On extended quasi-MV algebras

Mengmeng Liu* Hongxing Liu[†]

Abstract

In this paper, we introduce a new algebraic structure called extended quasi-MV algebras, which are generalizations of quasi-MV algebras. The notions of ideals, ideal congruences and filters in Equasi-MV algebras were introduced and their mutual relationships were investigated. There is a bijection between the set of all ideals and the set of all ideal congruences on an Equasi-MV algebra.

Keywords: Equasi-MV algebras; Quasi-MV algebras; Idempotent elements; Ideal congruences; Filters

2020 AMS subject classifications: 03G27⁻¹

^{*}School of Mathematics and Statistics, Shandong Normal University, 250014, Jinan, P. R. China; 535236069@qq.com.

[†]School of Mathematics and Statistics, Shandong Normal University, 250014, Jinan, P. R. China; lhxshanda@163.com.

¹Received on October 15, 2021. Accepted on December 18, 2021. Published on December 31, 2021. doi: 10.23755/rm.v41i0.680. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

1 Introduction

MV-algebras were introduced by Chang Chang [1958] as an algebraic counterpart of infinite valued logic. There are many papers on MV-algebras. Also, many algebraic structures are defined, which extend the notion of MV-algebras. Quantum computation logics M. L. Dalla Chiara and Leporini [2005] received more attention in recent years, which are new forms of quantum logics G. Cattaneo and Leporini [2004]. These logics determine the meaning of a sentence with a mixture of quregisters M. L. Dalla Chiara and Greechie [2013]. Corresponding to quantum computational, Ledda, Konig, Paoli and Giuntini introduced the notion of quasi-MV algebras in A. Ledda and Giuntini [2006], which are generalizations of MV-algebras. The element 0 in a quasi-MV algebra is not necessarily a neutral element of the operation \oplus . Since then, many authors continued to study quasi-MV algebras. For example, Ledda etc. studied some properties of quasi-MV algebras and $\sqrt{7}$ quasi-MV algebras F. Bou and Freytes [2008], F. Paoli and Freytes [2009]; Chen introduced pseudo-quasi-MV algebras which are non-commutative generalizations of quasi-MV algebras Liu and Chen [2016].

EMV-algebras (extended MV-algebras) Dvurečenskij and Zahiri [2019] are also generalizations of MV-algebras. An EMV-algebra does not necessarily have a top element. Dvurečenskij and Zahiri gave some properties of EMV-algebras. The notions of ideals, congruences and filters in EMV-algebras were also introduced and the relationships between them were investigated. One of the main results is that every EMV-algebra can be embedded into an EMV-algebra with a top element. Liu presented EBL-algebras in Liu [2020], which extended the notion of BL-algebras. The author gave some properties of EBL-algebras. Also, the concepts of ideals, congruences and filters were introduced and the relationships between them were studied.

Inspired by Dvurečenskij and Zahiri [2019], we shall give the definition of Equasi-MV algebras. In these algebras, 0 is not necessarily the neutral element and the complement element of 0 does not necessarily exist. The structure of this paper is as follows. In Sect.2, we give some definitions and results of quasi-MV algebras. In Sect.3, we introduce Equasi-MV algebras and present some examples of Equasi-MV algebras. In Sect.4, we define ideals and ideal congruences in Equasi-MV algebras. And we study the relationships between them. In Sect.5, we introduce the notions of filters and prime ideals. Moreover, every Equasi-MV algebra has at least one maximal ideal.

2 Preliminaries

In this section, we will give some notions and results on quasi-MV algebras, which will be used in the following.

A quasi-MV algebra A. Ledda and Giuntini [2006] is an algebra $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ of type $\langle 2, 1, 0, 0 \rangle$ satisfying the following conditions:

QMV1) $x \oplus (y \oplus z) = (x \oplus z) \oplus y;$ QMV2) x'' = x;QMV3) $x \oplus 1 = 1;$ QMV4) $(x' \oplus y)' \oplus y = (y' \oplus x)' \oplus x;$ QMV5) $(x \oplus 0)' = x' \oplus 0;$ QMV6) $(x \oplus y) \oplus 0 = x \oplus y;$ QMV7) 0' = 1.

In any quasi-MV algebra A, we can define the following operations:

 $x \otimes y = (x' \oplus y')'; x \boxtimes y = x \oplus (x' \otimes y); x \boxtimes y = x \otimes (x' \oplus y).$ It is obvious that $x \boxtimes y = (x \boxtimes y) \oplus 0$ and $x \boxtimes y = (x \boxtimes y) \oplus 0$. Moreover, we can also define an binary relation \leq on A as follows: $x \leq y$ iff $x \boxtimes y = x \oplus 0$. The relation \leq is a preordering of A, but not a partial ordering.

Lemma 2.1. [A. Ledda and Giuntini, 2006, Lemma 8] Let A be a quasi-MV algebra. For all $x, y, z \in A$, the following statements are equivalent.

(i) $x \leq y$; (ii) $x' \oplus y = 1$; (iii) $x \cup y = y \oplus 0$.

In the following, we give some properties of quasi-MV algebras, including a few properties of preordering \leq and the operations \cap and \bigcup .

Lemma 2.2. [A. Ledda and Giuntini, 2006, Lemma 11] Let **A** be a quasi-MV algebra. For all $x, y, z, w \in A$: (i) $x \oplus 0 \leq y \oplus 0, y \oplus 0 \leq x \oplus 0$ imply $x \oplus 0 = y \oplus 0$; (vi) $x \leq x \oplus 0$ and $x \oplus 0 \leq x$; (ii) $x \leq y$ and $z \leq w$ imply $x \oplus z \leq y \oplus w$; (vii) $x \otimes y \leq z$ iff $x \leq y' \oplus z$; (iii) $x \leq y$ and $z \leq w$ imply $x \otimes z \leq y \otimes w$; (viii) if $x \leq y$, then $y' \leq x'$; (iv) $x \leq y$ and $z \leq w$ imply $x \oplus z \leq y \oplus w$; (ix) $0 \leq x, x \leq 1$. (v) $x \leq y$ and $z \leq w$ imply $x \oplus z \leq y \oplus w$;

Lemma 2.3. [A. Ledda and Giuntini, 2006, Lemma 12] Let A be a quasi-MV

Mengmeng Liu, Hongxing Liu

algebra. For all $x, y, z \in A$: (i) $x \cap y = y \cap x$; (vii) $x \otimes (y \cup z) = (x \otimes y) \cup (x \otimes z)$; (ii) $x \cup y = y \cup x$; (viii) $x \cap (y \cap z) = (x \cap y) \cap z$; (iii) $x \cap y \leq x, y$ and $x, y \leq x \cup y$; (ix) $x \cup (y \cup z) = (x \cup y) \cup z$; (iv) if $x \leq y, z$, then $x \leq y \cap z$; (x) $x \leq x \cap x$ and $x \cap x \leq x$; (v) if $x, y \leq z$, then $x \cup y \leq z$; (xi) $(x \cap y)' = x' \cup y'$ and $(x \cup y)' = x' \cap y'$. (vi) $x \oplus (y \cap z) = (x \oplus y) \cap (x \oplus z)$;

The following lemma gives the distributivity between \square and \square on quasi-MV algebras.

Lemma 2.4. Let A be a quasi-MV algebra. For all $x, y, z \in A$,

 $\begin{array}{l} (i) \ (x \uplus y) \Cap z = (x \Cap z) \Cup (y \Cap z); \\ (ii) \ (x \Cap y) \Cup z = (x \amalg z) \Cap (y \amalg z); \\ (iii) \ x \Cap (y \oplus z) \leqslant (x \Cap y) \oplus (x \Cap z); \\ (iv) \ (x \Cup y) \otimes (x \amalg z) \leqslant x \Cup (y \otimes z). \end{array}$

Proof. (i) For any $x, y \in A$, we have $x, y \leq x \cup y$ and so $x \cap z, y \cap z \leq (x \cup y) \cap z$ by Lemma 2.2 (iv). It follows from Lemma 2.3 (v) that $(x \cap z) \cup (y \cap z) \leq (x \cup y) \cap z$. Conversely, we have

 $(x \cup y) \cap z = (x \cup y) \otimes ((x \cup y)' \oplus z)$ = $(x \cup y) \otimes ((x' \oplus z) \cap (y' \oplus z))$ (Lemma 2.3 (xi) and (vi)) $\leq (x \otimes (x' \oplus z)) \cup (y \otimes (y' \oplus z))$ (Lemma 2.3 (vii) and (iii)) = $(x \cap z) \cup (y \cap z)$.

Then $((x \cap z) \cup (y \cap z)) \oplus 0 \leq ((x \cup y) \cap z) \oplus 0$ and $((x \cup y) \cap z) \oplus 0 \leq ((x \cap z) \cup (y \cap z)) \oplus 0$. Note that $((x \cap z) \cup (y \cap z)) \oplus 0 = (x \cap z) \cup (y \cap z)$ and $((x \cup y) \cap z) \oplus 0 = (x \cup y) \cap z$. It follows that $(x \cap z) \cup (y \cap z) = (x \cup y) \cap z$ by Lemma 2.2 (i).

Similarly, we can prove (ii).

(iii) For any $x, y, z \in A$, since $x \leq x \oplus 0 \leq x \oplus y$, we have $(x \cap y) \oplus (x \cap z) = ((x \cap y) \oplus x) \cap ((x \cap y) \oplus z)$ (Lemma 2.3 (vi)) $= (x \oplus x) \cap (y \oplus x) \cap (x \oplus z) \cap (y \oplus z)$ $\geqslant x \cap x \cap x \cap (y \oplus z)$ $= (x \oplus 0) \cap x \cap (y \oplus z)$ (Lemma 2.3 (x)) $= (x \oplus 0) \cap (y \oplus z)$. Note that $(x \oplus 0) \cap (y \oplus z) = x \cap (y \oplus z)$. It follows that $x \cap (y \oplus z) \leq (x \cap y) \oplus (x \cap z)$. (iv) For any $x, y, z \in A$, it follows from $(x \otimes y)' \oplus y = x' \oplus y' \oplus y = 1$ that $x \otimes y \leq y$. Then we have

$$(x \sqcup y) \otimes (x \sqcup z) = ((x \sqcup y) \otimes x) \sqcup ((x \sqcup y) \otimes z) \text{ (Lemma 2.3 (vii))}$$
$$= (x \otimes x) \sqcup (y \otimes x) \sqcup (x \otimes z) \sqcup (y \otimes z)$$
$$\leqslant x \amalg x \amalg x \sqcup (y \otimes z)$$
$$= (x \oplus 0) \amalg x \amalg (y \otimes z) \text{ (Lemma 2.3 (x))}$$
$$= (x \oplus 0) \sqcup (y \otimes z).$$

Note that $(x \oplus 0) \cup (y \otimes z) = x \cup (y \otimes z)$. It follows that $(x \cup y) \otimes (x \cup z) \leq x \cup (y \otimes z)$. \Box

Let A be a quasi-MV algebra and $a \in A$. If $a \oplus a = a$, we call a to be idempotent. We use $\mathcal{I}(\mathbf{A})$ to denote the set of all idempotent elements of A. For $a \in A$, we call a regular if $a \oplus 0 = a$. We denote the set of all regular elements of A by $\mathcal{R}(\mathbf{A})$.

Lemma 2.5. Let A be a quasi-MV algebra. For any $x \in A$, $a \in \mathcal{I}(A)$, we have

(*i*) $x \oplus a = x \ \ a;$ (*ii*) $x \otimes a = x \ \ a.$

Proof. (i) For any $x \in A$ and $a \in \mathcal{I}(\mathbf{A})$, we have $x, a \leq x \oplus a$. Then $x \cup a \leq x \oplus a$ by Lemma 2.3 (v). Conversely,

 $(x \oplus a) \otimes (x \boxtimes a)' = (x \oplus a) \otimes (x' \cap a') \text{ (Lemma 2.3 (xi))}$ $\leq ((x \oplus a) \otimes x') \cap ((x \oplus a) \otimes a') \text{ (Lemma 2.2(iii) and 2.3(iv))}$ $= (a \cap x') \cap (x \cap a')$ $= (a \cap a') \cap (x \cap x')$ $= 0 \cap (x \cap x') = 0.$

This means that $(x \oplus a)' \oplus (x \boxtimes a) = 1$. It follows that $x \oplus a \leq x \boxtimes a$.

(ii) By (i), we have $x' \oplus a'=x' \cup a'$, that is $(x' \oplus a')' = (x' \cup a')' = x \cap a$. It follows that $x \cap a = x \otimes a$. \Box

The application of the above lemma will be reflected in the following proof process.

Example 2.1. [A. Ledda and Giuntini, 2006, Example 3] The Diamond is the 4element quasi-MV algebra, where the operations \oplus and ' are defined as following tables:

\oplus	0	a	b	1	/		
0	0	b	b	1	()	1
a	b	1	1	1	0	l	$egin{array}{c} a \\ b \\ 0 \end{array}$
b	b	1	1	1	ł)	b
1	1	1 1 1	1	1	1	-	0

Remark that $a \oplus a = 1$, but $a \cap a = (a' \oplus (a' \oplus a)')' = (a \oplus (a \oplus a)')' = b \neq 1$.

Equasi-MV algebras 3

In the section, we shall define the notion of extended quasi-MV algebras, which are generalizations of quasi-MV algebras. Some basic properties of these algebras are presented.

Definition 3.1. A extended quasi-MV algebra (abbreviated as Equasi-MV algebra) is an algebra $\mathbf{A} = \langle A, \oplus, 0 \rangle$, if the following conditions are satisfied:

EQMV1) $(A, \oplus, 0)$ is a commutative preordered semigroup and $(x \oplus y) \oplus 0 =$ $x \oplus y$ for all $x, y \in A$;

EQMV2) for each $x \in A$, there is $b \in \mathcal{I}(\mathbf{A})$ such that $x \leq b$, and the element $\lambda_b(x) = \min\{z \in [0, b] : z \oplus x = b\}$

exists in A for all $x \in [0, b]$ such that $\langle [0, b], \oplus, \lambda_b, 0, b \rangle$ is a quasi-MV algebra.

Note that for any $x, y \in A$, there exist $a, b \in \mathcal{I}(\mathbf{A})$ such that $x \leq a$ and $y \leq b$. Then there exists $c \in \mathcal{I}(\mathbf{A})$ such that $a, b \leq c$. In fact, take $c = a \oplus b$. It is obvious that $a, b \leq a \oplus b$ and $a \oplus b \in \mathcal{I}(\mathbf{A})$. Therefore, an Equasi-MV algebra has enough idempotent elements. That is, for all $x \in A$, there is $a \in \mathcal{I}(\mathbf{A})$ such that $x \leq a$.

Let A be an Equasi-MV algebra. For all $n \in \mathbb{N}$ and $x \in A$, we define

 $0.x = 0, \ 1.x = x, \ \cdots, \ (n+1).x = n.x \oplus x.$

An Equasi-MV algebra $\langle A, \oplus, 0 \rangle$ is called a proper Equasi-MV algebra if 0 has no complement element.

Example 3.1. If $(A, \oplus, ', 0, 1)$ is a quasi-MV algebra, then $(A, \oplus, 0)$ is an Equasi-*MV algebra. Also, if* $\langle A, \vee, \wedge, \oplus, 0 \rangle$ *is an EMV-algebra, it is obvious that* $\langle A, \oplus, 0 \rangle$ is an Equasi-MV algebra.

Example 3.2. Let $(A, \oplus, ', 0, 1)$ be a quasi-MV algebra and $(B, \lor, \land, \oplus, 0)$ be an EMV-algebra. We define that the operation on the algebra $A \times B$ is point by point. That is, for any $\langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle \in A \times B$,

 $\langle x_1, x_2 \rangle \oplus \langle y_1, y_2 \rangle = \langle x_1 \oplus y_1, x_2 \oplus y_2 \rangle.$

And the least element of $A \times B$ is $0 = \langle 0, 0 \rangle$. For any $x \in B$, there exists $b \in \mathcal{I}(\mathbf{B})$ such that $x \leq b$. Then for any $\langle x_1, x_2 \rangle \in A \times B$, there exists $\langle 1, b \rangle \in \mathcal{I}(\mathbf{A}) \times \mathcal{I}(\mathbf{A})$ $\mathcal{I}(\mathbf{B})$. It suffices to show that $\langle [\langle 0, 0 \rangle, \langle 1, b \rangle], \oplus, \lambda_{\langle 1, b \rangle}, \langle 0, 0 \rangle, \langle 1, b \rangle \rangle$ is a quasi-MV algebra. We define $\lambda_{\langle 1,b\rangle}(\langle x_1,x_2\rangle) = \langle (x_1)',\lambda_b(x_2)\rangle$, for all $\langle x_1,x_2\rangle \in A \times B$. As a result, $A \times B$ is an Equasi-MV algebra.

Example 3.3. Let e be a smallest idempotent of an Equasi-MV algebra A. Then an Equasi-MV algebra is the algebra $S = \langle A \times A, \oplus^S, 0^S \rangle$, where:

 $\begin{array}{l} (i) \ 0^{S} = \langle 0, \frac{e}{2} \rangle; \\ (ii) \ x^{S} \oplus^{S} y^{S} = \langle x_{1} \oplus y_{1}, \frac{e}{2} \rangle, \text{ for all } x^{S} = \langle x_{1}, x_{2} \rangle \text{ and } y^{S} = \langle y_{1}, y_{2} \rangle. \\ \end{array}$

For any $a \in \mathcal{I}(\mathbf{A})$, we define $a^S = \langle a, \frac{e}{2} \rangle$. Then $a^S = a^S \oplus a^S \in \mathcal{I}(\mathbf{S})$. Now we show that $\langle [0^S, a^S], \oplus^S, \lambda_{a^S}, 0^S, a^S \rangle$ is a quasi-MV algebra, where $\lambda_{a^S}(x^S) =$ $\langle \lambda_a(x_1), x_2 \rangle$ and $a \in \mathcal{I}(\mathbf{A})$. It is easy to show that $\lambda_{a^S}(x^S)$ is the least element such that $x^S \oplus z^S = a^S$ for all $x^S \in [0^S, a^S]$.

It is clear that $\lambda_{a^S}\lambda_{a^S}(x^S) = \lambda_{a^S}\langle\lambda_a(x_1), x_2\rangle = \langle x_1, x_2\rangle = x^S$. And $\lambda_{a^S}(x^S \oplus S^S) = \lambda_{a^S}\langle x_1 \oplus 0, \frac{e}{2}\rangle = \langle \lambda_a(x_1) \oplus 0, \frac{e}{2}\rangle$, $\lambda_{a^S}(x^S) \oplus 0^S = \langle \lambda_a(x_1), x_2\rangle \oplus 0^S = \langle \lambda_a(x_1), \oplus 0, \frac{e}{2}\rangle$. What's more, $\lambda_{a^S}(0^S) = \langle \lambda_a(0), \frac{e}{2}\rangle = \langle a, \frac{e}{2}\rangle = a^S$.

Example 3.4. Let $\langle A, \lor, \land, 0 \rangle$ be a generalized Boolean algebra Conrad and Darnel [1997]. For any $x, y \in [0, b]$, where $\oplus = \lor$ and $\lambda_b(x)$ is the unique relative complement of x in [0, b]. Then $\langle A, \oplus, 0 \rangle$ is an EMV-algebra by Example 3.2 (2) in Dvurečenskij and Zahiri [2019]. Hence, $\langle A, \oplus, 0 \rangle$ is an Equasi-MV algebra.

Example 3.5. Let $\langle A, \oplus, ', 0, 1 \rangle$ be a quasi-MV algebra and $\langle B, \vee, \wedge, 0 \rangle$ be a generalized Boolean algebra. It is easy to show that $A \times B$ is an Equasi-MV algebra.

Proof. The operation \oplus on $A \times B$ is defined pointwise. For all $\langle x, y \rangle \in A \times B$, there exist $a \in \mathcal{I}(\mathbf{A})$ and $b \in \mathcal{I}(\mathbf{B})$ such that $\langle x, y \rangle \leq \langle a, b \rangle$ and $\langle [\langle 0, 0 \rangle, \langle a, b \rangle], \oplus, \lambda_{\langle a, b \rangle}, \langle 0, 0 \rangle, \langle a, b \rangle \rangle$ is a quasi-MV algebra.

Let's give a specific description of the above example. Let the Diamond (Example 2.6) be the 4-element quasi-MV algebra A and $\mathbf{M} = \langle M, \lor, \land, 0 \rangle$ be the generalized Boolean algebra Conrad and Darnel [1997], where M is the set of components of any positive element \mathbb{N}^+ and the least element $0 := \emptyset$. That is, $M = \{N : N \subseteq \mathbb{N}^+\}$. Then every element N in M is idempotent. It is easily shown that $A \times M$ with the pointwise operation is an Equasi-MV algebra. \Box

Example 3.6. Let $\mathbf{S} = \langle [0,1] \times [0,1], \oplus, ', 0,1 \rangle$ be a standard quasi-MV algebra A. Ledda and Giuntini [2006, Example 5]. Let $\mathbf{A} = \mathbf{S} \oplus \mathbf{S} \oplus \mathbf{S} \oplus \cdots$. Then \mathbf{A} is an Equasi-MV algebra.

Proof. Obviously, $\langle A, \oplus, 0 \rangle$ is a commutative preordered semigroup and $(x \oplus y) \oplus 0 = x \oplus y$ for all $x, y \in A$. For any $x, y \in A$. Suppose $x = (x_i), y = (y_i)$. If $x_i \neq 0$ or $y_i \neq 0$, there exists $u_i \in \mathcal{I}(A)$ such that $x_i, y_i \leq u_i$ for all $i \geq 1$. If $x_i = y_i = 0$, take $u_i = 0$. We have an idempotent $u = (u_i) \in A$ such that $x, y \leq u$ and $\langle [0, u], \oplus, \lambda_u, 0, u \rangle$ is a quasi-MV algebra. \Box

Remark 3.1. Let A be an Equasi-MV algebra. For all $x, y \in A$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \in [0, b]$. In the quasi-MV algebra $\langle [0, b], \oplus, \lambda_b, 0, b \rangle$, we denote

 $x \cup_b y = \lambda_b(\lambda_b(x) \oplus y) \oplus y, \ x \cap_b y = \lambda_b(\lambda_b(x) \oplus \lambda_b(\lambda_b(x) \oplus y)).$

Proposition 3.1. Let A be an Equasi-MV algebra and $a, b \in \mathcal{I}(A)$ such that $a \leq b$. For each $x \in [0, a]$, we have

(i) $\lambda_b(a)$ is an idempotent, and $\lambda_a(a)=0$; (ii) $\lambda_a(x) \oplus 0 = \lambda_b(x) \cap a$; (iii) $\lambda_b(x) \oplus 0 = \lambda_a(x) \oplus \lambda_b(a)$; (iv) $\lambda_a(x) \leq \lambda_b(x)$. **Proof.** Since $\langle [0, b], \oplus, \lambda_b, 0, b \rangle$ is a quasi-MV algebra and $a \in \mathcal{I}(\mathbf{A})$, by Lemma 2.5 (i) we get that $x \oplus a = x \cup a$ for all $x \in [0, b]$.

(i) Since $\langle [0, b], \oplus, \lambda_b, 0, b \rangle$ is a quasi-MV algebra, $\lambda_b(a)$ is also an idempotent element by Lemma 26 in A. Ledda and Giuntini [2006]. It is obvious $\lambda_a(a) = 0$ in the quasi-MV algebra $\langle [0, a], \oplus, \lambda_a, 0, a \rangle$.

(ii) For all $x \in [0, a]$, we have

$$(\lambda_b(x) \cap a) \oplus (x \oplus 0) = (\lambda_b(x) \oplus (x \oplus 0)) \cap (a \oplus (x \oplus 0)) \text{ (Lemma 2.3 (vi))}$$
$$= b \cap a = a.$$

It follows that $\lambda_a(x) \oplus 0 = \lambda_a(x \oplus 0) \leq \lambda_b(x) \cap a$ in the quasi-MV algebra $\langle [0,b], \oplus, \lambda_b, 0, b \rangle$. Conversely, since $b = a \oplus \lambda_b(a) = x \oplus (\lambda_a(x) \oplus \lambda_b(a))$, we get $\lambda_b(x) \leq \lambda_a(x) \oplus \lambda_b(a)$. Since $\lambda_b(a)$ is an idempotent, by Lemma 2.5 (i) we have $\lambda_a(x) \oplus \lambda_b(a) = \lambda_a(x) \cup \lambda_b(a)$. Hence, $\lambda_b(x) \leq \lambda_a(x) \cup \lambda_b(a)$. Thus

 $\lambda_b(x) \cap a \leq (\lambda_a(x) \cup \lambda_b(a)) \cap a$ (Lemma 2.2 (iv))

 $= \lambda_a(x) \oplus 0$ (Lemma 2.4 (i)).

Summary of the above results, we get that $\lambda_a(x) \oplus 0 = \lambda_b(x) \cap a$.

(iii) By (ii) we have

$$\lambda_a(x) \oplus \lambda_b(a) = (\lambda_a(x) \oplus 0) \oplus \lambda_b(a)$$
$$= (\lambda_b(x) \cap a) \oplus \lambda_b(a)$$

 $= \lambda_b(x) \cup \lambda_b(a) \text{ (Lemma 2.3 (vi) and Lemma 2.5 (i)).}$ It follows from $x \leq a$ that $\lambda_b(a) \leq \lambda_b(x)$. Then $\lambda_b(x) \cup \lambda_b(a) = \lambda_b(x) \oplus 0$. Therefore, $\lambda_b(x) \oplus 0 = \lambda_a(x) \oplus \lambda_b(a)$.

(iv) It follows from (ii) or (iii).□

The following statement shows that \bigcup_a and \bigcap_a on [0, a] are coincide with \bigcup and \bigcap on A, respectively.

Proposition 3.2. Let A be an Equasi-MV algebra. For all $x, y \in A$, there exist $a, b \in \mathcal{I}(\mathbf{A})$ such that $x, y \in [0, a]$ and $x, y \in [0, b]$. Then we have

(*i*)
$$x \bigoplus_a y = x \bigoplus_b y$$
;
(*ii*) $x \bigcup_a y = x \bigcup_b y$.

Proof. (i) By Definition 3.1, for all $a, b \in \mathcal{I}(\mathbf{A})$, there exists $c \in \mathcal{I}(\mathbf{A})$ such that $a, b \leq c$. Then we have

$$\begin{aligned} x \Cup_{c} y &= x \oplus \lambda_{c}(x \oplus \lambda_{c}(y) \oplus 0) \\ &= x \oplus \lambda_{c}(x \oplus \lambda_{a}(y) \oplus \lambda_{c}(a)) \text{ (Proposition 3.1 (iii))} \\ &= x \oplus (\lambda_{c}(x \oplus \lambda_{a}(y)) \otimes_{c} a) \text{ (the definition of } \otimes_{c}) \\ &= x \oplus (\lambda_{c}(x \oplus \lambda_{a}(y)) \cap a) \text{ (Lemma 2.5 (ii))} \\ &= x \oplus ((\lambda_{a}(x \oplus \lambda_{a}(y)) \cup \lambda_{c}(a)) \cap a) \text{ (Proposition 3.1(iii), Lemma 2.5(i))} \\ &= x \oplus (\lambda_{a}(x \oplus \lambda_{a}(y)) \cap a) \text{ (Lemma 2.4 (i))} \\ &= x \oplus (\lambda_{a}(x \oplus \lambda_{a}(y)) \oplus 0) = x \Cup_{a} y. \end{aligned}$$

Similarly, we can show that x
equiver constraints of the equivalent transformation of the equivalent transformation of the equivalent transformation of the equivalent transformation of tran

Similarly, we can show that $x \bigoplus_c y = x \bigoplus_b y$ and so $x \bigoplus_a y = x \bigoplus_b y$.

Definition 3.2. Let **A** be an Equasi-MV algebra and $x, y \in [0, a]$ where $a \in \mathcal{I}(\mathbf{A})$. A preordering \leq_a on the quasi-MV algebra $\langle [0, a], \oplus, \lambda_a, 0, a \rangle$ defined as follows:

$$x \leqslant_a y \iff x \Cap_a y = x \oplus 0.$$

By Proposition 3.2, for any $x, y \leq a, b$, where $a, b \in \mathcal{I}(\mathbf{A})$, we have $x \leq_a y \iff x \leq y \iff x \leq_b y$. Then we can also define a preordering \leq on A by $x \leq y \iff x \cap y = x \oplus 0$, where $x \cap y = x \cap_a y$.

Lemma 3.1. Let **A** be an Equasi-MV algebra. For all $x, y \in A$, the operation \otimes : $A \times A \rightarrow A$ defined by $x \otimes y = \lambda_a(\lambda_a(x) \oplus \lambda_a(y))$, where $a \in \mathcal{I}(\mathbf{A})$ and $x, y \leq a$. Then

(i) the well-defined binary operation \otimes on A is not determined by the choice of a and is also order preserving and associative.

(ii) if $x, y \in A$, $x \leq y$, then $y \otimes \lambda_a(x) = y \otimes \lambda_b(x)$ and $y \oplus 0 = x \oplus (y \otimes \lambda_a(x))$ for all $a, b \in \mathcal{I}(\mathbf{A})$ and $x, y \leq a, b$.

(iii) if $x, y \in [0, a]$ and $a \in \mathcal{I}(\mathbf{A})$, then $x \otimes \lambda_a(y) = x \otimes \lambda_a(x \cap y)$ and $x \oplus 0 = (x \cap y) \oplus (x \otimes \lambda_a(y))$.

(iv) an element $a \in A$ is idempotent iff $a \otimes a = a$.

Proof. (i) Let $x, y \in A$ and $a, b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq a, b$. We claim that $\lambda_a(\lambda_a(x) \oplus \lambda_a(y)) = \lambda_b(\lambda_b(x) \oplus \lambda_b(y))$. Indeed, there exists an element $c \in \mathcal{I}(\mathbf{A})$

such that
$$a, b \leq c$$
. Then
 $\lambda_c(\lambda_c(x) \oplus \lambda_c(y)) = \lambda_c(\lambda_a(x) \oplus \lambda_c(a) \oplus \lambda_a(y) \oplus \lambda_c(a))$ (Proposition 3.1 (iii))
 $= \lambda_c(\lambda_a(x) \oplus \lambda_a(y)) \otimes_c \lambda_c(\lambda_c(a))$ (Propsition 3.1 (i))
 $= \lambda_c(\lambda_a(x) \oplus \lambda_a(y)) \oplus a$ (Lemma 2.5 (ii))
 $= (\lambda_a(\lambda_a(x) \oplus \lambda_a(y)) \oplus \lambda_c(a)) \cap a$ (Lemma 3.1 (iii))
 $= (\lambda_a(\lambda_a(x) \oplus \lambda_a(y)) \cup \lambda_c(a)) \cap a$ (Lemma 2.5 (i))
 $= \lambda_a(\lambda_a(x) \oplus \lambda_a(y)) \cap a$
 $= \lambda_a(\lambda_a(x) \oplus \lambda_a(y)).$
Similarly, we have $\lambda_c(\lambda_c(x) \oplus \lambda_c(y)) = \lambda_b(\lambda_b(x) \oplus \lambda_b(y)).$

Let $x, y, z \in A$. There exists $c \in \mathcal{I}(\mathbf{A})$ such that $x, y, z \leq c$. It follows from the definition of \otimes that $x \otimes y, y \otimes z \in [0, c]$. Then

$$\begin{aligned} (x \otimes y) \otimes z &= \lambda_c (\lambda_c (x \otimes y) \oplus \lambda_c (z)) \\ &= \lambda_c ((\lambda_c (x) \oplus \lambda_c (y)) \oplus \lambda_c (z)) \\ &= \lambda_c (\lambda_c (x) \oplus (\lambda_c (y) \oplus \lambda_c (z))) \\ &= \lambda_c (\lambda_c (x) \oplus \lambda_c (y \otimes z)) = x \otimes (y \otimes z) \end{aligned}$$

This proves that \otimes is associative. It is easy to prove that \otimes is order preserving.

(ii) Let $x \leq y$ and $x, y \leq a, b$, where $a, b \in \mathcal{I}(\mathbf{A})$. There exists $c \in \mathcal{I}(\mathbf{A})$ such that $a, b \leq c$. By Proposition 3.1, we have

$$y \otimes \lambda_a(x) = \lambda_c(\lambda_c(y) \oplus \lambda_c(\lambda_a(x)))$$

= $\lambda_c(\lambda_c(y) \oplus \lambda_c(\lambda_a(x)) \oplus 0)$
= $\lambda_c(\lambda_c(y) \oplus \lambda_c(\lambda_a(x) \oplus 0))$
= $y \otimes (\lambda_a(x) \oplus 0).$

Then

$$y \otimes \lambda_c(x) = y \otimes (\lambda_c(x) \oplus 0)$$

= $y \otimes (\lambda_a(x) \oplus \lambda_c(a))$
= $y \otimes (\lambda_a(x) \uplus \lambda_c(a))$ (Lemma 2.5 (i))
= $(y \otimes \lambda_a(x)) \Cup (y \otimes \lambda_c(a))$ (Lemma 2.3

Since $\lambda_c(a) \leq \lambda_c(y)$, we have $y \otimes \lambda_c(a) \leq y \otimes \lambda_c(y) = 0$, where $y \leq a \leq c$. This implies $y \otimes \lambda_c(x) = y \otimes \lambda_a(x)$. Similarly, we have $y \otimes \lambda_c(x) = y \otimes \lambda_b(x)$. It follows that $y \otimes \lambda_a(x) = y \otimes \lambda_b(x)$.

(vii)).

In the quasi-MV algebra $\langle [0, a], \oplus, \lambda_a, 0, a \rangle$, we have $x \oplus (y \otimes \lambda_a(x)) = x \oplus \lambda_a(\lambda_a(y) \oplus x) = x \boxtimes y = y \oplus 0.$ (iii) Let $x, y \leq a$ and $a \in \mathcal{I}(\mathbf{A})$. We have $x \otimes \lambda_a(x \cap y) = x \otimes (\lambda_a(x) \boxtimes \lambda_a(y))$ $= (x \otimes \lambda_a(x)) \boxtimes (x \otimes \lambda_a(y))$ (Lemma 2.3 (vii)) $= x \otimes \lambda_a(y).$

$$(x \cap y) \oplus (x \otimes \lambda_a(y)) = (x \cap y) \oplus (x \otimes \lambda_a(x \cap y))$$

= $(x \cap y) \oplus \lambda_a(\lambda_a(x) \oplus (x \cap y))$
= $x \oplus \lambda_a(x \oplus \lambda_a(x \cap y))$ (QMV 4)
= $x \oplus \lambda_a(x \oplus \lambda_a(x) \oplus \lambda_a(\lambda_a(x) \oplus y))$
= $x \oplus 0$.

(iv) \Longrightarrow : Suppose $a, b \in \mathcal{I}(\mathbf{A})$ with $a \leq b$. We have $\lambda_b(a) \oplus \lambda_b(a) = \lambda_b(a)$ by Proposition 3.1 (i). In the quasi-MV algebra $\langle [0, b], \oplus, \lambda_b, 0, b \rangle$, we have $a \otimes a = \lambda_b(\lambda_b(a) \oplus \lambda_b(a)) = \lambda_b(\lambda_b(a)) = a$.

Theorem 3.1. Let A be an Equasi-MV algebra. Then $\langle \mathcal{R}(\mathbf{A}), \bigcup_R, \bigoplus_R, \bigoplus_R, 0_R \rangle$ is an EMV-subalgebra of A.

Proof. It is obvious that $\mathcal{R}(\mathbf{A})$ is closed under the operations $\bigcup_R, \bigoplus_R, \bigoplus_R, 0_R$. For all $x, y \in \mathcal{R}(\mathbf{A})$, there exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq a$. Then $[0, a] \cap \mathcal{R}(\mathbf{A})$ is an MV-algebra of [0, a] by Lemma 15 in A. Ledda and Giuntini [2006]. This means that $\mathcal{R}(\mathbf{A})$ is an EMV-subalgebra of \mathbf{A} . \Box

4 Ideals and congruences

In this section, we give the notions of ideals and ideal congruences of Equasi-MV algebras. We also give an equivalent definition of ideals. Moreover, there is a one-to-one correspondence between the set of all ideals and the set of all ideal congruences.

Definition 4.1. Let A be an Equasi-MV algebra. An equivalence relation θ on A is called a congruence, if the following conditions hold:

(*i*) θ *is compatible with* \oplus *;*

(ii) for all $b \in \mathcal{I}(\mathbf{A}), \theta \cap ([0, b] \times [0, b])$ is a congruence on the quasi-MV algebra $\langle [0, b], \oplus, \lambda_b, 0, b \rangle$.

The set of all congruences on A represented by Con(A).

Definition 4.2. Let A_1, A_2 be two Equasi-MV algebras. We call a map $f : A_1 \longrightarrow A_2$ to be an Equasi-MV homomorphism, if it satisfies the following statements:

(i) $f(x \oplus y) = f(x) \oplus f(y)$ and f(0) = 0, for all $x, y \in A_1$; (ii) for all $x, y \in [0, a]$ and $a \in \mathcal{I}(\mathbf{A_1})$, $f(\lambda_a(x)) = \lambda_{f(a)}(f(x))$. **Example 4.1.** Let $f : A_1 \to A_2$ be an Equasi-MV homomorphism. We can define $\theta = \{(x, y) \in A_1 \times A_1 : f(x) = f(y)\}$, then θ is a congruence.

Let A be an Equasi-MV algebra and θ be a congruence on A. We denote $A/\theta = \{x/\theta : x \in A\}$, where $x/\theta = \{y \in A : \langle x, y \rangle \in \theta\}$. We define operations \square , \square , \oplus on A/θ as follows: for any $x, y \in A$, $x/\theta \square y/\theta = (x \square y)/\theta, x/\theta \square y/\theta = (x \square y)/\theta, x/\theta \oplus y/\theta = (x \oplus y)/\theta$. Suppose $x/\theta \leq y/\theta$. Then $(x \square y)/\theta \geq x/\theta$. For all $z \in A$, we have $x/\theta \oplus z/\theta = (x \oplus z)/\theta$ $\leq ((x \square y) \oplus z)/\theta$ $= y/\theta \oplus z/\theta$.

This proves that $\langle A/\theta, \oplus, 0/\theta \rangle$ is a commutative preordered semigroup and $(x/\theta \oplus y/\theta) \oplus 0/\theta = x/\theta \oplus y/\theta$.

For all $x \in A$, there exists $a \in \mathcal{I}(\mathbf{A})$ such that $x \leq a$. It is easily shown that a/θ is an idempotent element and $x/\theta \leq a/\theta$. Since \mathbf{A} is an Equasi-MV algebra, we have that $\langle [0, a], \oplus, \lambda_a, 0, a \rangle$ is a quasi-MV algebra. And let $\theta_a = \theta \cap ([0, a] \times [0, a])$ be an ideal congruence on $\langle [0, a], \oplus, \lambda_a, 0, a \rangle$. For any $x/\theta_a \in [0/\theta_a, a/\theta_a]$, we define $\lambda_{a/\theta_a}(x/\theta_a) = \lambda_a(x)/\theta_a$. Then $[0/\theta_a, a/\theta_a]$ is a quasi-MV algebra.

Now we show that $\langle [0/\theta, a/\theta], \oplus, \lambda_{a/\theta}, 0/\theta, a/\theta \rangle$ is a quasi-MV algebra. For all $x/\theta \in [0/\theta, a/\theta]$, there exists $y/\theta \in [0/\theta, a/\theta]$ such that $x/\theta \oplus y/\theta = a/\theta$. It follows that $\langle x \oplus y, a \rangle \in \theta$. And since $x, y \leq a$, we have $\langle x \oplus y, a \rangle \in \theta_a$. That is, $x/\theta_a \oplus y/\theta_a = a/\theta_a$. Thus $y/\theta_a \ge \lambda_a(x)/\theta_a$ and so $y/\theta \ge \lambda_a(x)/\theta$. This implies that $\lambda_{a/\theta}(x/\theta)$ exists and equals to $\lambda_a(x)/\theta$. It can be easily shown that $\langle [0/\theta, a/\theta], \oplus, \lambda_{a/\theta}, 0/\theta, a/\theta \rangle$ is a quasi-MV algebra. Thus, $\langle A/\theta, \oplus, 0/\theta \rangle$ is an Equasi-MV algebra.

And the map $\pi : \langle A, \oplus, 0 \rangle \longrightarrow \langle A/\theta, \oplus, 0/\theta \rangle$ defined by $x \longmapsto x/\theta$ is an Equasi-MV homomorphism from A onto A/θ .

Definition 4.3. Let A be an Equasi-MV algebra and I be a nonempty subset of A. We call I to be an ideal of A if the following conditions hold:

(11) $0 \in I$; (12) for all $x, y \in I$, then $x \oplus y \in I$; (13) $x \in I$ and $y \leq x$ imply $y \in I$.

If I is an ideal of A and $x \in A$, we have $x \in I$ iff $x \oplus 0 \in I$ by (I3).

Definition 4.4. Let A be an Equasi-MV algebra and I be a nonempty subset of A. If the following statements hold, I is a weak ideal of A: (W1) $0 \in I$;

(W2) for all $x, y \in I$, then $x \oplus y \in I$; (W3) $x \in I$ and $y \in A$ imply $x \otimes y \in I$. **Lemma 4.1.** Let I be an ideal of an Equasi-MV algebra **A**. Then I is a weak ideal.

Proof. Let *I* be an ideal of *A* and $x \in I$. If $y \in A$ with $y \leq x$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq b$. Then we have

$$(x \otimes y) \cap x = \lambda_b(\lambda_b(x) \oplus \lambda_b(y)) \cap x$$

= $\lambda_b(\lambda_b(x) \oplus \lambda_b(y) \oplus \lambda_b(\lambda_b(x) \oplus \lambda_b(y) \oplus x))$
= $\lambda_b(\lambda_b(x) \oplus \lambda_b(y) \oplus \lambda_b(b)) = x \otimes y.$

It follows that $x \otimes y \leq x$. Thus $x \otimes y \in I$ and so I is a weak ideal of A. \Box

The converse of Lemma 4.1 is not true. For example, $\{0\}$ is a weak ideal, but not an ideal.

Proposition 4.1. Let I be a nonempty subset of an Equasi-MV algebra \mathbf{A} and $0 \in I$. Then I is an ideal iff for all $x, y \in A$, $a \in \mathcal{I}(\mathbf{A})$ with $x, y \leq a$, $\lambda_a(x) \otimes y \in I$ and $x \in I$ implies $y \in I$.

Proof. \Longrightarrow : Let I be an ideal of A. For all $x, y \in A$ and $a \in \mathcal{I}(\mathbf{A})$ with $x, y \leq a$, if $\lambda_a(x) \otimes y \in I$ and $x \in I$, we have $(\lambda_a(x) \otimes y) \oplus x \in I$. Since $\lambda_a(y) \oplus ((\lambda_a(x) \otimes y) \oplus x) = \lambda_a(y) \oplus (\lambda_a(x \oplus \lambda_a(y)) \oplus x)$ $= \lambda_a(y) \oplus (\lambda_a(\lambda_a(x) \oplus y) \oplus y) (QMV4)$ $= \lambda_a(y) \oplus y \oplus \lambda_a(\lambda_a(x) \oplus y)$ = a,

we have $y \leq (\lambda_a(x) \otimes y) \oplus x \in I$ and $y \in I$.

 $\iff: \text{ For any } x, y \in I \text{ and } a \in \mathcal{I}(\mathbf{A}) \text{ with } x \leq y \text{ and } x, y \leq a, \text{ we have } \lambda_a(x) \otimes y = 0 \in I. \text{ Hence, } y \in I \text{ is obtained from propositional conditions. And then}$

$$\begin{split} \lambda_a(x)\otimes (x\oplus y) &= \lambda_a(x\oplus \lambda_a(x\oplus y)) \\ &= \lambda_a(x) \cap y \\ &\leqslant y \in I. \end{split}$$

Then $\lambda_a(x)\otimes (x\oplus y)\in I.$ It follows from $x\in I$ that $x\oplus y\in I.\square$

Definition 4.5. Let A be an Equasi-MV algebra. We define a binary relation \preccurlyeq as follows: for all $x, y \in A$,

$$x \preccurlyeq y \text{ iff } x \cap y = x.$$

The binary relation \preccurlyeq satisfies antisymmetry and transitivity, but when x is a regular element, it satisfies reflexivity.

Lemma 4.2. Let A be an Equasi-MV algebra and $x, y \in A$. Then $x \preccurlyeq y$ iff $x \leqslant y$ and $x \in \mathcal{R}(A)$.

Proof. If $x \preccurlyeq y$, we have $x \cap y = x$ and $x \cap y = (x \cap y) \oplus 0 = x \oplus 0$. It follows that $x \leqslant y$ and $x \oplus 0 = x$. Thus $x \in \mathcal{R}(\mathbf{A})$. Conversely, if $x \leqslant y$ and $x \in \mathcal{R}(\mathbf{A})$, we have $x \cap y = x \oplus 0 = x$ and so $x \preccurlyeq y \square$

Lemma 4.3. Let A be an Equasi-MV algebra and $J \subseteq A$. Then the following statements are equivalent:

(i) J is a weak ideal of A;

(ii) (1) if $x, y \in J$, then $x \oplus y \in J$; (2) if $x \in J$, $y \preccurlyeq x$, then $y \in J$.

Proof. (i) \Longrightarrow (ii): Suppose $x \in J$ and $y \preccurlyeq x$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $x \leqslant b$. Then $x \otimes (\lambda_b(x) \oplus y) = x \cap y \in J$. Since $y \preccurlyeq x$, we have $x \cap y = y \in J$.

(ii) \Leftarrow (ii): For any $x \in J$, $y \in A$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq b$. Since $x \otimes y \leq x$ and $x \otimes y \in \mathcal{R}(\mathbf{A})$ by Lemma 4.2, we have $x \otimes y \leq x$. Therefore, $x \otimes y \in J.\Box$

Let A be an Equasi-MV algebra and H be a subset of A. The ideal generated by H is the smallest ideal of A containing H, denoted by $\langle H \rangle$.

Lemma 4.4. Let A be an Equasi-MV algebra and $H \subseteq A$, then

(i) $\langle H \rangle = \{x \in A : \text{ there exist } h_1, \dots, h_n \in H, n \in \mathbb{N} \text{ such that } x \leq h_1 \oplus \dots \oplus h_n\};$ (ii) $\langle 0 \rangle$ is the smallest ideal of **A**;

(iii) If I is an ideal of A and $x \in A$, we have

 $\langle I \cup \{x\} \rangle = \{z \in A : z \leq a \oplus n.x \text{ for some } a \in I \text{ and } n \in \mathbb{N} \}.$

Proof. (i) We write $M = \{x \in A : \text{there exist } h_1, \dots, h_n \in H, n \in \mathbb{N} \text{ such that } x \leq h_1 \oplus \dots \oplus h_n\}$. Then M is an ideal of A. Now we show that M is the smallest ideal of A containing H. Suppose M' is an ideal of A containing H. For any $x \in M$, there exist $h_1, \dots, h_n \in H$ such that $x \leq h_1 \oplus \dots \oplus h_n$. As $H \subseteq M'$, we get $x \in M'$ and so $M \subseteq M'$.

(ii) By (i) we obvious get the result. \Box

Definition 4.6. An ideal I of an Equasi-MV algebra A is maximal if for all $x \in A \setminus I$, $\langle I \cup \{x\} \rangle = A$.

Definition 4.7. Let A be an Equasi-MV algebra and θ be a congruence on A. θ is an ideal congruence if for all $x, y \in A$, $(x \oplus 0)\theta(y \oplus 0) \Rightarrow x\theta y$.

Example 4.2. Let A be an Equasi-MV algebra and $x, y \in A$. A binary relation χ defined as follows: $x\chi y$ iff $x \leq y$ and $y \leq x$.

It is easy to show that χ is compatible with \oplus . We now show that for all $b \in \mathcal{I}(\mathbf{A}), \chi \cap ([0,b] \times [0,b])$ is congruence on the quasi-MV algebra $\langle [0,b], \oplus, \lambda_b, 0, b \rangle$. Suppose $\langle x, y \rangle \in \chi \cap ([0,b] \times [0,b])$. It follows from $\langle x, y \rangle \in \chi$ that $x \leq y$ and $y \leq x$. Hence, $\lambda_b(y) \leq \lambda_b(x)$ and $\lambda_b(x) \leq \lambda_b(y)$. Therefore, $\langle \lambda_b(x), \lambda_b(y) \rangle \in \chi \cap ([0,b] \times [0,b])$. That is, χ is a congruence on A. As a result, χ is an ideal congruence. **Definition 4.8.** Let A be an Equasi-MV algebra, I be an ideal of A and θ be an ideal congruence on A. We define two relations f(J) on $A \times A$ and $g(\theta)$ on A as follows:

 $\langle x, y \rangle \in f(J)$ iff there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x \otimes \lambda_b(y), y \otimes \lambda_b(x) \in J$; $g(\theta) = 0/\theta = \{x \in A : x\theta 0\}.$

Theorem 4.1. Let A be an Equasi-MV algebra, J be an ideal of A and θ be an ideal congruence on A.

(i) f(J) is an ideal congruence on \mathbf{A} ; (ii) $g(\theta)$ is an ideal of \mathbf{A} ; (iii) J = g(f(J)); (iv) $\theta = f(g(\theta))$.

Proof. (i) Obviously, f(J) is a congruence on A. Now we show that f(J) is an ideal congruence. Let $\langle x \oplus 0, y \oplus 0 \rangle \in f(J)$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq b$. Then $\lambda_b(x \oplus 0) \otimes (y \oplus 0)$, $\lambda_b(y \oplus 0) \otimes (x \oplus 0) \in J$. It follows that $\lambda_b(x) \otimes y = \lambda_b(x \oplus 0) \otimes (y \oplus 0) \in J$. Similarly, $\lambda_b(y) \otimes x \in J$. Thus, $\langle x, y \rangle \in f(J)$. Therefore, f(J) is an ideal congruence on \mathbf{A} .

(ii) Suppose $\langle x, 0 \rangle \in \theta$ and $y \leq x$. We have $\langle \lambda_b(x), b \rangle \in \theta$. That implies $\langle \lambda_b(x) \oplus y, b \rangle \in \theta$ and so $\langle x \otimes (\lambda_b(x) \oplus y), x \otimes b \rangle \in \theta$. That is, $\langle x \oplus y, x \oplus 0 \rangle \in \theta$. It follows from $y \leq x$ that $x \oplus y = y \oplus 0$. Thus, $\langle y \oplus 0, x \oplus 0 \rangle \in \theta$. Since θ is an ideal congruence on **A**, we have $\langle y, x \rangle \in \theta$. This together with $\langle 0, x \rangle \in \theta$ implies that $\langle y, 0 \rangle \in \theta$ and so $y \in g(\theta)$. Therefore, $g(\theta)$ is an ideal of **A**.

(iii) It is easily seen that $g(f(J)) = \{x \in A : x \oplus 0 \in J\}$. For all $x \in A$, we have $x \in J$ iff $x \oplus 0 \in J$. Thus $g(f(J)) = \{x \in A : x \in J\}$.

(iv) For any $x, y \in A$, if $\langle x, y \rangle \in f(g(\theta))$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq b, \langle \lambda_b(x) \otimes y, 0 \rangle \in \theta$ and $\langle \lambda_b(y) \otimes x, 0 \rangle \in \theta$. Then $\langle (\lambda_b(x) \otimes y) \oplus x, 0 \oplus x \rangle \in \theta$. By $(\lambda_b(x) \otimes y) \oplus x = x \cup y$, we get $\langle x \cup y, 0 \oplus x \rangle \in \theta$. Similarly, we have $\langle x \cup y, 0 \oplus y \rangle \in \theta$. Thus, $\langle 0 \oplus x, 0 \oplus y \rangle \in \theta$. Since θ is an ideal congruence on \mathbf{A} , we have $\langle x, y \rangle \in \theta$. Therefore, $f(g(\theta)) \subseteq \theta$.

Conversely, if $\langle x, y \rangle \in \theta$, there exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq b$ and so $\langle y \otimes \lambda_b(x), x \otimes \lambda_b(x) \rangle \in \theta$. This together with $x \otimes \lambda_b(x) = 0$ implies $\langle y \otimes \lambda_b(x), 0 \rangle \in \theta$. Similarly, $\langle x \otimes \lambda_b(y), 0 \rangle \in \theta$. Thus, $\langle x, y \rangle \in f(g(\theta))$. Therefore, $\theta \subseteq f(g(\theta))$. \Box

Let I be an ideal of an Equasi-MV algebra A. The relation θ_I is defined as follows: for all $x, y \in A$,

 $(x,y) \in \theta_I \iff \exists b \in \mathcal{I}(\mathbf{A}) \text{ with } x, y \leq b \text{ such that } \lambda_b(\lambda_b(x) \oplus y), \lambda_b(\lambda_b(y) \oplus x) \in I.$

Proposition 4.2. Let A be an Equasi-MV algebra. If I is an ideal of A, the relation θ_I is an ideal congruence on A.

Proof. Let *I* be an ideal of *A*. Suppose $\langle x, y \rangle$, $\langle y, z \rangle \in \theta_I$. We have $\lambda_b(\lambda_b(x) \oplus y)$, $\lambda_b(\lambda_b(y) \oplus x) \in I$ and $\lambda_b(\lambda_b(z) \oplus y)$, $\lambda_b(\lambda_b(y) \oplus z) \in I$ where $b \in \mathcal{I}(\mathbf{A})$ such

that $x, y, z \leq b$. Since I is an ideal of A, we have $\lambda_b(\lambda_b(x) \oplus y) \oplus \lambda_b(\lambda_b(y) \oplus z) \in I$ and $\lambda_b(\lambda_b(y) \oplus x) \oplus \lambda_b(\lambda_b(z) \oplus y) \in I$. And $(\lambda_b(x) \oplus z) \oplus (\lambda_b(\lambda_b(x) \oplus y) \oplus \lambda_b(\lambda_b(y) \oplus z)) = b$. It follows that $\lambda_b(\lambda_b(x) \oplus z) \in I$. Similarly, $\lambda_b(\lambda_b(z) \oplus x) \in I$. Then $\langle x, z \rangle \in \theta_I$. The reflexivity and symmetry is clear.

It is easy to prove that θ_I is compatible with \oplus . For all $u \in \mathcal{I}(\mathbf{A})$ such that $x, y, z \leq u$. Now, we show that $\theta_{I_u} = \theta_I \cap ([0, u] \times [0, u])$ is a congruence on the quasi-MV algebra $\langle [0, u], \oplus, \lambda_u, 0, u \rangle$. Suppose $\langle x, y \rangle \in \theta_{I_u}$, we have $\lambda_u(\lambda_u(x) \oplus y), \lambda_u(\lambda_u(y) \oplus x) \in I \cap ([0, u] \times [0, u])$. Then

$$(\lambda_u(x \oplus z) \oplus (y \oplus z)) \oplus \lambda_u(\lambda_u(x) \oplus y)$$

= $\lambda_u(x \oplus z) \oplus x \oplus z \oplus \lambda_u(\lambda_u(y) \oplus x)$
= $\lambda_u(\lambda_u(x) \oplus \lambda_u(z)) \oplus \lambda_u(z) \oplus z \oplus \lambda_u(\lambda_u(y) \oplus x)$
= u .

It follows that $\lambda_u(\lambda_u(x \oplus z) \oplus (y \oplus z)) \leq \lambda_u(\lambda_u(x) \oplus y) \in \theta_I$. Then $\lambda_u(\lambda_u(x \oplus z) \oplus (y \oplus z)) \in \theta_I$. Similarly, $\lambda_u(\lambda_u(y \oplus z) \oplus (x \oplus z)) \in \theta_I$. Thus, $\langle x \oplus z, y \oplus z \rangle \in \theta_{I_u}$. And $\langle \lambda_u(x), \lambda_u(z) \rangle \in \theta_{I_u}$ is obvious. Therefore, θ_I is a congruence on A.

For each $\langle x \oplus 0, y \oplus 0 \rangle \in \theta_I$, we have $\lambda_b(\lambda_b(x \oplus 0) \oplus (y \oplus 0))$, $\lambda_b(\lambda_b(y \oplus 0) \oplus (x \oplus 0)) \in I$. That is, $\lambda_b(\lambda_b(x) \oplus y)$, $\lambda_b(\lambda_b(y) \oplus x) \in I$. Thus $\langle x, y \rangle \in \theta_I$. Therefore, θ_I is an ideal congruence. \Box

Theorem 4.2. Let A be an Equasi-MV algebra. There is a one-to-one correspondence between the set of all ideals and the set of all ideal congruences.

Proof. Let *I* be an ideal of *A* and θ_I be an ideal congruence induced by *I*. Now we show that $I = 0/\theta_I$. Since $0 \in I$, we have $\langle x, 0 \rangle \in \theta_I$, for all $x \in I$. It follows that $x \in 0/\theta_I$. Conversely, suppose $x \in 0/\theta_I$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x \leq a$. By Proposition 4.1, since $\lambda_a(x) \otimes 0 \in I$ and $0 \in I$, we have $x \in I$. Hence, $I = 0/\theta_I$.

Let θ be an ideal congruence on A. Let $I = 0/\theta$. Suppose $\langle x, y \rangle \in \theta_I$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq a$ and $\lambda_b(\lambda_b(x) \oplus y), \lambda_b(\lambda_b(y) \oplus x) \in I = 0/\theta$. That is, $\langle \lambda_b(\lambda_b(x) \oplus y), 0 \rangle \in \theta$ and $\langle \lambda_b(\lambda_b(y) \oplus x), 0 \rangle \in \theta$. Hence, $\langle \lambda_b(\lambda_b(x) \oplus y) \oplus y, 0 \oplus y \rangle \in \theta$ and $\langle \lambda_b(\lambda_b(y) \oplus x) \oplus x, 0 \oplus x \rangle \in \theta$. Since $\lambda_b(\lambda_b(x) \oplus y) \oplus y = \lambda_b(\lambda_b(y) \oplus x) \oplus x$, we have $\langle x \oplus 0, y \oplus 0 \rangle \in \theta$. And since θ is an ideal congruence on A, we have $\langle x, y \rangle \in \theta$.

Conversely, let $\langle x, y \rangle \in \theta$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq a$. Then $\langle \lambda_a(x), \lambda_a(y) \rangle \in \theta$ and $\langle \lambda_a(x) \otimes y, \lambda_a(y) \otimes y \rangle \in \theta$. Since $\lambda_a(y) \otimes y = 0$, we have $\lambda_a(x) \otimes y \in 0/\theta$. Similarly, $\lambda_a(y) \otimes x \in 0/\theta$. That is, $\langle x, y \rangle \in \theta_I$. Therefore, $\theta = \theta_I$. \Box

Theorem 4.3. Let A be an Equasi-MV algebra. Then $f(I) \circ f(J) = f(J) \circ f(I)$ is vaild, where I and J are ideals of A.

Proof. Suppose $f(I), f(J) \in \text{Con}I(\mathbf{A})$ and $\langle x, y \rangle \in f(I) \circ f(J)$ for $x, y \in A$. So there exists $z \in A$ such that $\langle x, z \rangle \in f(I)$ and $\langle z, y \rangle \in f(J)$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y, z \leq b$. Let p be a ternary term defined as follows:

 $p_b(x, y, z) = (x \otimes (\lambda_b(y) \oplus (y \cap z))) \cup (z \otimes (\lambda_b(y) \oplus (y \cap x))).$

Then

 $(x \otimes (\lambda_b(z) \oplus (z \cap y))) \cup (y \otimes (\lambda_b(z) \oplus (z \cap x))) f(I) p_b(z, z, y) = y \oplus 0$ and

 $(x \otimes (\lambda_b(z) \oplus (z \cap y))) \cup (y \otimes (\lambda_b(z) \oplus (z \cap x))) f(J) p_b(x, y, y) = x \oplus 0.$ Let

 $(x\otimes (\lambda_b(z)\oplus (z \cap y))) \sqcup (y\otimes (\lambda_b(z)\oplus (y\cap x))) = t,$

where $t \leq b \in \mathcal{I}(\mathbf{A})$. It follows from $\langle t, y \oplus 0 \rangle \in f(I)$ and $\langle t, x \oplus 0 \rangle \in f(J)$ that $(y \oplus 0) \otimes \lambda_b(t), \ \lambda_b(y \oplus 0) \otimes t \in I;$

 $(x \oplus 0) \otimes \lambda_b(t), \ \lambda_b(x \oplus 0) \otimes t \in J.$

Now, $y \otimes \lambda_b(t) \leq (y \oplus 0) \otimes \lambda_b(t) \in I$, $x \otimes \lambda_b(t) \leq (x \oplus 0) \otimes \lambda_b(t) \in J$. Similarly, $\lambda_b(y) \otimes t \leq \lambda_b(y \oplus 0) \otimes t \in I$, $\lambda_b(x) \otimes t \leq \lambda_b(x \oplus 0) \otimes t \in J$. Thus, $\langle t, y \rangle \in f(I)$ and $\langle t, x \rangle \in f(J)$. That is, $\langle x, y \rangle \in f(J) \circ f(I)$. \Box

Lemma 4.5. If A is an Equasi-MV algebra, the lattice ConI(A) of ideal congruences on A is a sublattice of Con(A).

Proof. Let *I*, *J* be two ideals of **A**. It is easy to prove that $f(I \cap J) = f(I) \cap f(J)$. Now we show that $f(I \vee J) = f(I) \vee f(J)$.

Since $g(f(I \lor J)) = I \lor J$ and $g(f(I)) \lor g(f(J)) = I \lor J$, we claim that $g(f(I) \lor f(J)) = g(f(I)) \lor g(f(J))$. Let $x \in g(f(I)) \lor g(f(J))$ such that $x \leqslant y \oplus z$ where $y \in g(f(I))$ and $z \in g(f(J))$. Then we get $\langle y, 0 \rangle \in f(I)$, $\langle z, 0 \rangle \in f(J)$ and $\langle y, z \rangle \in f(I) \circ f(J) = f(I) \lor f(J)$. It follows that $\langle z \oplus 0, 0 \rangle \in f(J)$, $\langle y \oplus z, z \oplus 0 \rangle \in f(I)$ and $\langle y \oplus z, 0 \rangle \in f(I) \circ f(J) = f(I) \lor f(J)$. And then $x \leqslant y \oplus z \in g(f(I) \lor f(J))$. Therefore, $g(f(I)) \lor g(f(J) \subseteq g(f(I) \lor f(J))$.

Conversely, for any $x \in g(f(I) \lor f(J))$, we have $\langle x, 0 \rangle \in f(I) \lor f(J) = f(I) \circ f(J)$. Then there exist $z \in A$ and $b \in \mathcal{I}(\mathbf{A})$ such that $\langle x, z \rangle \in f(I)$ and $\langle z, 0 \rangle \in f(J)$. And $\langle x \otimes \lambda_b(z), 0 \rangle \in f(I), \langle z, 0 \rangle \in f(J)$. Then $x \leq (x \otimes \lambda_b(z)) \oplus z$. Since $x \otimes \lambda_b(z) \in g(f(I))$ and $z \in g(f(J))$, we have $x \in g(f(I)) \lor g(f(J))$. Thus, $g(f(I) \lor f(J)) \subseteq g(f(I)) \lor g(f(J))$. \Box

Theorem 4.4. $ConI(\mathbf{A})$ is distributive.

Proof. By Theorem 4.2, we only need to prove that the lattice of ideals on A is distributive. Suppose I, J, K are ideals on A and $x \in I \cap (J \vee K)$. Then $x \in I$ and $x \leq y \oplus z$, for some $y \in J, z \in K$. Hence, $x \leq (x \cap y) \oplus (x \cap z)$. It follows from $x \cap y \in I \cap J, x \cap z \in I \cap K$ that $x \in (I \cap J) \vee (I \cap K)$. \Box

5 Filters and prime ideals

In this section, we introduce the notions of filters and prime ideals of Equasi-MV algebras. Moreover, we study some properties of them. We prove that every Equasi-MV algebra has at least one maximal ideal. Also, we get prime theorem on Equasi-MV algebras.

Definition 5.1. Let $\langle A, \oplus, 0 \rangle$ be an Equasi-MV algebra and F be a nonempty subset of A. F is called a filter if the following conditions are satisfied:

(i) for all $x, y \in A$, if $x \leq y$ and $x \in F$, then $y \in F$; (ii) for all $x, y \in F$, then $x \otimes y \in F$.

Definition 5.2. We call a filter F is proper if $F \neq A$. A proper filter F is maximal, if for all $x \in A \setminus F$, $\langle F \cup \{x\} \rangle = A$.

Let A be an Equasi-MV algebra. For $x \in A$ and $n \in \mathbb{N}$, we define $x^1 = x, \dots, x^n = x^{n-1} \otimes x, n \ge 2$.

Proposition 5.1. Let A be an Equasi-MV algebra and F be a filter of A. Then I_F is an ideal of A, where

$$I_F := \{\lambda_a(x) : x \in F, \exists a \in \mathcal{I}(\mathbf{A}), x \leqslant a\}.$$

Proof. For all $x \in A$, we have

 $x \in I_F \iff \exists a \in \mathcal{I}(\mathbf{A}) \text{ s.t. } x \leqslant a, \lambda_a(x) \in F.$

It is obvious that $0 \in I_F$. Suppose $x, y \in I_F$. There exist $a, b \in \mathcal{I}(\mathbf{A})$ such that $x \leq a$ and $y \leq b$. It follows $\lambda_a(x), \lambda_b(y) \in F$. Let $c \in \mathcal{I}(\mathbf{A})$ such that $a, b \leq c$. Then $\lambda_c(x), \lambda_c(y) \in F$ by Proposition 3.1 (iv). That implies $\lambda_c(x) \otimes \lambda_c(y) \in F$. Since $\lambda_c(x), \lambda_c(y) \leq c$ and $\lambda_c(x) \otimes \lambda_c(y) = \lambda_c(x \oplus y)$, we have $x \oplus y \in I_F$.

Suppose $x, y \in A$ with $x \in I_F$ and $y \leq x$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x \leq a$ and $\lambda_a(x) \in F$. Since $x, y \in [0, a]$ and $y \leq x$, we have $\lambda_a(x) \leq \lambda_a(y)$. It implies $\lambda_a(y) \in F$ and $y \in I_F$. \Box

In the following, we give an equivalent condition of maximal filters.

Proposition 5.2. Let A be an Equasi-MV algebra and F be a proper filter of A.

(i) For all $x \in A$, $\langle F \cup \{x\} \rangle = \{z \in A : z \ge y \otimes x^n, \exists n \in \mathbb{N}, y \in F\}$;

(ii) F is a maximal filter iff for all $x \notin F$, there exist $n \in \mathbb{N}$ and $b \in \mathcal{I}(\mathbf{A})$ with $x \leq b$ such that $\lambda_b(x^n) \in F$.

Proof. (i) It is obvious.

(ii) Let F be a maximal filter and $x \notin F$. We have $0 \in \langle F \cup \{x\} \rangle$ by (i) and so there exist $n \in \mathbb{N}$ and $y \in F$ such that $0 = y \otimes x^n$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq b$. Then $b = \lambda_b(y \otimes x^n) = \lambda_b(y) \oplus \lambda_b(x^n)$, it follows that $y \leq \lambda_b(x^n)$ and $\lambda_b(x^n) \in F$. Conversely, for any $x \in A \setminus F$, there exist $n \in \mathbb{N}$, $b \in \mathcal{I}(\mathbf{A})$ such that $\lambda_b(x^n) \in F$. Then $0 = \lambda_b(x^n) \otimes x^n$ and $0 \in \langle F \cup \{x\} \rangle$. It follows that $\langle F \cup \{x\} \rangle = A$ and F is a maximal filter. \Box **Lemma 5.1.** Let F be a proper filter of an Equasi-MV algebra A.

(i) If a ∈ F ∩ I(A), we have a ∉ I_F.
(ii) If a ∈ F ∩ I(A), then for all b ∈ I(A) with a < b, we have λ_b(a) ∈ I_F.
(iii) If F is a maximal filter of A, then for all a ∈ I(A), a ∉ I_F implies a ∈ F.
(iv) If J is a maximal ideal of A, then
∀a ∈ I(A) \ J ⇒ λ_b(a) ∈ J, where b ∈ I(A) and a < b. (*)
(v) If J is an ideal of A satisfying (*), then F_J is a filter of A, where

 $F_J := \{ \lambda_a(x) : x \in J, a \in \mathcal{I}(\mathbf{A}) \setminus J, x < a \}.$

Proof. (i) Suppose $a \in F \cap \mathcal{I}(\mathbf{A})$ and $a \in I_F$. There exists $b \in \mathcal{I}(\mathbf{A})$ such that $a \leq b$ and $\lambda_b(a) \in F$. It follows from $\lambda_b(a), a \in F$ that $0 = a \otimes \lambda_b(a) \in F$, which is a contradiction.

(ii) It is obvious.

(iii) Let $a \in \mathcal{I}(\mathbf{A})$ and $a \notin I_F$. For all $b \in \mathcal{I}(\mathbf{A})$ with $a \leq b$, we have $\lambda_b(a) \notin F$ by Proposition 5.1. Suppose $a \notin F$. Since F is a maximal filter, we have $\langle F \cup \{a\} \rangle = A$. By Proposition 5.2, there exist $n \in \mathbb{N}$ and $x \in F$ such that $0 = x \otimes a^n$. We have $u \in \mathcal{I}(\mathbf{A})$ such that $x, a \leq u$ and $0 = x \otimes a^n = x \otimes_u a^n$. Since $a \in \mathcal{I}(\mathbf{A})$, we get $a^n = a$ and so $u = \lambda_u(x) \oplus \lambda_u(a)$. It follows that $x \leq \lambda_u(a)$ and $\lambda_u(a) \in F$, which is a contradiction.

(iv) Suppose $a \in \mathcal{I}(\mathbf{A})$ and $a \notin J$. For any $b \in \mathcal{I}(\mathbf{A})$ and a < b, we have $\lambda_b(a) \in \langle J \cup \{a\} \rangle = A$. By Lemma 4.4, there exist $n \in \mathbb{N}$ and $x \in J$ such that $\lambda_b(a) \leq x \oplus n.a$. Since $a, \lambda_b(a) \in [0, b]$, we have

$$\lambda_b(a) = \lambda_b(a) \oplus 0$$

= $\lambda_b(a) \cap (x \oplus n.a)$
 $\leq (\lambda_b(a) \cap x) \oplus (\lambda_b(a) \cap n.a)$ (Lemma 2.4 (iii))
= $\lambda_b(a) \cap x$.

It follows $\lambda_b(a) \leq x \in J$ and so $\lambda_b(a) \in J$.

(v) Suppose $x, y \in A$ with $x \leq y$ and $x \in F_J$. There exists $a \in \mathcal{I}(\mathbf{A}) \setminus J$ such that x < a and $\lambda_a(x) \in J$. Let $b \in \mathcal{I}(\mathbf{A})$ and $a, y \leq b$. We have $\lambda_b(y) \leq \lambda_b(x) \leq \lambda_a(x) \oplus \lambda_b(a)$. By (iv), we have $\lambda_b(a) \in J$ and $\lambda_a(x) \oplus \lambda_b(a) \in J$. That implies $\lambda_b(y) \in J$ and $y \in F_J$.

Let $x, y \in F_J$. There exist $a, b \in \mathcal{I}(\mathbf{A}) \setminus J$ such that $x \leq a, y \leq b$ and $\lambda_a(x), \lambda_b(y) \in J$. Let $c \in \mathcal{I}(\mathbf{A})$ and $a, b \leq c$. We have $\lambda_c(a), \lambda_c(b) \in J$ by (iv) and $\lambda_c(x) \leq \lambda_c(x) \oplus 0 = \lambda_a(x) \oplus \lambda_c(a) \in J$, $\lambda_c(y) \leq \lambda_c(y) \oplus 0 = \lambda_b(y) \oplus \lambda_c(b) \in J$ by Proposition 3.1. It follows that $\lambda_c(x), \lambda_c(y) \in J$ and $\lambda_c(x) \oplus \lambda_c(y) \in J$. Thus $\lambda_c(\lambda_c(x) \oplus \lambda_c(y)) \in F_J$. That is, $x \otimes y = x \otimes_c y \in F_J$. \Box

Definition 5.3. Let A be an Equasi-MV algebra and I be an ideal of A. We call I to be prime if for all $x, y \in A$, $x \cap y \in I$ implies that $x \in I$ or $y \in I$.

Proposition 5.3. Let I be an ideal of an Equasi-MV algebra A. Then I is prime iff

for any $x, y \in A$, there exists $a \in \mathcal{I}(\mathbf{A})$ with $x, y \leq a$ such that $\lambda_a(\lambda_a(x) \oplus y) \in I$ or $\lambda_a(\lambda_a(y) \oplus x) \in I$.

Proof. \Leftarrow : Let π : $A \longrightarrow A/I$ be the canonical projection and θ be an ideal congruence. If $x \cap y \in I$, we have $(x \cap y)/\theta = x/\theta \cap y/\theta \in \pi(I)$. Let $x/\theta = [i]$ or $y/\theta = [j]$, where $i, j \in I$. There exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y, i, j \leq a$, $\lambda_a(x) \otimes i \in I$, $\lambda_a(i) \otimes x \in I$ or $\lambda_a(y) \otimes j \in I$, $\lambda_a(j) \otimes y \in I$. It follows from Proposition 4.1 that $x \in I$ or $y \in I$.

 \implies : For any $x, y \in A$, there exists $a \in \mathcal{I}(\mathbf{A})$ such that $x, y \leq a$. We have $(\lambda_a(x) \oplus y) \cup (\lambda_a(y) \oplus x)$

 $=\lambda_{a}(x)\oplus y\oplus\lambda_{a}(\lambda_{a}(x)\oplus y\oplus\lambda_{a}(\lambda_{a}(y)\oplus x))$ $=\lambda_{a}(x)\oplus\lambda_{a}(\lambda_{a}(x)\oplus\lambda_{a}(\lambda_{a}(y)\oplus x))\oplus\lambda_{a}(\lambda_{a}(\lambda_{a}(x)\oplus\lambda_{a}(\lambda_{a}(y)\oplus x))\oplus\lambda_{a}(y))$ $=\lambda_{a}(y)\oplus x\oplus\lambda_{a}(\lambda_{a}(y)\oplus x\oplus x)\oplus\lambda_{a}(\lambda_{a}(\lambda_{a}(x)\oplus\lambda_{a}(\lambda_{a}(y)\oplus x))\oplus\lambda_{a}(y))$ $=\lambda_{a}(x)\oplus\lambda_{a}(\lambda_{a}(y)\oplus x))\oplus\lambda_{a}((\lambda_{a}(x)\oplus\lambda_{a}(\lambda_{a}(y)\oplus x))\oplus y)\oplus x\oplus\lambda_{a}(\lambda_{a}(y)\oplus x\oplus x))$ =a.

It follows $\lambda_a((\lambda_a(x) \oplus y) \sqcup (\lambda_a(y) \oplus x)) = 0 \in I$. That is, $\lambda_a(\lambda_a(x) \oplus y) \cap \lambda_a(\lambda_a(y) \oplus x) = 0 \in I$. Therefore, $\lambda_a(\lambda_a(x) \oplus y) \in I$ or $\lambda_a(\lambda_a(y) \oplus x) \in I$. \Box

Example 5.1. Let $A \times M$ be an Equasi-MV algebra mentioned in Example 3.6. It can be easily proved that $P = \{0, b\}$ is a prime ideal of a quasi-MV algebra A. Now we show that $P \times M$ is a prime ideal of an Equasi-MV algebra $A \times M$. Obviously, $\langle 0, 0 \rangle \in P \times M$ and $\langle 0, M \rangle \oplus \langle b, M \rangle = \langle b, M \rangle \in P \times M$. And for any $\langle x, M \rangle \leq \langle b, M \rangle$, we have $\langle x, M \rangle \in A \times M$. Then $P \times M$ is an ideal of $A \times M$. For any $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in A \times M$, suppose $\langle x_1, y_1 \rangle \cap \langle x_2, y_2 \rangle =$ $\langle x_1 \cap x_2, y_1 \wedge y_2 \rangle \in P \times M$.

Let A be a proper Equasi-MV algebra and $a \in \mathcal{I}(\mathbf{A}) \setminus \{0\}$. We define $\uparrow a = \{x \in A : x > a\}.$

Then $\uparrow a$ is a filter of A. Moreover, $\uparrow a$ is a proper filter of A.

Proposition 5.4. Let F be a maximal filter of an Equasi-MV algebra A. Then $I_F = \{\lambda_a(x) : x \in F, \exists a \in \mathcal{I}(\mathbf{A}), x \leq a\}$ is a maximal ideal of A.

Proof. We know that I_F is an ideal of A by Proposition 5.1. As $F \neq \emptyset$, we have $a \in \mathcal{I}(\mathbf{A}) \cap F$ and so $a \notin I_F$ by Lemma 5.1 (i).

Let J be an ideal of A and $I_F \subseteq J$. Suppose $a \notin J$ and $a \in \mathcal{I}(\mathbf{A})$, we have $a \notin I_F$ and so $a \in F$ by Lemma 5.1 (iii). Then for any $b \in \mathcal{I}(\mathbf{A})$ with $a \leq b$, we have $\lambda_b(a) \in I_F \subseteq J$. Hence, J satisfies condition (*) in Lemma 5.1 (iv). It follows from Lemma 5.1 (iv) that F_J is a filter of A.

Suppose $x \in F$ and $w \in \mathcal{I}(\mathbf{A}) \setminus J$. There exists $u \in \mathcal{I}(\mathbf{A})$ such that $x, w \leq u$. Since J is a proper ideal, we have $u \notin J$. It follows from the definition of I_F that $\lambda_u(x) \in I_F \subseteq J$ and then $x \in F_J$. That implies $F \subseteq F_J$.

Since F is a maximal filter, we have $F_J = F$ or $F_J = A$. If $F_J = A$, then there exist $x \in J$ and $a \in \mathcal{I}(\mathbf{A})$ such that x < a and $\lambda_a(x) = 0$, which is a contradiction. Thus $F_J = F$. By Lemma 5.1 (v), for all $x \in J$, there exists $a \in \mathcal{I}(\mathbf{A}) \setminus J$ such that x < a and $\lambda_a(x) \in F_J = F$. Hence, we have $x \in I_F$. That is, $J \subseteq I_F$. Thus $J = I_F$. This proves that I_F is a maximal ideal of A. \Box

Theorem 5.1. Let A be a proper Equasi-MV algebra. Then A has at least one maximal ideal.

Proof. Suppose $0 \neq a \in A$. Note that $\uparrow a$ is a filter and $\{0\} \neq \uparrow a$. By Zorn's lemma, we know that the set of all filters that does not contain 0 has a maximal element, which is a maximal filter of A, denoted by F. It follows from Proposition 5.4 that I_F is a maximal ideal. \Box

The following statement gives the prime theorem on Equasi-MV algebras.

Theorem 5.2. Let I be a proper ideal of an Equasi-MV algebra A and $a \in A \setminus I$. Then there exists a maximal ideal P which contains I and $a \in A \setminus P$. Moreover, P is prime.

Proof. Let $M = \{J : I \subseteq J, a \notin J\}$ where I, J are ideals of A. By Zorn's lemma, M has a top element P. It follows from $I \in M$ that $M \neq \emptyset$. We claim that P is prime. Suppose $x \cap y \in P$ and $x, y \notin P$. We have $a \in \langle P \cup \{x\} \rangle$ and $a \in \langle P \cup \{y\} \rangle$. Then there exist $n \in \mathbb{N}$ and $u, v \in P$ such that $a \leq u \oplus n.x$ and $a \leq v \oplus n.y$. It follows that

 $a \leq (u \oplus n.x) \cap (v \oplus n.y) \leq (u \oplus v \oplus n.x) \cap (u \oplus v \oplus n.y).$ By Lemma 2.4 (iii), we have $a \leq (u \oplus v \oplus n.x) \cap (u \oplus v \oplus n.y) = (u \oplus v) \oplus (n.x \cap n.y) \leq (u \oplus v) \oplus n^2.(x \cap y) \in P.$ It follows that $a \in P$, which is a contradiction. Thus, we have $x \in P$ or $y \in P.\Box$

6 Conclusion

In this paper, we introduce the notion of Equasi-MV algebras, which are generalizations of quasi-MV algebras. We study some basic properties of Equasi-MV algebras, such as ideals, ideal congruences and filters and investigate their mutual relationships. We show that there is a one-to-one correspondence between the set of all ideals and the set of all ideal congruences on an Equasi-MV algebra. And we also studied some results on maximal ideals and prime ideals.

There are many topics that deserve further study. For example, (1) can any Equasi-MV algebra be embedded into an Equasi-MV algebra with a top element?

(2) Does any simple Equasi-MV algebra have a top element? (3) The author introduced ME-algebras and studied the categorical equivalence between equality algebras and abelian lattice-ordered groups in Liu [2019]. We will study the relationships between monadic Equasi-MV algebras and monadic equality algebras.

References

- F. Paoli A. Ledda, M. Konig and R. Giuntini. MV-algebras and quantum computation. *Studia Logica*, 82(2):245–270, 2006.
- C. C. Chang. Algebraic analysis of many valued logics. *Transactions of the American Mathematical society*, 88(2):467–490, 1958.
- P. F. Conrad and M. R. Darnel. Generalized Boolean algebras in lattice-ordered groups. Order, 14(4):295–319, 1997.
- A. Dvurečenskij and O. Zahiri. On EMV-algebras. *Fuzzy Sets and Systems*, 373: 116–148, 2019.
- A. Ledda F. Bou, F. Paoli and H. Freytes. On some properties of quasi-MV algebras and $\sqrt{7}$ quasi-MV algebras. Part II. *Soft Computing*, 12(4):341–352, 2008.
- R. Giuntini F. Paoli, A. Ledda and H. Freytes. On some properties of quasi-MV algebras and $\sqrt{7}$ quasi-MV algebras. *Reports Math. Log.*, 44:31–63, 2009.
- R. Giuntini G. Cattaneo, M. L. Dalla Chiara and R. Leporini. An unsharp logic from quantum computation. *International Journal of Theoretical Physics*, 43 (7):1803–1817, 2004.
- H. Liu. On categorical equivalences of equality algebras and monadic equality algebras. *Logic Journal of the IGPL*, 27(3):267–280, 2019.
- H. Liu. EBL-algebras. Soft Computing, 24(19):14333–14343, 2020.
- J. Liu and W. Chen. A non-commutative generalization of quasi-MV algebras. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 122–126. IEEE, 2016.
- R. Giuntini M. L. Dalla Chiara and R. Greechie. *Reasoning in quantum theory: sharp and unsharp quantum logics*, volume 22. Springer Science & Business Media, 2013.
- R. Giuntini M. L. Dalla Chiara and R. Leporini. Logics from quantum computation. *International Journal of Quantum Information*, 3(02):293–337, 2005.