(y \otimes z) \\
& \leqslant x \mathbb{\uplus} x \mathbb{巴} x(y \otimes z) \\
& =(x \oplus 0) \text { ש } x \text { ש }(y \otimes z)(\text { Lemma } 2.3(\mathrm{x})) \\
& =(x \oplus 0) \mathbb{U}(y \otimes z) \text {. }
\end{aligned}
$$

Note that $(x \oplus 0) ש(y \otimes z)=x \uplus(y \otimes z)$. It follows that $(x \uplus y) \otimes(x \uplus z) \leqslant$ $x \uplus(y \otimes z)$

Let \mathbf{A} be a quasi-MV algebra and $a \in A$. If $a \oplus a=a$, we call a to be idempotent. We use $\mathcal{I}(\mathbf{A})$ to denote the set of all idempotent elements of A. For $a \in A$, we call a regular if $a \oplus 0=a$. We denote the set of all regular elements of A by $\mathcal{R}(\mathbf{A})$.

Lemma 2.5. Let A be a quasi-MV algebra. For any $x \in A, a \in \mathcal{I}(\mathbf{A})$, we have
(i) $x \oplus a=x \uplus a$;
(ii) $x \otimes a=x \cap a$.

Proof. (i) For any $x \in A$ and $a \in \mathcal{I}(\mathbf{A})$, we have $x, a \leqslant x \oplus a$. Then $x \oplus a \leqslant x \oplus a$ by Lemma 2.3 (v). Conversely, $(x \oplus a) \otimes(x \oplus a)^{\prime}=(x \oplus a) \otimes\left(x^{\prime} \cap a^{\prime}\right)$ (Lemma $\left.2.3(\mathrm{xi})\right)$

$$
\begin{aligned}
& \leqslant\left((x \oplus a) \otimes x^{\prime}\right) \cap\left((x \oplus a) \otimes a^{\prime}\right)(\text { Lemma 2.2(iii) and 2.3(iv) }) \\
& =\left(a \cap x^{\prime}\right) \cap\left(x \cap a^{\prime}\right) \\
& =\left(a \cap a^{\prime}\right) \cap\left(x \cap x^{\prime}\right) \\
& =0 \cap\left(x \cap x^{\prime}\right)=0 .
\end{aligned}
$$

This means that $(x \oplus a)^{\prime} \oplus(x \uplus a)=1$. It follows that $x \oplus a \leqslant x \uplus a$.
(ii) By (i), we have $x^{\prime} \oplus a^{\prime}=x^{\prime} \oplus a^{\prime}$, that is $\left(x^{\prime} \oplus a^{\prime}\right)^{\prime}=\left(x^{\prime} \oplus a^{\prime}\right)^{\prime}=x$ ก a. It follows that $x \cap a=x \otimes a$.

The application of the above lemma will be reflected in the following proof process.

Example 2.1. [A. Ledda and Giuntini, 2006, Example 3] The Diamond is the 4element quasi-MV algebra, where the operations \oplus and ' are defined as following tables:

\oplus	0	a	b	1
0	0	b	b	1
a	b	1	1	1
b	b	1	1	1
1	1	1	1	1

\prime	
0	1
a	a
b	b
1	0

Remark that $a \oplus a=1$, but $a \cap a=\left(a^{\prime} \oplus\left(a^{\prime} \oplus a\right)^{\prime}\right)^{\prime}=\left(a \oplus(a \oplus a)^{\prime}\right)^{\prime}=b \neq 1$.

3 Equasi-MV algebras

In the section, we shall define the notion of extended quasi-MV algebras, which are generalizations of quasi-MV algebras. Some basic properties of these algebras are presented.

Definition 3.1. A extended quasi-MV algebra (abbreviated as Equasi-MV algebra) is an algebra $\mathbf{A}=\langle A, \oplus, 0\rangle$, if the following conditions are satisfied:

EQMV1) $\langle A, \oplus, 0\rangle$ is a commutative preordered semigroup and $(x \oplus y) \oplus 0=$ $x \oplus y$ for all $x, y \in A$;

EQMV2) for each $x \in A$, there is $b \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant b$, and the element

$$
\lambda_{b}(x)=\min \{z \in[0, b]: z \oplus x=b\}
$$

exists in A for all $x \in[0, b]$ such that $\left\langle[0, b], \oplus, \lambda_{b}, 0, b\right\rangle$ is a quasi-MV algebra.
Note that for any $x, y \in A$, there exist $a, b \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant a$ and $y \leqslant b$. Then there exists $c \in \mathcal{I}(\mathbf{A})$ such that $a, b \leqslant c$. In fact, take $c=a \oplus b$. It is obvious that $a, b \leqslant a \oplus b$ and $a \oplus b \in \mathcal{I}(\mathbf{A})$. Therefore, an Equasi-MV algebra has enough idempotent elements. That is, for all $x \in A$, there is $a \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant a$.

Let A be an Equasi-MV algebra. For all $n \in \mathbb{N}$ and $x \in A$, we define

$$
0 . x=0,1 \cdot x=x, \cdots,(n+1) \cdot x=n \cdot x \oplus x .
$$

An Equasi-MV algebra $\langle A, \oplus, 0\rangle$ is called a proper Equasi-MV algebra if 0 has no complement element.

Example 3.1. If $\left\langle A, \oplus,{ }^{\prime}, 0,1\right\rangle$ is a quasi-MV algebra, then $\langle A, \oplus, 0\rangle$ is an EquasiMV algebra. Also, if $\langle A, \vee, \wedge, \oplus, 0\rangle$ is an EMV-algebra, it is obvious that $\langle A, \oplus, 0\rangle$ is an Equasi-MV algebra.

Example 3.2. Let $\left\langle A, \oplus,{ }^{\prime}, 0,1\right\rangle$ be a quasi-MV algebra and $\langle B, \vee, \wedge, \oplus, 0\rangle$ be an EMV-algebra. We define that the operation on the algebra $A \times B$ is point by point. That is, for any $\left\langle x_{1}, x_{2}\right\rangle,\left\langle y_{1}, y_{2}\right\rangle \in A \times B$,

$$
\left\langle x_{1}, x_{2}\right\rangle \oplus\left\langle y_{1}, y_{2}\right\rangle=\left\langle x_{1} \oplus y_{1}, x_{2} \oplus y_{2}\right\rangle
$$

And the least element of $A \times B$ is $0=\langle 0,0\rangle$. For any $x \in B$, there exists $b \in \mathcal{I}(\mathbf{B})$ such that $x \leqslant b$. Then for any $\left\langle x_{1}, x_{2}\right\rangle \in A \times B$, there exists $\langle 1, b\rangle \in \mathcal{I}(\mathbf{A}) \times$ $\mathcal{I}(\mathbf{B})$. It suffices to show that $\left\langle[\langle 0,0\rangle,\langle 1, b\rangle], \oplus, \lambda_{\langle 1, b\rangle},\langle 0,0\rangle,\langle 1, b\rangle\right\rangle$ is a quasi-MV algebra. We define $\lambda_{\langle 1, b\rangle}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle\left(x_{1}\right)^{\prime}, \lambda_{b}\left(x_{2}\right)\right\rangle$, for all $\left\langle x_{1}, x_{2}\right\rangle \in A \times B$. As a result, $A \times B$ is an Equasi-MV algebra.

Example 3.3. Let e be a smallest idempotent of an Equasi-MV algebra A. Then an Equasi-MV algebra is the algebra $\mathbf{S}=\left\langle A \times A, \oplus^{S}, 0^{S}\right\rangle$, where:
(i) $0^{S}=\left\langle 0, \frac{e}{2}\right\rangle$;
(ii) $x^{S} \oplus^{S} y^{S}=\left\langle x_{1} \oplus y_{1}, \frac{e}{2}\right\rangle$, for all $x^{S}=\left\langle x_{1}, x_{2}\right\rangle$ and $y^{S}=\left\langle y_{1}, y_{2}\right\rangle$.

For any $a \in \mathcal{I}(\mathbf{A})$, we define $a^{S}=\left\langle a, \frac{e}{2}\right\rangle$. Then $a^{S}=a^{S} \oplus a^{S} \in \mathcal{I}(\mathbf{S})$. Now we show that $\left\langle\left[0^{S}, a^{S}\right], \oplus^{S}, \lambda_{a^{S}}, 0^{S}, a^{S}\right\rangle$ is a quasi-MV algebra, where $\lambda_{a^{S}}\left(x^{S}\right)=$
$\left\langle\lambda_{a}\left(x_{1}\right), x_{2}\right\rangle$ and $a \in \mathcal{I}(\mathbf{A})$. It is easy to show that $\lambda_{a^{s}}\left(x^{S}\right)$ is the least element such that $x^{S} \oplus z^{S}=a^{S}$ for all $x^{S} \in\left[0^{S}, a^{S}\right]$.

It is clear that $\lambda_{a^{S}} \lambda_{a^{S}}\left(x^{S}\right)=\lambda_{a^{S}}\left\langle\lambda_{a}\left(x_{1}\right), x_{2}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle=x^{S}$. And $\lambda_{a^{S}}\left(x^{S} \oplus^{S}\right.$ $\left.0^{S}\right)=\lambda_{a^{S}}\left\langle x_{1} \oplus 0, \frac{e}{2}\right\rangle=\left\langle\lambda_{a}\left(x_{1}\right) \oplus 0, \frac{e}{2}\right\rangle, \lambda_{a}{ }^{s}\left(x^{S}\right) \oplus 0^{S}=\left\langle\lambda_{a}\left(x_{1}\right), x_{2}\right\rangle \oplus 0^{S}=$ $\left\langle\lambda_{a}\left(x_{1}\right) \oplus 0, \frac{e}{2}\right\rangle$. What's more, $\lambda_{a^{S}}\left(0^{S}\right)=\left\langle\lambda_{a}(0), \frac{e}{2}\right\rangle=\left\langle a, \frac{e}{2}\right\rangle=a^{S}$.
Example 3.4. Let $\langle A, \vee, \wedge, 0\rangle$ be a generalized Boolean algebra Conrad and Darnel [1997]. For any $x, y \in[0, b]$, where $\oplus=\vee$ and $\lambda_{b}(x)$ is the unique relative complement of x in $[0, b]$. Then $\langle A, \oplus, 0\rangle$ is an EMV-algebra by Example 3.2 (2) in Dvurečenskij and Zahiri [2019]. Hence, $\langle A, \oplus, 0\rangle$ is an Equasi-MV algebra.

Example 3.5. Let $\left\langle A, \oplus,{ }^{\prime}, 0,1\right\rangle$ be a quasi-MV algebra and $\langle B, \vee, \wedge, 0\rangle$ be a generalized Boolean algebra. It is easy to show that $A \times B$ is an Equasi-MV algebra.

Proof. The operation \oplus on $A \times B$ is defined pointwise. For all $\langle x, y\rangle \in$ $A \times B$, there exist $a \in \mathcal{I}(\mathbf{A})$ and $b \in \mathcal{I}(\mathbf{B})$ such that $\langle x, y\rangle \leqslant\langle a, b\rangle$ and $\left\langle[\langle 0,0\rangle,\langle a, b\rangle], \oplus, \lambda_{\langle a, b\rangle},\langle 0,0\rangle,\langle a, b\rangle\right\rangle$ is a quasi-MV algebra.

Let's give a specific description of the above example. Let the Diamond (Example 2.6) be the 4 -element quasi-MV algebra \mathbf{A} and $\mathbf{M}=\langle M, \vee, \wedge, 0\rangle$ be the generalized Boolean algebra Conrad and Darnel [1997], where M is the set of components of any positive element \mathbb{N}^{+}and the least element $0:=\emptyset$. That is, $M=\left\{N: N \subseteq \mathbb{N}^{+}\right\}$. Then every element N in M is idempotent. It is easily shown that $A \times M$ with the pointwise operation is an Equasi-MV algebra.
Example 3.6. Let $\mathbf{S}=\left\langle[0,1] \times[0,1], \oplus,{ }^{\prime}, 0,1\right\rangle$ be a standard quasi-MV algebra A. Ledda and Giuntini [2006, Example 5]. Let $\mathbf{A}=\mathbf{S} \oplus \mathbf{S} \oplus \mathbf{S} \oplus \cdots$. Then \mathbf{A} is an Equasi-MV algebra.

Proof. Obviously, $\langle A, \oplus, 0\rangle$ is a commutative preordered semigroup and $(x \oplus$ $y) \oplus 0=x \oplus y$ for all $x, y \in A$. For any $x, y \in \mathbf{A}$. Suppose $x=\left(x_{i}\right), y=\left(y_{i}\right)$. If $x_{i} \neq 0$ or $y_{i} \neq 0$, there exists $u_{i} \in \mathcal{I}(\mathbf{A})$ such that $x_{i}, y_{i} \leqslant u_{i}$ for all $i \geqslant 1$. If $x_{i}=y_{i}=0$, take $u_{i}=0$. We have an idempotent $u=\left(u_{i}\right) \in A$ such that $x, y \leqslant u$ and $\left\langle[0, u], \oplus, \lambda_{u}, 0, u\right\rangle$ is a quasi-MV algebra.
Remark 3.1. Let \mathbf{A} be an Equasi-MV algebra. For all $x, y \in A$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \in[0, b]$. In the quasi-MV algebra $\left\langle[0, b], \oplus, \lambda_{b}, 0, b\right\rangle$, we denote

$$
x \mathbb{U}_{b} y=\lambda_{b}\left(\lambda_{b}(x) \oplus y\right) \oplus y, x \cap_{b} y=\lambda_{b}\left(\lambda_{b}(x) \oplus \lambda_{b}\left(\lambda_{b}(x) \oplus y\right)\right) .
$$

Proposition 3.1. Let \mathbf{A} be an Equasi-MV algebra and $a, b \in \mathcal{I}(\mathbf{A})$ such that $a \leqslant b$. For each $x \in[0, a]$, we have
(i) $\lambda_{b}(a)$ is an idempotent, and $\lambda_{a}(a)=0$;
(ii) $\lambda_{a}(x) \oplus 0=\lambda_{b}(x) \cap a$;
(iii) $\lambda_{b}(x) \oplus 0=\lambda_{a}(x) \oplus \lambda_{b}(a)$;
(iv) $\lambda_{a}(x) \leqslant \lambda_{b}(x)$.

Mengmeng Liu, Hongxing Liu

Proof. Since $\left\langle[0, b], \oplus, \lambda_{b}, 0, b\right\rangle$ is a quasi-MV algebra and $a \in \mathcal{I}(\mathbf{A})$, by Lemma 2.5 (i) we get that $x \oplus a=x \uplus a$ for all $x \in[0, b]$.
(i) Since $\left\langle[0, b], \oplus, \lambda_{b}, 0, b\right\rangle$ is a quasi-MV algebra, $\lambda_{b}(a)$ is also an idempotent element by Lemma 26 in A. Ledda and Giuntini [2006]. It is obvious $\lambda_{a}(a)=0$ in the quasi-MV algebra $\left\langle[0, a], \oplus, \lambda_{a}, 0, a\right\rangle$.
(ii) For all $x \in[0, a]$, we have
$\left(\lambda_{b}(x) \cap a\right) \oplus(x \oplus 0)=\left(\lambda_{b}(x) \oplus(x \oplus 0)\right) \cap(a \oplus(x \oplus 0))($ Lemma 2.3 (vi))

$$
=b \text { ก } a=a .
$$

It follows that $\lambda_{a}(x) \oplus 0=\lambda_{a}(x \oplus 0) \leqslant \lambda_{b}(x) \cap a$ in the quasi-MV algebra $\left\langle[0, b], \oplus, \lambda_{b}, 0, b\right\rangle$. Conversely, since $b=a \oplus \lambda_{b}(a)=x \oplus\left(\lambda_{a}(x) \oplus \lambda_{b}(a)\right)$, we get $\lambda_{b}(x) \leqslant \lambda_{a}(x) \oplus \lambda_{b}(a)$. Since $\lambda_{b}(a)$ is an idempotent, by Lemma 2.5 (i) we have $\lambda_{a}(x) \oplus \lambda_{b}(a)=\lambda_{a}(x) \oplus \lambda_{b}(a)$. Hence, $\lambda_{b}(x) \leqslant \lambda_{a}(x) \uplus \lambda_{b}(a)$. Thus

$$
\begin{aligned}
\lambda_{b}(x) \cap a & \leqslant\left(\lambda_{a}(x) \uplus \lambda_{b}(a)\right) \cap a(\text { Lemma } 2.2 \text { (iv) }) \\
& =\lambda_{a}(x) \oplus 0(\text { Lemma } 2.4 \text { (i) }) .
\end{aligned}
$$

Summary of the above results, we get that $\lambda_{a}(x) \oplus 0=\lambda_{b}(x) \cap a$.
(iii) By (ii) we have

$$
\begin{aligned}
\lambda_{a}(x) \oplus \lambda_{b}(a) & =\left(\lambda_{a}(x) \oplus 0\right) \oplus \lambda_{b}(a) \\
& =\left(\lambda_{b}(x) \cap a\right) \oplus \lambda_{b}(a) \\
& =\lambda_{b}(x) \uplus \lambda_{b}(a)(\text { Lemma } 2.3 \text { (vi) and Lemma } 2.5 \text { (i)). }
\end{aligned}
$$

It follows from $x \leqslant a$ that $\lambda_{b}(a) \leqslant \lambda_{b}(x)$. Then $\lambda_{b}(x) \uplus \lambda_{b}(a)=\lambda_{b}(x) \oplus 0$. Therefore, $\lambda_{b}(x) \oplus 0=\lambda_{a}(x) \oplus \lambda_{b}(a)$.
(iv) It follows from (ii) or (iii).

The following statement shows that \mathbb{U}_{a} and \cap_{a} on $[0, a]$ are coincide with \mathbb{U} and \cap on A, respectively.

Proposition 3.2. Let \mathbf{A} be an Equasi-MV algebra. For all $x, y \in A$, there exist $a, b \in \mathcal{I}(\mathbf{A})$ such that $x, y \in[0, a]$ and $x, y \in[0, b]$. Then we have
(i) $x \cap_{a} y=x \cap_{b} y$;
(ii) $x \uplus_{a} y=x \uplus_{b} y$.

Proof. (i) By Definition 3.1, for all $a, b \in \mathcal{I}(\mathbf{A})$, there exists $c \in \mathcal{I}(\mathbf{A})$ such that $a, b \leqslant c$. Then we have

$$
\begin{aligned}
x \uplus_{c} y & =x \oplus \lambda_{c}\left(x \oplus \lambda_{c}(y) \oplus 0\right) \\
& =x \oplus \lambda_{c}\left(x \oplus \lambda_{a}(y) \oplus \lambda_{c}(a)\right)(\text { Proposition } 3.1 \text { (iii)) } \\
& \left.=x \oplus\left(\lambda_{c}\left(x \oplus \lambda_{a}(y)\right) \otimes_{c} a\right) \text { (the definition of } \otimes_{c}\right) \\
& =x \oplus\left(\lambda_{c}\left(x \oplus \lambda_{a}(y)\right) \cap a\right)(\text { Lemma } 2.5 \text { (ii)) } \\
& =x \oplus\left(\left(\lambda_{a}\left(x \oplus \lambda_{a}(y)\right) \oplus \lambda_{c}(a)\right) \text { ก } a\right) \text { (Proposition 3.1(iii), Lemma 2.5(i)) } \\
& =x \oplus\left(\lambda_{a}\left(x \oplus \lambda_{a}(y)\right) \cap a\right)(\text { Lemma } 2.4 \text { (i)) } \\
& =x \oplus\left(\lambda_{a}\left(x \oplus \lambda_{a}(y)\right) \oplus 0\right)=x \uplus_{a} y .
\end{aligned}
$$

Similarly, we can show that $x \mathbb{U}_{c} y=x \mathbb{U}_{b} y$. Hence, $x \mathbb{U}_{a} y=x \mathbb{U}_{b} y$.
(ii) We also have

$$
\begin{aligned}
x \cap_{c} y & =\lambda_{c}\left(\lambda_{c}(x) \oplus \lambda_{c}\left(\lambda_{c}(x) \oplus y\right)\right) \\
& =\lambda_{c}\left(\lambda_{c}(x) \oplus \lambda_{c}\left(\lambda_{a}(x) \oplus y \oplus \lambda_{c}(a)\right)\right)(\text { Proposition } 3.1 \text { (iii)) } \\
& =\lambda_{c}\left(\lambda_{c}(x) \oplus\left(\lambda_{c}\left(\lambda_{a}(x) \oplus y\right) \otimes_{c} a\right)\right)\left(\text { definition of } \otimes_{c}\right) \\
& =\lambda_{c}\left(\lambda_{c}(x) \oplus\left(\left(\lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \oplus \lambda_{c}(a)\right) \otimes_{c} a\right)\right)(\text { Proposition } 3.1 \text { (iii)) } \\
& =\lambda_{c}\left(\lambda_{c}(x) \oplus\left(\left(\lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \oplus \lambda_{c}(a)\right) \cap a\right)\right) \text { (Lemma } 2.5 \text { (i)) } \\
& =\lambda_{c}\left(\lambda_{c}(x) \oplus\left(\lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \cap a\right)\right)(\text { Lemma } 2.4 \text { (i)) } \\
& =\lambda_{c}\left(\lambda_{c}(x) \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus y\right)\right) \\
& =\lambda_{c}\left(\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \oplus \lambda_{c}(a)\right) \text { (Proposition } 3.1 \text { (iii)) } \\
& \left.=\lambda_{c}\left(\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus y\right)\right) \otimes_{c} a \text { (definition of } \otimes_{c}\right) \\
& =\left(\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \oplus \lambda_{c}(a)\right) \otimes_{c} a \text { (Proposition } 3.1\right. \text { (iii)) } \\
& =\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus y\right)\right) \oplus a \\
& =x \cap_{a} y .
\end{aligned}
$$

Similarly, we can show that $x \cap_{c} y=x \cap_{b} y$ and so $x \cap_{a} y=x \cap_{b} y$. \square
Definition 3.2. Let \mathbf{A} be an Equasi-MV algebra and $x, y \in[0, a]$ where $a \in$ $\mathcal{I}(\mathbf{A})$. A preordering \leqslant_{a} on the quasi-MV algebra $\left\langle[0, a], \oplus, \lambda_{a}, 0, a\right\rangle$ defined as follows:

$$
x \leqslant_{a} y \Longleftrightarrow x \cap_{a} y=x \oplus 0 .
$$

By Proposition 3.2, for any $x, y \leqslant a, b$, where $a, b \in \mathcal{I}(\mathbf{A})$, we have $x \leqslant a$ $y \Longleftrightarrow x \leqslant y \Longleftrightarrow x \leqslant b y$. Then we can also define a preordering \leqslant on A by $x \leqslant y \Longleftrightarrow x \cap y=x \oplus 0$, where $x \cap y=x \cap_{a} y$.

Lemma 3.1. Let A be an Equasi-MV algebra. For all $x, y \in A$, the operation $\otimes: A \times A \rightarrow A$ defined by $x \otimes y=\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}(y)\right)$, where $a \in \mathcal{I}(\mathbf{A})$ and $x, y \leqslant a$. Then
(i) the well-defined binary operation \otimes on A is not determined by the choice of a and is also order preserving and associative.
(ii) if $x, y \in A, x \leqslant y$, then $y \otimes \lambda_{a}(x)=y \otimes \lambda_{b}(x)$ and $y \oplus 0=x \oplus\left(y \otimes \lambda_{a}(x)\right)$ for all $a, b \in \mathcal{I}(\mathbf{A})$ and $x, y \leqslant a, b$.
(iii) if $x, y \in[0, a]$ and $a \in \mathcal{I}(\mathbf{A})$, then $x \otimes \lambda_{a}(y)=x \otimes \lambda_{a}(x \cap y)$ and $x \oplus 0=(x \cap y) \oplus\left(x \otimes \lambda_{a}(y)\right)$.
(iv) an element $a \in A$ is idempotent iff $a \otimes a=a$.

Proof. (i) Let $x, y \in A$ and $a, b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant a, b$. We claim that $\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}(y)\right)=\lambda_{b}\left(\lambda_{b}(x) \oplus \lambda_{b}(y)\right)$. Indeed, there exists an element $c \in \mathcal{I}(\mathbf{A})$

Mengmeng Liu, Hongxing Liu

such that $a, b \leqslant c$. Then

$$
\begin{aligned}
\lambda_{c}\left(\lambda_{c}(x) \oplus \lambda_{c}(y)\right) & =\lambda_{c}\left(\lambda_{a}(x) \oplus \lambda_{c}(a) \oplus \lambda_{a}(y) \oplus \lambda_{c}(a)\right)(\text { Proposition } 3.1 \text { (iii)) } \\
& =\lambda_{c}\left(\lambda_{a}(x) \oplus \lambda_{a}(y)\right) \otimes_{c} \lambda_{c}\left(\lambda_{c}(a)\right) \text { (Propsition } 3.1 \text { (i)) } \\
& =\lambda_{c}\left(\lambda_{a}(x) \oplus \lambda_{a}(y)\right) \cap a(\text { Lemma } 2.5 \text { (ii) }) \\
& =\left(\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}(y)\right) \oplus \lambda_{c}(a)\right) \cap a \text { (Lemma } 3.1 \text { (iii)) } \\
& =\left(\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}(y)\right) \oplus \lambda_{c}(a)\right) \cap a(\text { Lemma } 2.5 \text { (i) }) \\
& =\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}(y)\right) \cap a \\
& =\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}(y)\right) .
\end{aligned}
$$

Similarly, we have $\lambda_{c}\left(\lambda_{c}(x) \oplus \lambda_{c}(y)\right)=\lambda_{b}\left(\lambda_{b}(x) \oplus \lambda_{b}(y)\right)$.
Let $x, y, z \in A$. There exists $c \in \mathcal{I}(\mathbf{A})$ such that $x, y, z \leqslant c$. It follows from the definition of \otimes that $x \otimes y, y \otimes z \in[0, c]$. Then

$$
\begin{aligned}
(x \otimes y) \otimes z & =\lambda_{c}\left(\lambda_{c}(x \otimes y) \oplus \lambda_{c}(z)\right) \\
& =\lambda_{c}\left(\left(\lambda_{c}(x) \oplus \lambda_{c}(y)\right) \oplus \lambda_{c}(z)\right) \\
& =\lambda_{c}\left(\lambda_{c}(x) \oplus\left(\lambda_{c}(y) \oplus \lambda_{c}(z)\right)\right) \\
& =\lambda_{c}\left(\lambda_{c}(x) \oplus \lambda_{c}(y \otimes z)\right)=x \otimes(y \otimes z) .
\end{aligned}
$$

This proves that \otimes is associative. It is easy to prove that \otimes is order preserving.
(ii) Let $x \leqslant y$ and $x, y \leqslant a, b$, where $a, b \in \mathcal{I}(\mathbf{A})$. There exists $c \in \mathcal{I}(\mathbf{A})$ such that $a, b \leqslant c$. By Proposition 3.1, we have

$$
\begin{aligned}
y \otimes \lambda_{a}(x) & =\lambda_{c}\left(\lambda_{c}(y) \oplus \lambda_{c}\left(\lambda_{a}(x)\right)\right) \\
& =\lambda_{c}\left(\lambda_{c}(y) \oplus \lambda_{c}\left(\lambda_{a}(x)\right) \oplus 0\right) \\
& =\lambda_{c}\left(\lambda_{c}(y) \oplus \lambda_{c}\left(\lambda_{a}(x) \oplus 0\right)\right) \\
& =y \otimes\left(\lambda_{a}(x) \oplus 0\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
y \otimes \lambda_{c}(x) & =y \otimes\left(\lambda_{c}(x) \oplus 0\right) \\
& =y \otimes\left(\lambda_{a}(x) \oplus \lambda_{c}(a)\right) \\
& =y \otimes\left(\lambda_{a}(x) \uplus \lambda_{c}(a)\right)(\text { Lemma } 2.5 \text { (i) }) \\
& =\left(y \otimes \lambda_{a}(x)\right) ש\left(y \otimes \lambda_{c}(a)\right)(\text { Lemma } 2.3(\mathrm{vii})) .
\end{aligned}
$$

Since $\lambda_{c}(a) \leqslant \lambda_{c}(y)$, we have $y \otimes \lambda_{c}(a) \leqslant y \otimes \lambda_{c}(y)=0$, where $y \leqslant a \leqslant c$. This implies $y \otimes \lambda_{c}(x)=y \otimes \lambda_{a}(x)$. Similarly, we have $y \otimes \lambda_{c}(x)=y \otimes \lambda_{b}(x)$. It follows that $y \otimes \lambda_{a}(x)=y \otimes \lambda_{b}(x)$.

In the quasi-MV algebra $\left\langle[0, a], \oplus, \lambda_{a}, 0, a\right\rangle$, we have

$$
x \oplus\left(y \otimes \lambda_{a}(x)\right)=x \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x\right)=x \uplus y=y \oplus 0
$$

(iii) Let $x, y \leqslant a$ and $a \in \mathcal{I}(\mathbf{A})$. We have

$$
\begin{aligned}
x \otimes \lambda_{a}(x \cap y) & =x \otimes\left(\lambda_{a}(x) \uplus \lambda_{a}(y)\right) \\
& \left.=\left(x \otimes \lambda_{a}(x)\right) \uplus\left(x \otimes \lambda_{a}(y)\right) \text { (Lemma } 2.3(\mathrm{vii})\right) \\
& =x \otimes \lambda_{a}(y) .
\end{aligned}
$$

$$
\begin{aligned}
(x \cap y) \oplus\left(x \otimes \lambda_{a}(y)\right) & =(x \cap y) \oplus\left(x \otimes \lambda_{a}(x \cap y)\right) \\
& =(x \cap y) \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus(x \cap y)\right) \\
& =x \oplus \lambda_{a}\left(x \oplus \lambda_{a}(x \cap y)\right)(\mathrm{QMV} 4) \\
& =x \oplus \lambda_{a}\left(x \oplus \lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus y\right)\right) \\
& =x \oplus 0 .
\end{aligned}
$$

(iv) \Longrightarrow : Suppose $a, b \in \mathcal{I}(\mathbf{A})$ with $a \leqslant b$. We have $\lambda_{b}(a) \oplus \lambda_{b}(a)=\lambda_{b}(a)$ by Proposition 3.1 (i). In the quasi-MV algebra $\left\langle[0, b], \oplus, \lambda_{b}, 0, b\right\rangle$, we have $a \otimes a=$ $\lambda_{b}\left(\lambda_{b}(a) \oplus \lambda_{b}(a)\right)=\lambda_{b}\left(\lambda_{b}(a)\right)=a$.
\Longleftarrow : For each $a \in A$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $a \leqslant b$. Suppose $a \otimes a=a$. We have $\lambda_{b}\left(\lambda_{b}(a) \oplus \lambda_{b}(a)\right)=a$. Then $\lambda_{b}\left(\lambda_{b}\left(\lambda_{b}(a) \oplus \lambda_{b}(a)\right)\right)=\lambda_{b}(a)$. It follows from $\lambda_{b}(a) \oplus \lambda_{b}(a)=\lambda_{b}(a)$ that $\lambda_{b}(a) \in \mathcal{I}(\mathbf{A})$. By Proposition 3.1 (i), we have $\lambda_{b}\left(\lambda_{b}(a)\right) \oplus \lambda_{b}\left(\lambda_{b}(a)\right)=\lambda_{b}\left(\lambda_{b}(a)\right)$. That is $a \oplus a=a$. It implies $a \in \mathcal{I}(\mathbf{A})$.

Theorem 3.1. Let \mathbf{A} be an Equasi-MV algebra. Then $\left\langle\mathcal{R}(\mathbf{A}), \mathbb{U}_{R}, \cap_{R}, \oplus_{R}, 0_{R}\right\rangle$ is an EMV-subalgebra of \mathbf{A}.

Proof. It is obvious that $\mathcal{R}(\mathbf{A})$ is closed under the operations $\mathbb{U}_{R}, \cap_{R}, \oplus_{R}, 0_{R}$. For all $x, y \in \mathcal{R}(\mathbf{A})$, there exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant a$. Then $[0, a] \cap \mathcal{R}(\mathbf{A})$ is an MV-algebra of [$0, a$] by Lemma 15 in A. Ledda and Giuntini [2006]. This means that $\mathcal{R}(\mathbf{A})$ is an EMV-subalgebra of \mathbf{A}.

4 Ideals and congruences

In this section, we give the notions of ideals and ideal congruences of EquasiMV algebras. We also give an equivalent definition of ideals. Moreover, there is a one-to-one correspondence between the set of all ideals and the set of all ideal congruences.

Definition 4.1. Let A be an Equasi-MV algebra. An equivalence relation θ on A is called a congruence, if the following conditions hold:
(i) θ is compatible with \oplus;
(ii) for all $b \in \mathcal{I}(\mathbf{A}), \theta \cap([0, b] \times[0, b])$ is a congruence on the quasi-MV algebra $\left\langle[0, b], \oplus, \lambda_{b}, 0, b\right\rangle$.

The set of all congruences on A represented by $\operatorname{Con}(A)$.
Definition 4.2. Let $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ be two Equasi-MV algebras. We call a map f : $A_{1} \longrightarrow A_{2}$ to be an Equasi-MV homomorphism, if it satisfies the following statements:
(i) $f(x \oplus y)=f(x) \oplus f(y)$ and $f(0)=0$, for all $x, y \in A_{1}$;
(ii) for all $x, y \in[0, a]$ and $a \in \mathcal{I}\left(\mathbf{A}_{\mathbf{1}}\right), f\left(\lambda_{a}(x)\right)=\lambda_{f(a)}(f(x))$.

Example 4.1. Let $f: A_{1} \rightarrow A_{2}$ be an Equasi-MV homomorphism. We can define $\theta=\left\{(x, y) \in A_{1} \times A_{1}: f(x)=f(y)\right\}$, then θ is a congruence.

Let \mathbf{A} be an Equasi-MV algebra and θ be a congruence on \mathbf{A}. We denote

$$
A / \theta=\{x / \theta: x \in A\}, \text { where } x / \theta=\{y \in A:\langle x, y\rangle \in \theta\}
$$

We define operations $\cap, \mathbb{\Pi}, \oplus$ on A / θ as follows: for any $x, y \in A$, $x / \theta \cap y / \theta=(x \cap y) / \theta, x / \theta$ ש $y / \theta=(x \uplus y) / \theta, x / \theta \oplus y / \theta=(x \oplus y) / \theta$. Suppose $x / \theta \leqslant y / \theta$. Then $(x \cap y) / \theta \geqslant x / \theta$. For all $z \in A$, we have

$$
\begin{aligned}
x / \theta \oplus z / \theta & =(x \oplus z) / \theta \\
& \leqslant((x \cap y) \oplus z) / \theta \\
& \leqslant(y \oplus z) / \theta \\
& =y / \theta \oplus z / \theta .
\end{aligned}
$$

This proves that $\langle A / \theta, \oplus, 0 / \theta\rangle$ is a commutative preordered semigroup and $(x / \theta \oplus$ $y / \theta) \oplus 0 / \theta=x / \theta \oplus y / \theta$.

For all $x \in A$, there exists $a \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant a$. It is easily shown that a / θ is an idempotent element and $x / \theta \leqslant a / \theta$. Since \mathbf{A} is an Equasi-MV algebra, we have that $\left\langle[0, a], \oplus, \lambda_{a}, 0, a\right\rangle$ is a quasi-MV algebra. And let $\theta_{a}=\theta \cap([0, a] \times$ $[0, a])$ be an ideal congruence on $\left\langle[0, a], \oplus, \lambda_{a}, 0, a\right\rangle$. For any $x / \theta_{a} \in\left[0 / \theta_{a}, a / \theta_{a}\right]$, we define $\lambda_{a / \theta_{a}}\left(x / \theta_{a}\right)=\lambda_{a}(x) / \theta_{a}$. Then $\left[0 / \theta_{a}, a / \theta_{a}\right]$ is a quasi-MV algebra.

Now we show that $\left\langle[0 / \theta, a / \theta], \oplus, \lambda_{a / \theta}, 0 / \theta, a / \theta\right\rangle$ is a quasi-MV algebra. For all $x / \theta \in[0 / \theta, a / \theta]$, there exists $y / \theta \in[0 / \theta, a / \theta]$ such that $x / \theta \oplus y / \theta=a / \theta$. It follows that $\langle x \oplus y, a\rangle \in \theta$. And since $x, y \leqslant a$, we have $\langle x \oplus y, a\rangle \in \theta_{a}$. That is, $x / \theta_{a} \oplus y / \theta_{a}=a / \theta_{a}$. Thus $y / \theta_{a} \geqslant \lambda_{a}(x) / \theta_{a}$ and so $y / \theta \geqslant \lambda_{a}(x) / \theta$. This implies that $\lambda_{a / \theta}(x / \theta)$ exists and equals to $\lambda_{a}(x) / \theta$. It can be easily shown that $\left\langle[0 / \theta, a / \theta], \oplus, \lambda_{a / \theta}, 0 / \theta, a / \theta\right\rangle$ is a quasi-MV algebra. Thus, $\langle A / \theta, \oplus, 0 / \theta\rangle$ is an Equasi-MV algebra.

And the map $\pi:\langle A, \oplus, 0\rangle \longrightarrow\langle A / \theta, \oplus, 0 / \theta\rangle$ defined by $x \longmapsto x / \theta$ is an Equasi-MV homomorphism from A onto A / θ.

Definition 4.3. Let \mathbf{A} be an Equasi-MV algebra and I be a nonempty subset of A. We call I to be an ideal of A if the following conditions hold:
(II) $0 \in I$;
(I2) for all $x, y \in I$, then $x \oplus y \in I$;
(I3) $x \in I$ and $y \leqslant x$ imply $y \in I$.
If I is an ideal of A and $x \in A$, we have $x \in I$ iff $x \oplus 0 \in I$ by (I3).
Definition 4.4. Let A be an Equasi-MV algebra and I be a nonempty subset of A. If the following statements hold, I is a weak ideal of A :
(W1) $0 \in I$;
(W2) for all $x, y \in I$, then $x \oplus y \in I$;
(W3) $x \in I$ and $y \in A$ imply $x \otimes y \in I$.

Lemma 4.1. Let I be an ideal of an Equasi-MV algebra A. Then I is a weak ideal.

Proof. Let I be an ideal of A and $x \in I$. If $y \in A$ with $y \leqslant x$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant b$. Then we have

$$
\begin{aligned}
(x \otimes y) \cap x & =\lambda_{b}\left(\lambda_{b}(x) \oplus \lambda_{b}(y)\right) \oplus x \\
& =\lambda_{b}\left(\lambda_{b}(x) \oplus \lambda_{b}(y) \oplus \lambda_{b}\left(\lambda_{b}(x) \oplus \lambda_{b}(y) \oplus x\right)\right) \\
& =\lambda_{b}\left(\lambda_{b}(x) \oplus \lambda_{b}(y) \oplus \lambda_{b}(b)\right)=x \otimes y .
\end{aligned}
$$

It follows that $x \otimes y \leqslant x$. Thus $x \otimes y \in I$ and so I is a weak ideal of A.
The converse of Lemma 4.1 is not true. For example, $\{0\}$ is a weak ideal, but not an ideal.

Proposition 4.1. Let I be a nonempty subset of an Equasi-MV algebra \mathbf{A} and $0 \in$ I. Then I is an ideal iff for all $x, y \in A, a \in \mathcal{I}(\mathbf{A})$ with $x, y \leqslant a, \lambda_{a}(x) \otimes y \in I$ and $x \in I$ implies $y \in I$.

Proof. \Longrightarrow : Let I be an ideal of A. For all $x, y \in A$ and $a \in \mathcal{I}(\mathbf{A})$ with $x, y \leqslant a$, if $\lambda_{a}(x) \otimes y \in I$ and $x \in I$, we have $\left(\lambda_{a}(x) \otimes y\right) \oplus x \in I$. Since

$$
\begin{aligned}
\lambda_{a}(y) \oplus\left(\left(\lambda_{a}(x) \otimes y\right) \oplus x\right) & =\lambda_{a}(y) \oplus\left(\lambda_{a}\left(x \oplus \lambda_{a}(y)\right) \oplus x\right) \\
& =\lambda_{a}(y) \oplus\left(\lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \oplus y\right)(\mathrm{QMV} 4) \\
& =\lambda_{a}(y) \oplus y \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \\
& =a,
\end{aligned}
$$

we have $y \leqslant\left(\lambda_{a}(x) \otimes y\right) \oplus x \in I$ and $y \in I$.
$\Longleftarrow:$ For any $x, y \in I$ and $a \in \mathcal{I}(\mathbf{A})$ with $x \leqslant y$ and $x, y \leqslant a$, we have $\lambda_{a}(x) \otimes y=0 \in I$. Hence, $y \in I$ is obtained from propositional conditions. And then

$$
\begin{aligned}
\lambda_{a}(x) \otimes(x \oplus y) & =\lambda_{a}\left(x \oplus \lambda_{a}(x \oplus y)\right) \\
& =\lambda_{a}(x) \cap y \\
& \leqslant y \in I .
\end{aligned}
$$

Then $\lambda_{a}(x) \otimes(x \oplus y) \in I$. It follows from $x \in I$ that $x \oplus y \in I$.
Definition 4.5. Let A be an Equasi-MV algebra. We define a binary relation \preccurlyeq as follows: for all $x, y \in A$,

$$
x \preccurlyeq y \text { iff } x \cap y=x \text {. }
$$

The binary relation \preccurlyeq satisfies antisymmetry and transitivity, but when x is a regular element, it satisfies reflexivity.

Lemma 4.2. Let A be an Equasi-MV algebra and $x, y \in A$. Then

$$
x \preccurlyeq y \text { iff } x \leqslant y \text { and } x \in \mathcal{R}(\mathbf{A}) .
$$

Proof. If $x \preccurlyeq y$, we have $x \cap y=x$ and $x \cap y=(x \cap y) \oplus 0=x \oplus 0$. It follows that $x \leqslant y$ and $x \oplus 0=x$. Thus $x \in \mathcal{R}(\mathbf{A})$. Conversely, if $x \leqslant y$ and $x \in \mathcal{R}(\mathbf{A})$, we have $x \cap y=x \oplus 0=x$ and so $x \preccurlyeq y$. \square

Lemma 4.3. Let A be an Equasi-MV algebra and $J \subseteq A$. Then the following statements are equivalent:
(i) J is a weak ideal of A;
(ii) (1) if $x, y \in J$, then $x \oplus y \in J$; (2) if $x \in J, y \preccurlyeq x$, then $y \in J$.

Proof. (i) \Longrightarrow (ii): Suppose $x \in J$ and $y \preccurlyeq x$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant b$. Then $x \otimes\left(\lambda_{b}(x) \oplus y\right)=x \cap y \in J$. Since $y \preccurlyeq x$, we have $x \cap y=y \in J$.
(ii) $\Longleftarrow(i):$ For any $x \in J, y \in A$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant b$. Since $x \otimes y \leqslant x$ and $x \otimes y \in \mathcal{R}(\mathbf{A})$ by Lemma 4.2, we have $x \otimes y \preccurlyeq x$. Therefore, $x \otimes y \in J$.

Let A be an Equasi-MV algebra and H be a subset of A. The ideal generated by H is the smallest ideal of A containing H, denoted by $\langle H\rangle$.

Lemma 4.4. Let \mathbf{A} be an Equasi-MV algebra and $H \subseteq A$, then
(i) $\langle H\rangle=\left\{x \in A\right.$: there exist $h_{1}, \cdots, h_{n} \in H, n \in \mathbb{N}$ such that $\left.x \leqslant h_{1} \oplus \cdots \oplus h_{n}\right\}$;
(ii) $\langle 0\rangle$ is the smallest ideal of \mathbf{A};
(iii) If I is an ideal of A and $x \in A$, we have $\langle I \cup\{x\}\rangle=\{z \in A: z \leqslant a \oplus n$.x for some $a \in I$ and $n \in \mathbb{N}\}$.

Proof. (i) We write $M=\left\{x \in A\right.$: there exist $h_{1}, \cdots, h_{n} \in H, n \in \mathbb{N}$ such that $x \leqslant$ $\left.h_{1} \oplus \cdots \oplus h_{n}\right\}$. Then M is an ideal of A. Now we show that M is the smallest ideal of A containing H. Suppose M^{\prime} is an ideal of A containing H. For any $x \in M$, there exist $h_{1}, \cdots, h_{n} \in H$ such that $x \leqslant h_{1} \oplus \cdots \oplus h_{n}$. As $H \subseteq M^{\prime}$, we get $x \in M^{\prime}$ and so $M \subseteq M^{\prime}$.
(ii) By (i) we obvious get the result.

Definition 4.6. An ideal I of an Equasi-MV algebra \mathbf{A} is maximal if for all $x \in$ $A \backslash I,\langle I \cup\{x\}\rangle=A$.
Definition 4.7. Let A be an Equasi-MV algebra and θ be a congruence on A. θ is an ideal congruence if for all $x, y \in A,(x \oplus 0) \theta(y \oplus 0) \Rightarrow x \theta y$.
Example 4.2. Let \mathbf{A} be an Equasi-MV algebra and $x, y \in A$. A binary relation χ defined as follows: $x \chi y$ iff $x \leqslant y$ and $y \leqslant x$.

It is easy to show that χ is compatible with \oplus. We now show that for all $b \in$ $\mathcal{I}(\mathbf{A}), \chi \cap([0, b] \times[0, b])$ is congruence on the quasi-MV algebra $\left\langle[0, b], \oplus, \lambda_{b}, 0, b\right\rangle$. Suppose $\langle x, y\rangle \in \chi \cap([0, b] \times[0, b])$. It follows from $\langle x, y\rangle \in \chi$ that $x \leqslant y$ and $y \leqslant x$. Hence, $\lambda_{b}(y) \leqslant \lambda_{b}(x)$ and $\lambda_{b}(x) \leqslant \lambda_{b}(y)$. Therefore, $\left\langle\lambda_{b}(x), \lambda_{b}(y)\right\rangle \in$ $\chi \cap([0, b] \times[0, b])$. That is, χ is a congruence on A. As a result, χ is an ideal congruence.

Definition 4.8. Let \mathbf{A} be an Equasi-MV algebra, I be an ideal of A and θ be an ideal congruence on \mathbf{A}. We define two relations $f(J)$ on $A \times A$ and $g(\theta)$ on A as follows:
$\langle x, y\rangle \in f(J)$ iff there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x \otimes \lambda_{b}(y), y \otimes \lambda_{b}(x) \in J ;$
$g(\theta)=0 / \theta=\{x \in A: x \theta 0\}$.
Theorem 4.1. Let A be an Equasi-MV algebra, J be an ideal of \mathbf{A} and θ be an ideal congruence on \mathbf{A}.
(i) $f(J)$ is an ideal congruence on \mathbf{A};
(ii) $g(\theta)$ is an ideal of \mathbf{A};
(iii) $J=g(f(J))$;
(iv) $\theta=f(g(\theta))$.

Proof. (i) Obviously, $f(J)$ is a congruence on A. Now we show that $f(J)$ is an ideal congruence. Let $\langle x \oplus 0, y \oplus 0\rangle \in f(J)$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant b$. Then $\lambda_{b}(x \oplus 0) \otimes(y \oplus 0), \lambda_{b}(y \oplus 0) \otimes(x \oplus 0) \in J$. It follows that $\lambda_{b}(x) \otimes y=\lambda_{b}(x \oplus 0) \otimes(y \oplus 0) \in J$. Similarly, $\lambda_{b}(y) \otimes x \in J$. Thus, $\langle x, y\rangle \in f(J)$. Therefore, $f(J)$ is an ideal congruence on A.
(ii) Suppose $\langle x, 0\rangle \in \theta$ and $y \leqslant x$. We have $\left\langle\lambda_{b}(x), b\right\rangle \in \theta$. That implies $\left\langle\lambda_{b}(x) \oplus y, b\right\rangle \in \theta$ and so $\left\langle x \otimes\left(\lambda_{b}(x) \oplus y\right), x \otimes b\right\rangle \in \theta$. That is, $\langle x \cap y, x \oplus 0\rangle \in \theta$. It follows from $y \leqslant x$ that $x \cap y=y \oplus 0$. Thus, $\langle y \oplus 0, x \oplus 0\rangle \in \theta$. Since θ is an ideal congruence on \mathbf{A}, we have $\langle y, x\rangle \in \theta$. This together with $\langle 0, x\rangle \in \theta$ implies that $\langle y, 0\rangle \in \theta$ and so $y \in g(\theta)$. Therefore, $g(\theta)$ is an ideal of \mathbf{A}.
(iii) It is easily seen that $g(f(J))=\{x \in A: x \oplus 0 \in J\}$. For all $x \in A$, we have $x \in J$ iff $x \oplus 0 \in J$. Thus $g(f(J))=\{x \in A: x \in J\}$.
(iv) For any $x, y \in A$, if $\langle x, y\rangle \in f(g(\theta))$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant b,\left\langle\lambda_{b}(x) \otimes y, 0\right\rangle \in \theta$ and $\left\langle\lambda_{b}(y) \otimes x, 0\right\rangle \in \theta$. Then $\left\langle\left(\lambda_{b}(x) \otimes y\right) \oplus x, 0 \oplus x\right\rangle \in$ θ. By $\left(\lambda_{b}(x) \otimes y\right) \oplus x=x \uplus y$, we get $\langle x \uplus y, 0 \oplus x\rangle \in \theta$. Similarly, we have $\langle x \oplus y, 0 \oplus y\rangle \in \theta$. Thus, $\langle 0 \oplus x, 0 \oplus y\rangle \in \theta$. Since θ is an ideal congruence on A, we have $\langle x, y\rangle \in \theta$. Therefore, $f(g(\theta)) \subseteq \theta$.

Conversely, if $\langle x, y\rangle \in \theta$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant b$ and so $\left\langle y \otimes \lambda_{b}(x), x \otimes \lambda_{b}(x)\right\rangle \in \theta$. This together with $x \otimes \lambda_{b}(x)=0$ implies $\langle y \otimes$ $\left.\lambda_{b}(x), 0\right\rangle \in \theta$. Similarly, $\left\langle x \otimes \lambda_{b}(y), 0\right\rangle \in \theta$. Thus, $\langle x, y\rangle \in f(g(\theta))$. Therefore, $\theta \subseteq f(g(\theta))$.

Let I be an ideal of an Equasi-MV algebra \mathbf{A}. The relation θ_{I} is defined as follows: for all $x, y \in A$,
$(x, y) \in \theta_{I} \Longleftrightarrow \exists b \in \mathcal{I}(\mathbf{A})$ with $x, y \leqslant b$ such that $\lambda_{b}\left(\lambda_{b}(x) \oplus y\right), \lambda_{b}\left(\lambda_{b}(y) \oplus x\right) \in I$.
Proposition 4.2. Let \mathbf{A} be an Equasi-MV algebra. If I is an ideal of A, the relation θ_{I} is an ideal congruence on A.

Proof. Let I be an ideal of A. Suppose $\langle x, y\rangle,\langle y, z\rangle \in \theta_{I}$. We have $\lambda_{b}\left(\lambda_{b}(x) \oplus\right.$ $y), \lambda_{b}\left(\lambda_{b}(y) \oplus x\right) \in I$ and $\lambda_{b}\left(\lambda_{b}(z) \oplus y\right), \lambda_{b}\left(\lambda_{b}(y) \oplus z\right) \in I$ where $b \in \mathcal{I}(\mathbf{A})$ such
that $x, y, z \leqslant b$. Since I is an ideal of A, we have $\lambda_{b}\left(\lambda_{b}(x) \oplus y\right) \oplus \lambda_{b}\left(\lambda_{b}(y) \oplus z\right) \in I$ and $\lambda_{b}\left(\lambda_{b}(y) \oplus x\right) \oplus \lambda_{b}\left(\lambda_{b}(z) \oplus y\right) \in I$. And $\left(\lambda_{b}(x) \oplus z\right) \oplus\left(\lambda_{b}\left(\lambda_{b}(x) \oplus y\right) \oplus\right.$ $\left.\lambda_{b}\left(\lambda_{b}(y) \oplus z\right)\right)=b$. It follows that $\lambda_{b}\left(\lambda_{b}(x) \oplus z\right) \in I$. Similarly, $\lambda_{b}\left(\lambda_{b}(z) \oplus x\right) \in I$. Then $\langle x, z\rangle \in \theta_{I}$. The reflexivity and symmetry is clear.

It is easy to prove that θ_{I} is compatible with \oplus. For all $u \in \mathcal{I}(\mathbf{A})$ such that $x, y, z \leqslant u$. Now, we show that $\theta_{I_{u}}=\theta_{I} \cap([0, u] \times[0, u])$ is a congruence on the quasi-MV algebra $\left\langle[0, u], \oplus, \lambda_{u}, 0, u\right\rangle$. Suppose $\langle x, y\rangle \in \theta_{I_{u}}$, we have $\lambda_{u}\left(\lambda_{u}(x) \oplus\right.$ $y), \lambda_{u}\left(\lambda_{u}(y) \oplus x\right) \in I \cap([0, u] \times[0, u])$. Then

$$
\begin{aligned}
& \left(\lambda_{u}(x \oplus z) \oplus(y \oplus z)\right) \oplus \lambda_{u}\left(\lambda_{u}(x) \oplus y\right) \\
= & \lambda_{u}(x \oplus z) \oplus x \oplus z \oplus \lambda_{u}\left(\lambda_{u}(y) \oplus x\right) \\
= & \lambda_{u}\left(\lambda_{u}(x) \oplus \lambda_{u}(z)\right) \oplus \lambda_{u}(z) \oplus z \oplus \lambda_{u}\left(\lambda_{u}(y) \oplus x\right) \\
= & u
\end{aligned}
$$

It follows that $\lambda_{u}\left(\lambda_{u}(x \oplus z) \oplus(y \oplus z)\right) \leqslant \lambda_{u}\left(\lambda_{u}(x) \oplus y\right) \in \theta_{I}$. Then $\lambda_{u}\left(\lambda_{u}(x \oplus z) \oplus\right.$ $(y \oplus z)) \in \theta_{I}$. Similarly, $\lambda_{u}\left(\lambda_{u}(y \oplus z) \oplus(x \oplus z)\right) \in \theta_{I}$. Thus, $\langle x \oplus z, y \oplus z\rangle \in \theta_{I_{u}}$. And $\left\langle\lambda_{u}(x), \lambda_{u}(z)\right\rangle \in \theta_{I_{u}}$ is obvious. Therefore, θ_{I} is a congruence on A.

For each $\langle x \oplus 0, y \oplus 0\rangle \in \theta_{I}$, we have $\lambda_{b}\left(\lambda_{b}(x \oplus 0) \oplus(y \oplus 0)\right), \lambda_{b}\left(\lambda_{b}(y \oplus\right.$ $0) \oplus(x \oplus 0)) \in I$. That is, $\lambda_{b}\left(\lambda_{b}(x) \oplus y\right), \lambda_{b}\left(\lambda_{b}(y) \oplus x\right) \in I$. Thus $\langle x, y\rangle \in \theta_{I}$. Therefore, θ_{I} is an ideal congruence.

Theorem 4.2. Let A be an Equasi-MV algebra. There is a one-to-one correspondence between the set of all ideals and the set of all ideal congruences.

Proof. Let I be an ideal of A and θ_{I} be an ideal congruence induced by I. Now we show that $I=0 / \theta_{I}$. Since $0 \in I$, we have $\langle x, 0\rangle \in \theta_{I}$, for all $x \in I$. It follows that $x \in 0 / \theta_{I}$. Conversely, suppose $x \in 0 / \theta_{I}$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant a$. By Proposition 4.1, since $\lambda_{a}(x) \otimes 0 \in I$ and $0 \in I$, we have $x \in I$. Hence, $I=0 / \theta_{I}$.

Let θ be an ideal congruence on A. Let $I=0 / \theta$. Suppose $\langle x, y\rangle \in \theta_{I}$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant a$ and $\lambda_{b}\left(\lambda_{b}(x) \oplus y\right), \lambda_{b}\left(\lambda_{b}(y) \oplus x\right) \in$ $I=0 / \theta$. That is, $\left\langle\lambda_{b}\left(\lambda_{b}(x) \oplus y\right), 0\right\rangle \in \theta$ and $\left\langle\lambda_{b}\left(\lambda_{b}(y) \oplus x\right), 0\right\rangle \in \theta$. Hence, $\left\langle\lambda_{b}\left(\lambda_{b}(x) \oplus y\right) \oplus y, 0 \oplus y\right\rangle \in \theta$ and $\left\langle\lambda_{b}\left(\lambda_{b}(y) \oplus x\right) \oplus x, 0 \oplus x\right\rangle \in \theta$. Since $\lambda_{b}\left(\lambda_{b}(x) \oplus y\right) \oplus y=\lambda_{b}\left(\lambda_{b}(y) \oplus x\right) \oplus x$, we have $\langle x \oplus 0, y \oplus 0\rangle \in \theta$. And since θ is an ideal congruence on A, we have $\langle x, y\rangle \in \theta$.

Conversely, let $\langle x, y\rangle \in \theta$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant a$. Then $\left\langle\lambda_{a}(x), \lambda_{a}(y)\right\rangle \in \theta$ and $\left\langle\lambda_{a}(x) \otimes y, \lambda_{a}(y) \otimes y\right\rangle \in \theta$. Since $\lambda_{a}(y) \otimes y=0$, we have $\lambda_{a}(x) \otimes y \in 0 / \theta$. Similarly, $\lambda_{a}(y) \otimes x \in 0 / \theta$. That is, $\langle x, y\rangle \in \theta_{I}$. Therefore, $\theta=\theta_{I}$.

Theorem 4.3. Let A be an Equasi-MV algebra. Then $f(I) \circ f(J)=f(J) \circ f(I)$ is vaild, where I and J are ideals of \mathbf{A}.

Proof. Suppose $f(I), f(J) \in \operatorname{Con} I(\mathbf{A})$ and $\langle x, y\rangle \in f(I) \circ f(J)$ for $x, y \in A$. So there exists $z \in A$ such that $\langle x, z\rangle \in f(I)$ and $\langle z, y\rangle \in f(J)$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y, z \leqslant b$. Let p be a ternary term defined as follows:

$$
p_{b}(x, y, z)=\left(x \otimes\left(\lambda_{b}(y) \oplus(y \cap z)\right)\right) \oplus\left(z \otimes\left(\lambda_{b}(y) \oplus(y \cap x)\right)\right) .
$$

Then
$\left(x \otimes\left(\lambda_{b}(z) \oplus(z \cap y)\right)\right) ש\left(y \otimes\left(\lambda_{b}(z) \oplus(z \cap x)\right)\right) f(I) p_{b}(z, z, y)=y \oplus 0$ and
$\left(x \otimes\left(\lambda_{b}(z) \oplus(z \cap y)\right)\right) \oplus\left(y \otimes\left(\lambda_{b}(z) \oplus(z \cap x)\right)\right) f(J) p_{b}(x, y, y)=x \oplus 0$.
Let

$$
\left(x \otimes\left(\lambda_{b}(z) \oplus(z \cap y)\right)\right) ש\left(y \otimes\left(\lambda_{b}(z) \oplus(y \cap x)\right)\right)=t,
$$

where $t \leqslant b \in \mathcal{I}(\mathbf{A})$. It follows from $\langle t, y \oplus 0\rangle \in f(I)$ and $\langle t, x \oplus 0\rangle \in f(J)$ that

$$
\begin{aligned}
& (y \oplus 0) \otimes \lambda_{b}(t), \lambda_{b}(y \oplus 0) \otimes t \in I ; \\
& (x \oplus 0) \otimes \lambda_{b}(t), \quad \lambda_{b}(x \oplus 0) \otimes t \in J .
\end{aligned}
$$

Now, $y \otimes \lambda_{b}(t) \leqslant(y \oplus 0) \otimes \lambda_{b}(t) \in I, x \otimes \lambda_{b}(t) \leqslant(x \oplus 0) \otimes \lambda_{b}(t) \in J$. Similarly, $\lambda_{b}(y) \otimes t \leqslant \lambda_{b}(y \oplus 0) \otimes t \in I, \lambda_{b}(x) \otimes t \leqslant \lambda_{b}(x \oplus 0) \otimes t \in J$. Thus, $\langle t, y\rangle \in f(I)$ and $\langle t, x\rangle \in f(J)$. That is, $\langle x, y\rangle \in f(J) \circ f(I)$.

Lemma 4.5. If \mathbf{A} is an Equasi-MV algebra, the lattice $\operatorname{ConI}(\mathbf{A})$ of ideal congruences on \mathbf{A} is a sublattice of $\operatorname{Con}(\mathbf{A})$.

Proof. Let I, J be two ideals of A. It is easy to prove that $f(I \cap J)=$ $f(I) \cap f(J)$. Now we show that $f(I \vee J)=f(I) \vee f(J)$.

Since $g(f(I \vee J))=I \vee J$ and $g(f(I)) \vee g(f(J))=I \vee J$, we claim that $g(f(I) \vee f(J))=g(f(I)) \vee g(f(J))$. Let $x \in g(f(I)) \vee g(f(J))$ such that $x \leqslant y \oplus z$ where $y \in g(f(I))$ and $z \in g(f(J))$. Then we get $\langle y, 0\rangle \in f(I)$, $\langle z, 0\rangle \in f(J)$ and $\langle y, z\rangle \in f(I) \circ f(J)=f(I) \vee f(J)$. It follows that $\langle z \oplus 0,0\rangle \in$ $f(J),\langle y \oplus z, z \oplus 0\rangle \in f(I)$ and $\langle y \oplus z, 0\rangle \in f(I) \circ f(J)=f(I) \vee f(J)$. And then $x \leqslant y \oplus z \in g(f(I) \vee f(J))$. Therefore, $g(f(I)) \vee g(f(J) \subseteq g(f(I) \vee f(J))$.

Conversely, for any $x \in g(f(I) \vee f(J))$, we have $\langle x, 0\rangle \in f(I) \vee f(J)=$ $f(I) \circ f(J)$. Then there exist $z \in A$ and $b \in \mathcal{I}(\mathbf{A})$ such that $\langle x, z\rangle \in f(I)$ and $\langle z, 0\rangle \in f(J)$. And $\left\langle x \otimes \lambda_{b}(z), 0\right\rangle \in f(I),\langle z, 0\rangle \in f(J)$. Then $x \leqslant\left(x \otimes \lambda_{b}(z)\right) \oplus$ z. Since $x \otimes \lambda_{b}(z) \in g(f(I))$ and $z \in g(f(J))$, we have $x \in g(f(I)) \vee g(f(J))$. Thus, $g(f(I) \vee f(J)) \subseteq g(f(I)) \vee g(f(J))$.

Theorem 4.4. ConI(A) is distributive.
Proof. By Theorem 4.2, we only need to prove that the lattice of ideals on A is distributive. Suppose I, J, K are ideals on A and $x \in I \cap(J \vee K)$. Then $x \in I$ and $x \leqslant y \oplus z$, for some $y \in J, z \in K$. Hence, $x \leqslant(x \cap y) \oplus(x \cap z)$. It follows from $x \cap y \in I \cap J, x \cap z \in I \cap K$ that $x \in(I \cap J) \vee(I \cap K)$. \square

5 Filters and prime ideals

In this section, we introduce the notions of filters and prime ideals of EquasiMV algebras. Moreover, we study some properties of them. We prove that every Equasi-MV algebra has at least one maximal ideal. Also, we get prime theorem on Equasi-MV algebras.

Definition 5.1. Let $\langle A, \oplus, 0\rangle$ be an Equasi-MV algebra and F be a nonempty subset of A. F is called a filter if the following conditions are satisfied:
(i) for all $x, y \in A$, if $x \leqslant y$ and $x \in F$, then $y \in F$;
(ii) for all $x, y \in F$, then $x \otimes y \in F$.

Definition 5.2. We call a filter F is proper if $F \neq A$. A proper filter F is maximal, if for all $x \in A \backslash F,\langle F \cup\{x\}\rangle=A$.

Let A be an Equasi-MV algebra. For $x \in A$ and $n \in \mathbb{N}$, we define

$$
x^{1}=x, \cdots, x^{n}=x^{n-1} \otimes x, n \geqslant 2 .
$$

Proposition 5.1. Let \mathbf{A} be an Equasi-MV algebra and F be a filter of \mathbf{A}. Then I_{F} is an ideal of A, where

$$
I_{F}:=\left\{\lambda_{a}(x): x \in F, \exists a \in \mathcal{I}(\mathbf{A}), x \leqslant a\right\}
$$

Proof. For all $x \in A$, we have

$$
x \in I_{F} \Longleftrightarrow \exists a \in \mathcal{I}(\mathbf{A}) \text { s.t. } x \leqslant a, \lambda_{a}(x) \in F
$$

It is obvious that $0 \in I_{F}$. Suppose $x, y \in I_{F}$. There exist $a, b \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant a$ and $y \leqslant b$. It follows $\lambda_{a}(x), \lambda_{b}(y) \in F$. Let $c \in \mathcal{I}(\mathbf{A})$ such that $a, b \leqslant c$. Then $\lambda_{c}(x), \lambda_{c}(y) \in F$ by Proposition 3.1 (iv). That implies $\lambda_{c}(x) \otimes \lambda_{c}(y) \in F$. Since $\lambda_{c}(x), \lambda_{c}(y) \leqslant c$ and $\lambda_{c}(x) \otimes \lambda_{c}(y)=\lambda_{c}(x \oplus y)$, we have $x \oplus y \in I_{F}$.

Suppose $x, y \in A$ with $x \in I_{F}$ and $y \leqslant x$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant a$ and $\lambda_{a}(x) \in F$. Since $x, y \in[0, a]$ and $y \leqslant x$, we have $\lambda_{a}(x) \leqslant \lambda_{a}(y)$. It implies $\lambda_{a}(y) \in F$ and $y \in I_{F}$.

In the following, we give an equivalent condition of maximal filters.
Proposition 5.2. Let \mathbf{A} be an Equasi-MV algebra and F be a proper filter of \mathbf{A}.
(i) For all $x \in A,\langle F \cup\{x\}\rangle=\left\{z \in A: z \geqslant y \otimes x^{n}, \exists n \in \mathbb{N}, y \in F\right\}$;
(ii) F is a maximal filter iff for all $x \notin F$, there exist $n \in \mathbb{N}$ and $b \in \mathcal{I}(\mathbf{A})$ with $x \leqslant b$ such that $\lambda_{b}\left(x^{n}\right) \in F$.

Proof. (i) It is obvious.
(ii) Let F be a maximal filter and $x \notin F$. We have $0 \in\langle F \cup\{x\}\rangle$ by (i) and so there exist $n \in \mathbb{N}$ and $y \in F$ such that $0=y \otimes x^{n}$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leqslant b$. Then $b=\lambda_{b}\left(y \otimes x^{n}\right)=\lambda_{b}(y) \oplus \lambda_{b}\left(x^{n}\right)$, it follows that $y \leqslant \lambda_{b}\left(x^{n}\right)$ and $\lambda_{b}\left(x^{n}\right) \in F$. Conversely, for any $x \in A \backslash F$, there exist $n \in \mathbb{N}, b \in \mathcal{I}(\mathbf{A})$ such that $\lambda_{b}\left(x^{n}\right) \in F$. Then $0=\lambda_{b}\left(x^{n}\right) \otimes x^{n}$ and $0 \in\langle F \cup\{x\}\rangle$. It follows that $\langle F \cup\{x\}\rangle=A$ and F is a maximal filter.

Lemma 5.1. Let F be a proper filter of an Equasi-MV algebra A.
(i) If $a \in F \cap \mathcal{I}(\mathbf{A})$, we have $a \notin I_{F}$.
(ii) If $a \in F \cap \mathcal{I}(\mathbf{A})$, then for all $b \in \mathcal{I}(\mathbf{A})$ with $a<b$, we have $\lambda_{b}(a) \in I_{F}$.
(iii) If F is a maximal filter of A, then for all $a \in \mathcal{I}(\mathbf{A}), a \notin I_{F}$ implies $a \in F$.
(iv) If J is a maximal ideal of A, then $\forall a \in \mathcal{I}(\mathbf{A}) \backslash J \Longrightarrow \lambda_{b}(a) \in J$, where $b \in \mathcal{I}(\mathbf{A})$ and $a<b$.
(v) If J is an ideal of A satisfying ($*$), then F_{J} is a filter of A, where

$$
\begin{equation*}
F_{J}:=\left\{\lambda_{a}(x): x \in J, a \in \mathcal{I}(\mathbf{A}) \backslash J, x<a\right\} . \tag{*}
\end{equation*}
$$

Proof. (i) Suppose $a \in F \cap \mathcal{I}(\mathbf{A})$ and $a \in I_{F}$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $a \leqslant b$ and $\lambda_{b}(a) \in F$. It follows from $\lambda_{b}(a), a \in F$ that $0=a \otimes \lambda_{b}(a) \in F$, which is a contradiction.
(ii) It is obvious.
(iii) Let $a \in \mathcal{I}(\mathbf{A})$ and $a \notin I_{F}$. For all $b \in \mathcal{I}(\mathbf{A})$ with $a \leqslant b$, we have $\lambda_{b}(a) \notin F$ by Proposition 5.1. Suppose $a \notin F$. Since F is a maximal filter, we have $\langle F \cup\{a\}\rangle=A$. By Proposition 5.2, there exist $n \in \mathbb{N}$ and $x \in F$ such that $0=x \otimes a^{n}$. We have $u \in \mathcal{I}(\mathbf{A})$ such that $x, a \leqslant u$ and $0=x \otimes a^{n}=x \otimes_{u} a^{n}$. Since $a \in \mathcal{I}(\mathbf{A})$, we get $a^{n}=a$ and so $u=\lambda_{u}(x) \oplus \lambda_{u}(a)$. It follows that $x \leqslant \lambda_{u}(a)$ and $\lambda_{u}(a) \in F$, which is a contradiction.
(iv) Suppose $a \in \mathcal{I}(\mathbf{A})$ and $a \notin J$. For any $b \in \mathcal{I}(\mathbf{A})$ and $a<b$, we have $\lambda_{b}(a) \in\langle J \cup\{a\}\rangle=A$. By Lemma 4.4, there exist $n \in \mathbb{N}$ and $x \in J$ such that $\lambda_{b}(a) \leqslant x \oplus n$. . Since $a, \lambda_{b}(a) \in[0, b]$, we have

$$
\begin{aligned}
\lambda_{b}(a) & =\lambda_{b}(a) \oplus 0 \\
& =\lambda_{b}(a) \cap(x \oplus n \cdot a) \\
& \leqslant\left(\lambda_{b}(a) \cap x\right) \oplus\left(\lambda_{b}(a) \cap n . a\right)(\text { Lemma } 2.4 \text { (iii) }) \\
& =\lambda_{b}(a) \cap x .
\end{aligned}
$$

It follows $\lambda_{b}(a) \leqslant x \in J$ and so $\lambda_{b}(a) \in J$.
(v) Suppose $x, y \in A$ with $x \leqslant y$ and $x \in F_{J}$. There exists $a \in \mathcal{I}(\mathbf{A}) \backslash J$ such that $x<a$ and $\lambda_{a}(x) \in J$. Let $b \in \mathcal{I}(\mathbf{A})$ and $a, y \leqslant b$. We have $\lambda_{b}(y) \leqslant \lambda_{b}(x) \leqslant$ $\lambda_{a}(x) \oplus \lambda_{b}(a)$. By (iv), we have $\lambda_{b}(a) \in J$ and $\lambda_{a}(x) \oplus \lambda_{b}(a) \in J$. That implies $\lambda_{b}(y) \in J$ and $y \in F_{J}$.

Let $x, y \in F_{J}$. There exist $a, b \in \mathcal{I}(\mathbf{A}) \backslash J$ such that $x \leqslant a, y \leqslant b$ and $\lambda_{a}(x), \lambda_{b}(y) \in J$. Let $c \in \mathcal{I}(\mathbf{A})$ and $a, b \leqslant c$. We have $\lambda_{c}(a), \lambda_{c}(b) \in J$ by (iv) and $\lambda_{c}(x) \leqslant \lambda_{c}(x) \oplus 0=\lambda_{a}(x) \oplus \lambda_{c}(a) \in J, \lambda_{c}(y) \leqslant \lambda_{c}(y) \oplus 0=\lambda_{b}(y) \oplus \lambda_{c}(b) \in$ J by Proposition 3.1. It follows that $\lambda_{c}(x), \lambda_{c}(y) \in J$ and $\lambda_{c}(x) \oplus \lambda_{c}(y) \in J$. Thus $\lambda_{c}\left(\lambda_{c}(x) \oplus \lambda_{c}(y)\right) \in F_{J}$. That is, $x \otimes y=x \otimes_{c} y \in F_{J}$.

Definition 5.3. Let A be an Equasi-MV algebra and I be an ideal of A. We call I to be prime if for all $x, y \in A, x \cap y \in I$ implies that $x \in I$ or $y \in I$.

Proposition 5.3. Let I be an ideal of an Equasi-MV algebra A. Then I is prime iff
for any $x, y \in A$, there exists $a \in \mathcal{I}(\mathbf{A})$ with $x, y \leqslant a$ such that $\lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \in I$ or $\lambda_{a}\left(\lambda_{a}(y) \oplus x\right) \in I$.

Proof. \Longleftarrow : Let $\pi: A \longrightarrow A / I$ be the canonical projection and θ be an ideal congruence. If $x \cap y \in I$, we have $(x \cap y) / \theta=x / \theta \cap y / \theta \in \pi(I)$. Let $x / \theta=[i]$ or $y / \theta=[j]$, where $i, j \in I$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y, i, j \leqslant a$, $\lambda_{a}(x) \otimes i \in I, \lambda_{a}(i) \otimes x \in I$ or $\lambda_{a}(y) \otimes j \in I, \lambda_{a}(j) \otimes y \in I$. It follows from Proposition 4.1 that $x \in I$ or $y \in I$.

```
    \(\Longrightarrow\) : For any \(x, y \in A\), there exists \(a \in \mathcal{I}(\mathbf{A})\) such that \(x, y \leqslant a\). We have
    \(\left(\lambda_{a}(x) \oplus y\right) ש\left(\lambda_{a}(y) \oplus x\right)\)
\(=\lambda_{a}(x) \oplus y \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus y \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x\right)\right)\)
\(=\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x\right)\right) \oplus \lambda_{a}\left(\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x\right)\right) \oplus \lambda_{a}(y)\right)\)
\(=\lambda_{a}(y) \oplus x \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x \oplus x\right) \oplus \lambda_{a}\left(\lambda_{a}\left(\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x\right)\right) \oplus \lambda_{a}(y)\right)\)
\(\left.=\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x\right)\right) \oplus \lambda_{a}\left(\left(\lambda_{a}(x) \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x\right)\right) \oplus y\right) \oplus x \oplus \lambda_{a}\left(\lambda_{a}(y) \oplus x \oplus x\right)\)
\(=a\).
```

It follows $\lambda_{a}\left(\left(\lambda_{a}(x) \oplus y\right) 巴\left(\lambda_{a}(y) \oplus x\right)\right)=0 \in I$. That is, $\lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \cap$ $\lambda_{a}\left(\lambda_{a}(y) \oplus x\right)=0 \in I$. Therefore, $\lambda_{a}\left(\lambda_{a}(x) \oplus y\right) \in I$ or $\lambda_{a}\left(\lambda_{a}(y) \oplus x\right) \in I$.

Example 5.1. Let $A \times M$ be an Equasi-MV algebra mentioned in Example 3.6. It can be easily proved that $P=\{0, b\}$ is a prime ideal of a quasi-MV algebra A. Now we show that $P \times M$ is a prime ideal of an Equasi-MV algebra $A \times M$. Obviously, $\langle 0,0\rangle \in P \times M$ and $\langle 0, M\rangle \oplus\langle b, M\rangle=\langle b, M\rangle \in P \times M$. And for any $\langle x, M\rangle \leqslant\langle b, M\rangle$, we have $\langle x, M\rangle \in A \times M$. Then $P \times M$ is an ideal of $A \times M$. For any $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle \in A \times M$, suppose $\left\langle x_{1}, y_{1}\right\rangle \cap\left\langle x_{2}, y_{2}\right\rangle=$ $\left\langle x_{1} \cap x_{2}, y_{1} \wedge y_{2}\right\rangle \in P \times M$, we have $x_{1} \in P$ or $x_{2} \in P$. That is, $\left\langle x_{1}, y_{1}\right\rangle \in P \times M$ or $\left\langle x_{2}, y_{2}\right\rangle \in P \times M$.

Let \mathbf{A} be a proper Equasi-MV algebra and $a \in \mathcal{I}(\mathbf{A}) \backslash\{0\}$. We define

$$
\uparrow a=\{x \in A: x>a\} .
$$

Then $\uparrow a$ is a filter of A. Moreover, $\uparrow a$ is a proper filter of A.
Proposition 5.4. Let F be a maximal filter of an Equasi-MV algebra A. Then

$$
I_{F}=\left\{\lambda_{a}(x): x \in F, \exists a \in \mathcal{I}(\mathbf{A}), x \leqslant a\right\}
$$

is a maximal ideal of A.
Proof. We know that I_{F} is an ideal of A by Proposition 5.1. As $F \neq \emptyset$, we have $a \in \mathcal{I}(\mathbf{A}) \cap F$ and so $a \notin I_{F}$ by Lemma 5.1 (i).

Let J be an ideal of A and $I_{F} \subseteq J$. Suppose $a \notin J$ and $a \in \mathcal{I}(\mathbf{A})$, we have $a \notin I_{F}$ and so $a \in F$ by Lemma 5.1 (iii). Then for any $b \in \mathcal{I}(\mathbf{A})$ with $a \leqslant b$, we have $\lambda_{b}(a) \in I_{F} \subseteq J$. Hence, J satisfies condition (*) in Lemma 5.1 (iv). It follows from Lemma 5.1 (iv) that F_{J} is a filter of A.

Suppose $x \in F$ and $w \in \mathcal{I}(\mathbf{A}) \backslash J$. There exists $u \in \mathcal{I}(\mathbf{A})$ such that $x, w \leqslant u$. Since J is a proper ideal, we have $u \notin J$. It follows from the definition of I_{F} that $\lambda_{u}(x) \in I_{F} \subseteq J$ and then $x \in F_{J}$. That implies $F \subseteq F_{J}$.

Since F is a maximal filter, we have $F_{J}=F$ or $F_{J}=A$. If $F_{J}=A$, then there exist $x \in J$ and $a \in \mathcal{I}(\mathbf{A})$ such that $x<a$ and $\lambda_{a}(x)=0$, which is a contradiction. Thus $F_{J}=F$. By Lemma 5.1 (v), for all $x \in J$, there exists $a \in \mathcal{I}(\mathbf{A}) \backslash J$ such that $x<a$ and $\lambda_{a}(x) \in F_{J}=F$. Hence, we have $x \in I_{F}$. That is, $J \subseteq I_{F}$. Thus $J=I_{F}$. This proves that I_{F} is a maximal ideal of A. \square

Theorem 5.1. Let A be a proper Equasi-MV algebra. Then A has at least one maximal ideal.

Proof. Suppose $0 \neq a \in A$. Note that $\uparrow a$ is a filter and $\{0\} \neq \uparrow a$. By Zorn's lemma, we know that the set of all filters that does not contain 0 has a maximal element, which is a maximal filter of A, denoted by F. It follows from Proposition 5.4 that I_{F} is a maximal ideal.

The following statement gives the prime theorem on Equasi-MV algebras.
Theorem 5.2. Let I be a proper ideal of an Equasi-MV algebra \mathbf{A} and $a \in A \backslash I$. Then there exists a maximal ideal P which contains I and $a \in A \backslash P$. Moreover, P is prime.

Proof. Let $M=\{J: I \subseteq J, a \notin J\}$ where I, J are ideals of A. By Zorn's lemma, M has a top element P. It follows from $I \in M$ that $M \neq \emptyset$. We claim that P is prime. Suppose $x \cap y \in P$ and $x, y \notin P$. We have $a \in\langle P \cup\{x\}\rangle$ and $a \in\langle P \cup\{y\}\rangle$. Then there exist $n \in \mathbb{N}$ and $u, v \in P$ such that $a \leqslant u \oplus n . x$ and $a \leqslant v \oplus n . y$. It follows that

$$
a \leqslant(u \oplus n . x) \cap(v \oplus n . y) \leqslant(u \oplus v \oplus n . x) \cap(u \oplus v \oplus n . y) .
$$

By Lemma 2.4 (iii), we have
$a \leqslant(u \oplus v \oplus n . x) \cap(u \oplus v \oplus n . y)=(u \oplus v) \oplus(n . x \cap n . y) \leqslant(u \oplus v) \oplus n^{2} .(x \cap y) \in P$. It follows that $a \in P$, which is a contradiction. Thus, we have $x \in P$ or $y \in P . \square$

6 Conclusion

In this paper, we introduce the notion of Equasi-MV algebras, which are generalizations of quasi-MV algebras. We study some basic properties of Equasi-MV algebras, such as ideals, ideal congruences and filters and investigate their mutual relationships. We show that there is a one-to-one correspondence between the set of all ideals and the set of all ideal congruences on an Equasi-MV algebra. And we also studied some results on maximal ideals and prime ideals.

There are many topics that deserve further study. For example, (1) can any Equasi-MV algebra be embedded into an Equasi-MV algebra with a top element?
(2) Does any simple Equasi-MV algebra have a top element? (3) The author introduced ME-algebras and studied the categorical equivalence between equality algebras and abelian lattice-ordered groups in Liu [2019]. We will study the relationships between monadic Equasi-MV algebras and monadic equality algebras.

References

F. Paoli A. Ledda, M. Konig and R. Giuntini. MV-algebras and quantum computation. Studia Logica, 82(2):245-270, 2006.
C. C. Chang. Algebraic analysis of many valued logics. Transactions of the American Mathematical society, 88(2):467-490, 1958.
P. F. Conrad and M. R. Darnel. Generalized Boolean algebras in lattice-ordered groups. Order, 14(4):295-319, 1997.
A. Dvurečenskij and O. Zahiri. On EMV-algebras. Fuzzy Sets and Systems, 373: 116-148, 2019.
A. Ledda F. Bou, F. Paoli and H. Freytes. On some properties of quasi-MV algebras and $\sqrt{ }{ }^{\prime}$ quasi-MV algebras. Part II. Soft Computing, 12(4):341-352, 2008.
R. Giuntini F. Paoli, A. Ledda and H. Freytes. On some properties of quasi-MV algebras and $\sqrt{ }$ ' quasi-MV algebras. Reports Math. Log., 44:31-63, 2009.
R. Giuntini G. Cattaneo, M. L. Dalla Chiara and R. Leporini. An unsharp logic from quantum computation. International Journal of Theoretical Physics, 43 (7):1803-1817, 2004.
H. Liu. On categorical equivalences of equality algebras and monadic equality algebras. Logic Journal of the IGPL, 27(3):267-280, 2019.
H. Liu. EBL-algebras. Soft Computing, 24(19):14333-14343, 2020.
J. Liu and W. Chen. A non-commutative generalization of quasi-MV algebras. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 122-126. IEEE, 2016.
R. Giuntini M. L. Dalla Chiara and R. Greechie. Reasoning in quantum theory: sharp and unsharp quantum logics, volume 22. Springer Science \& Business Media, 2013.
R. Giuntini M. L. Dalla Chiara and R. Leporini. Logics from quantum computation. International Journal of Quantum Information, 3(02):293-337, 2005.

[^0]: *School of Mathematics and Statistics, Shandong Normal University, 250014, Jinan, P. R. China; 535236069@qq.com.
 ${ }^{\dagger}$ School of Mathematics and Statistics, Shandong Normal University, 250014, Jinan, P. R. China; lhxshanda@163.com.
 ${ }^{1}$ Received on October 15, 2021. Accepted on December 18, 2021. Published on December 31, 2021. doi: $10.23755 / \mathrm{rm} . v 41 \mathrm{i} 0.680$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

