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Abstract  

We proposed a model which can unify many of the shape models 

existing in the literature and show that the shape of the sunspot 

number cycle can be described as a product of a polynomial and a 

negative exponential function. The proposed model has certain free 

parameters, which need to be estimated from the observed sunspot 

number data. Since all the models reviewed in this paper are a 

product of a polynomial and a negative exponential along with a 

number of parameters, we have seen that all these models can be 

derived from a modified generalized Gamma probability density 

function by transforming certain parameters and fixing certain 

parameters. In this paper, we estimate the parameters of the model 

from the revised monthly averaged sunspot numbers available in the 

SIDC website. Finally, a preliminary level prediction has also been 

attempted to forecast the characteristics of sunspot number cycle 25. 
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1. Introduction  

Solar activity is the key factor which drives the space weather. Refined 

modelling and accurate prediction of the solar activity intensity has been an 

important activity of space faring agencies across the world due to the impact of 

solar activity on satellites as well as on weather (Haigh, 2007, Hathaway et.al., 

2004). Solar flux causes the upper atmosphere density variation and in turn it 

affects directly the lifetime of the Earth-orbiting satellites especially in the low 

Earth orbit. Solar activity intensity has been measured as the number of dark 

spots, called sunspot numbers, appears in the visible solar disc through direct 

observation since 1749 onwards. Irrespective of the measurement interval 

(daily, monthly, and yearly), a definite pattern is existing in the sunspot number 

time series.  

Accurate predictions of the intensity of solar activity are increasingly 

important as we become more reliant upon satellites in low-Earth orbits, which 

provide crucial contribution in communication, national defence and Earth 

mapping. Also, such satellites provide an abundance of scientific data. During 

higher solar activity period, the increased ultraviolet emission from Sun heats 

up the Earth’s upper atmosphere and this causes the atmosphere to expand and 

results in the increased drag on low Earth orbits satellites, thereby leading to 

early decay into the Earth’s atmosphere. Therefore, better predictions of solar 

activity are essential to help mission planning and design of satellites (Vallado 

et.al., 2014).  

Sunspot number cycle time series is one of the longest time series which 

was studied by many experts. First of all, this time series is non stationary, cyclic 

and highly nonlinear in the time domain. The more interesting and difficult part 

to deal with is the high dispersion between consecutive observations 

(Withbroe,1989) which in fact makes the prediction of sunspot numbers tedious. 

Many attempts to model and predict the future behaviour of the solar 

activity are well documented in the literature. Depending on the nature of the 

prediction methods, we can classify the methodology in to five classes as: 1) 

Curve fitting 2) Precursor 3) Spectral 4) Neural Networks and 5) Climatology. 

The first attempt using the curve fitting methodology was by the McNish-

Lincolon curve fitting (Hathaway, D. H, 2015). Subsequently, several authors 

have studied the highly nonlinear behaviour of sunspot number cycle and 

proposed various models to handle the studies related to the prediction.  

Many mathematical functions have been appeared in the literature as model 

of the shape of the sunspot number cycle. Due to the exponential rise and decay 

of sunspot number cycle, a model involving exponential function was proposed 

by Nordemann (1992). The bell shape and the asymmetry along the peak 

amplitude of most of the sunspot number cycle were explored and there by a 

suitable mathematical function was introduced by Hathaway et.al. (1994). Few 
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statistical probability distribution functions were also proposed by various 

authors (Sabarinath et.al.,2008, Du et.al., 2011, Li et.al., 2017, Sabarinath et.al., 

2020) for modeling the shape of sunspot number cycles. De Meyer (1981) 

proposed a model using periodic functions. As far as prediction of a future 

sunspot number cycle is concerned, statistical averaged models are used as an 

initial estimate of the future sunspot number cycle. 

 

2. Existing Models 

Several authors developed different mathematical functions to describe the 

shape of the sunspot number cycle. In particular Stewart and Panofsky (SP) 

(1938) proposed a function for the shape of a sunspot number cycle with the 

form, 

𝑅(𝑡) = 𝑎(𝑡 − 𝑡0)𝑏𝑒−𝑐(𝑡−𝑡0) (1) 

where 𝑎, 𝑏, 𝑐 and 𝑡0 are parameters that vary from cycle to cycle and 𝑡 is the 

independent variable represents time. The important thing to be noticed is that, 

this model resembles a power law for the rising phase of a sunspot number cycle 

and an exponential for the declining phases of a cycle. 

Nordemann (N) (1992) proposed another fit. He used the solution of the 

differential equation 
𝑑𝑁

𝑑𝑡
= 𝐾𝑁, in analogy with the nuclear decay process. The 

declining phase (maximum to minimum) of a sunspot number cycle is 

represented by 

𝑁 = 𝑁0𝑒𝐾𝑡,     𝐾 < 0 (2) 

and the solution of  
𝑑𝑁

𝑑𝑡
= 𝐴 + 𝐾𝑁, is used to represent the first phase or ascent 

phase (minimum to maximum) of a sunspot number cycle. Thus, the model for 

the ascent phase is: 

𝑁 =
𝐴

𝐾
(1 − 𝑒𝐾𝑡),     𝐾 < 0 (3) 

where 𝑁 represents sunspot numbers, 𝐾 is the decay constant and 𝐴 is a 

production parameter. 

Hathaway et.al. (H) (1994) established a model with four parameters along 

with a measure for the goodness of fit. The functional form is: 

𝑓(𝑡) =
𝑎(𝑡 − 𝑡0)3

𝑒
[
(𝑡−𝑡0)2

𝑏2 ]
− 𝑐

 (4) 

where, 𝑎 represents the amplitude; 𝑏 represents the time in months and 𝑡0 

denotes the starting time; 𝑐 gives the asymmetry of the sunspot number cycle. 

This function is derived from Stewart and Panofsky model, but requires two 
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parameters for each sunspot number cycle. Where 𝑐 = 0.71, and 𝑏 is a dependent 

parameter given by, 

𝑏 =  27.12 +  
25.15

[𝑎 × 103]
1
4

 (5) 

Sabarinath et.al. (S) (2008) used a binary mixture of a modified Laplace 

Distribution. Laplace Distribution is a function 𝑓 of two parameters 𝑚 and 𝑠 is 

given by,  

𝑓(𝑥) =  
1

2𝑠
𝑒

−|𝑥−𝑚|
𝑠  (6) 

where, 𝑚 is the location parameter and 𝑠 is the scale parameter. They modified 

this form and used the binary mixture of this distribution and reducing the 

number of parameters into six (later reduced to two floating parameters) to fit 

the predominant double peaks during the high solar activity regime of a sunspot 

number cycle. Modified final model is: 

Volobuev (V) (2009) found a function similar to that used by Stewart and 

Panofsky to fit the shape of sunspot number cycle that requires only one 

parameter for each cycle. The empirical model used is: 

𝑅 = (
𝑡 − 𝑡0

𝑇𝑠
)

2

𝑒
−(

𝑡−𝑡0
𝑇𝑑

)
2

 (8) 

We can see that this model is also similar to that of Stewart and Panofsky (1938) 

by putting 𝑏 = 2 and modifying the growth multiplier and decay multiplier 

properly by introducing the new parameters 𝑇𝑠 and 𝑇𝑑. 
Du (2011) suggested modified Gaussian function with four parameters viz. 

peak size 𝐴, peak timing 𝑡𝑚, width 𝐵, and asymmetry 𝛼, in the form: 

𝑅(𝑡) =  𝐴 𝑒𝑥𝑝 (
−(𝑡 − 𝑡𝑚)2

2𝐵2[1 + 𝛼(𝑡 − 𝑡𝑚)]2
) (9) 

Li et al (L) (2017) used a binary mixture of Gaussian function (suggested 

by Du),  

𝑓(𝑥) =  𝐴1 𝑒𝑥𝑝 (− 
(𝑥 − 𝑚1)2

𝑠1
) + 𝐴2 𝑒𝑥𝑝 (− 

(𝑥 − 𝑚2)2

𝑠2
) (10) 

this model has six parameters. Peak sizes are denoted by and 𝐴1, 𝐴2, 𝑠1   and 𝑠2 

represents gradients and peak time is represented by 𝑚1 and 𝑚2. 

Sabarinath et. al. (SB) (2020) fit the full sunspot number cycle perfectly 

with modified Maxwell Boltzmann probability distribution function. The final 

modified model is: 

𝑓(𝑡) =  
𝐴1

33.2
 𝑒𝑥𝑝 (

−|𝑡 − 𝑡0 − 41.7|

16.6
) +  

𝐴2

46
 𝑒𝑥𝑝 ( 

−|𝑡 − 𝑡0 − 67.3|

23
) (7) 
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𝑓(𝑥; 𝛼; 𝐴) =
𝐴

𝛼3
√

2

𝜋
𝑥2𝑒

−
𝑥2

2𝛼2 (11) 

where 𝐴 is the area parameter, 𝛼 > 0. 

All these models discussed so far has a common form that is these models 

are a product of a polynomial and a negative exponential function. Since the 

solar activity like process can be modelled by a bell-shaped curve viz., Gamma 

family of probability density function, we propose that the sunspot number 

cycles can be effectively modelled as a generalized Gamma distribution with 

certain free parameters. These free parameters can be estimated in the maximum 

likelihood sense from the sunspot data. Also, all these models discussed so far 

can be derived from this generalized Gamma distribution model as special cases. 

In the next section we brief on the derivation of the proposed model. 

 

3. Methodology 

New model-Generalized Gamma distribution 

The Gamma distribution is often used to describe variables bounded on one 

side. A version of this distribution is obtained by adding a third parameter and 

gets the generalized Gamma distribution (Walck, 2001). 

Probability density function is, 

𝑓 (𝑥;  𝑝, 𝑞, 𝑟) =  
𝑝𝑟

𝛤(𝑞)
(𝑝𝑥)𝑞𝑟−1𝑒−(𝑝𝑥)𝑟

 (12) 

where 𝑝 (a scale parameter) and 𝑞 are the real positive parameters and a third 

parameter 𝑟 has been added (𝑟 = 1 for the ordinary Gamma distribution) to 

generalize the Gamma distribution. This new parameter takes any real value but 

normally we consider the case where 𝑐 > 0 

Put the following substitutions, 

                 𝑐 =
𝑝𝑟

𝛤(𝑞)
𝑝𝑞𝑟−1 

 = 𝑞𝑟 
𝐾 = 𝑝𝑟 
𝛿 = 𝑟 

(13) 

Then, Equation (12) becomes  
 

𝑓 (𝑥;  𝑐, 𝑘, 𝛼, 𝛿) =  𝑐𝑥𝛼−1𝑒−𝑘𝑥𝛿
 (14) 

where 𝑘 is the scale parameter, 𝛼 is the shape parameter and 𝛿 is the location 

parameter. Depending on the values of the parameters we can arrive all the 
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existing models. Table1 list the existing models and their derivation into 

Equation (14). 

Once we fix a model, the next step is to evaluate the best estimates of the 

model parameters in statistical parameter estimation sense. Here our 

measurement data is the monthly averaged sunspot numbers. The model we 

indent to fit over this data is given in Equation (14). We estimate the parameters 

by least square method. Using simple random search technique, we estimate the 

parameters. The mathematical algorithms used are given in detail in the next 

part. 

 

Data 
In the present study, we use the monthly averaged sunspot numbers, and 

these sunspot numbers for all the 24 sunspot number cycles were used. On July 

1st, 2015, the sunspot number series has been replaced by a new improved 

version called version 2.0 data, that includes several corrections of past in 

homogeneities in the sunspot number time series. 

In the new version 2.0 data, the conventional 0.6 Zürich scale factor, has 

been replaced by a factor of 1/0.6. This scale change, when combined with the 

recalibration, leads to a net increase of about 45% (correction variable with 

time) of the most recent part of the series, after 1947. This data can be obtained 

from https://www.bis.sidc.be/silso/DATA/SN_m_tot_V2.0.txt. 

 

Estimation techniques 

The function in which parameters to be estimated is, 

         𝑓 (𝑥;  𝑐, 𝑘, 𝛼, 𝛿) =  c𝑥𝛼−1𝑒−𝑘𝑥𝛿
 (15) 

The maximum likelihood estimates of the parameters 𝛼, 𝛿 and 𝑘 are considered 

to be the best unbiased, consistent and sufficient estimate of the parameters 

(Sorenson, 1980). Practically, the least square estimate is considered to be the 

maximum likelihood estimate. The simple mathematical procedure to estimate 

the parameters is to minimize the sum of squared error function 𝐽. 

𝐽 = ∑ 𝑒𝑟
2

𝑟

 (16) 

where 𝑒𝑟 is the error. The minimum of 𝐽 can be found by differentiating 𝐽 with 

respect to the parameters 𝛼, 𝛿 and 𝑘. 

In the present study, if we consider without loss of generality, a sunspot 

number cycle having a length of 132 months (11 year), and if we assume 
{𝑠𝑛: 𝑛 = 1,2, … ,132} as the realised sunspot number values, then the function 𝐽 

can be written as, 

 

https://www.bis.sidc.be/silso/DATA/SN_m_tot_V2.0.txt
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𝐽 = ∑[𝑠𝑛 − 𝑓(𝑥𝑛, 𝛼, , 𝑘)]2

132

𝑖=1

 (17) 

where, 𝑥𝑛 = 1,2, … ,132 represents the months for each 𝑛 = 1,2, … . ,132. Then 

our objective is to compute and solve 𝛼, 𝛿 and 𝑘 from 

𝜕𝐽

𝜕𝛼
= 0 

(18) 

 

𝜕𝐽

𝜕
= 0 

(19) 

 

𝜕𝐽

𝜕𝑘
= 0 (20) 

Analytically solving the Equations (18) to (20) for 𝛼, 𝛿 and 𝑘 is cumbersome. 

Hence, we go with numerical procedures for estimating the parameters. Monte 

Carlo based simple random search-based procedure is considered here to 

estimate the parameters. This procedure is described below as an algorithm. 

Step-1. Start with a search region 𝛼, 𝛿 and 𝑘. Let 𝑆𝛼,  𝑆𝛿 and 𝑆𝑘 are the bounded 

search regions of 𝛼, 𝛿 and 𝑘 respectively. Our objective is to find an  𝛼0 ∈
𝑆𝛼,  𝛿0 ∈ 𝑆𝛿 and 𝑘0 ∈ 𝑆𝑘 such that, 

 𝐽𝛼0,𝐴0
= ∑[𝑠𝑛 − 𝑓(𝑥𝑛, 𝛼0, 𝛿0, 𝑘0)]2

132

𝑖=1

 (21) 

is minimum. That is, 

 𝐽𝛼0,𝛿0,𝑘0
≤ 𝐽𝛼,,𝑘     (22) 

 

for any 𝛼 ∈ 𝑆𝛼, 𝛿 ∈ 𝑆𝛿 and 𝑘 ∈ 𝑆𝑘 

Step-2. Start with a random initial value of 𝛼 in 𝑆𝛼, 𝛿 in 𝑆𝛿  and 𝑘 in 𝑆𝑘.  

Compute 𝐽
 
and in each iteration keep the minimum value of 𝐽, 𝛼, 𝛿 and 𝑘. After 

a very large number of iterations take the value of 𝛼, 𝛿 and 𝑘 corresponds to the 

global minimum value of 𝐽. 

 

4. Results  

Estimates for the parameters 
Table 2 shows typical converged values of the four model parameters 𝑐, 𝛼, 

𝑘 and 𝛿. If we do a Monte Carlo based estimation of these parameters, due to 

the initial random number variation the optimum value differ numerically due 

to different starting points. But the variation is insignificant. This was proved in 

many Monte Carlo based optimizations (Ji et.al., 2006). Hence without loss of 

generality we consider a typical Monte Carlo run and a converged value of the 

parameters for further analysis. Table 2 gives one such value. The range of 
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search or feasible region was found by trial-and-error method. The range 

considered for the simulation is given below. 

0.0001 ≤  𝑐  ≤  0.0030, 3 ≤ 𝛼 ≤ 7, 0 ≤ 𝑘 ≤ 0.9, and 0 ≤ 𝛿 ≤ 3.1. 

 

Model 

Name 

and Year 

in which 

it is 

proposed 

Functional form 

 

Parameters in 

Equation (14) 
Generalized 

form 
𝑐 𝛼 𝛿 𝑘 

SP 

(1938) 
a(𝑡 − 𝑡0)𝑏𝑒𝑥𝑝(−𝑐(𝑡 − 𝑡0)) free free 1 free a𝑥𝛼𝑒𝑥𝑝 (−𝑐𝑥) 

N 

(1992) 

 

𝑁 =  𝑁0𝑒𝑥𝑝(𝑘𝑡) 

𝐴

𝐾
(1 − 𝑒𝑥𝑝(−𝑘𝑡)) 

free 1 1 free a𝑒𝑥𝑝 (−𝑐𝑥) 

H 

(1994) 

 

𝑎(𝑡 − 𝑡0)3

𝑒𝑥𝑝 (
(𝑡 − 𝑡0)2

𝑏2 ) − 𝑐
 

free 4 2 free 𝑎𝑥3𝑒𝑥𝑝(−𝑘𝑥2) 

S 

(2008) 

 

𝐴1

33.2
exp (

−|𝑡 − 41.7|

16.6
) 

+
𝐴2

46
𝑒𝑥𝑝 (

−|𝑡−67.3|

23
) 

free 1 1 fixed 
𝑐1𝑒𝑥𝑝(−𝑘1x) 

+𝑐2𝑒𝑥𝑝(−𝑘2x) 

V 

(2009) 

 

(𝑡 − 𝑡0)2

𝑇𝑠
2 𝑒𝑥𝑝 (

−(𝑡 − 𝑡0)2

𝑇𝑑
2 ) free 3 2 free 𝑐𝑥2𝑒𝑥𝑝(−𝑘𝑥2) 

Du 

(2011) 
𝐴 𝑒𝑥𝑝 (−

(𝑡 − 𝑡𝑚)2

2𝐵2(1 + 𝛼(𝑡 − 𝑡𝑚)2
) free 1 2 free 𝑐𝑒𝑥𝑝(−𝑘𝑥2) 

L 

(2017) 

 

𝐴1𝑒𝑥𝑝 (
−(𝑡−𝑚1)2

𝑠1
)+𝐴2𝑒𝑥𝑝 (

−(𝑡−𝑚2)2

𝑠2
) free 1 2 free 

𝑐1𝑒𝑥𝑝(−𝑘1𝑥2) 

+𝑐2𝑒𝑥𝑝(−𝑘2𝑥2) 

SB 

(2020) 

𝐴

𝛼3
√2

𝜋⁄ 𝑡2𝑒𝑥𝑝 (
−𝑡2

2𝛼2
) free 3 2 free 𝑐𝑥2𝑒𝑥𝑝(−𝑘𝑥2) 

Table 1. Different models, their parameters and its values. 

 

Figure 1, 2, and 3 shows the model fit of the model on sunspot number cycles 

13, 23 and 24, respectively. 
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Figure 1. Generalized Gamma distribution fit on the monthly averaged sunspot 

number cycle 13. 

 
Figure 2. Generalized Gamma distribution fit on the monthly averaged sunspot 

number cycle 23. 
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Figure 3. Generalized Gamma distribution fit on the monthly averaged sunspot 

number cycle 24. 

 

Analysis of the parameters 
The parameters are estimated on each of the sunspot number cycle 

independently. Figures 4 and 5 show these estimated model parameters for 

sunspot number cycle 1 to 24. The parameters are estimated in the maximum 

likelihood (ML) sense using the random search method. In table 2 Column 

number 2 to 5 gives the ML estimate of the parameters 𝑐, 𝛼, 𝑘 and 𝛿. Column 6 

gives the coefficient of determination 𝑅2 value. From these values one can see 

that the goodness of fit of the model is fair and on all modern sunspot number 

cycles are of high degree, since the coefficient of determination is greater than 

0.8. The important thing to be noted is that, since the model is derived from the 

Gamma distribution probability density function as given in Equation (12), there 

must be a correlation among the model parameters. As evident through the set 

of Equations (13) the correlation between the model parameters is given in Table 

3. 𝛼 has a very high correlation with 𝑘 and 𝛿. Figure 6 and 7 shows this 

correlation along with the linear regression model derived out of this correlation. 

of course, 𝛼 and 𝑘 has a positive correlation and between 𝛼 and 𝛿 a negative 

correlation. The corresponding linear regression fits are given in Equation (23) 

and (24). 
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 𝑘 = 0.29𝛼 − 1.3 (23) 

and 

   𝛿 = −0.32𝛼 + 2.7  (24) 

Now, substitute Equation (23) and (24) in Equation (14), we can reduce the 

proposed model into a two-parameter model. Again, if we re-estimate the two 

parameters in a maximum likelihood sense, we can again obtain a correlation 

between the parameters, there by the model reduce to a one parameter model as 

proposed in the shape of the sunspot number cycle-a one parameter fit by 

Volobuev (2009). In fact, the reduction of model parameters into a single 

parameter does not add any predictive power in the characterisation of a sunspot 

number cycle via the prediction of the peak amplitude, location of the sunspot 

maximum, cycle length etc. Hence, an indicative parameter for these characters 

of a sunspot number cycle is essential in a sunspot model. So minimum two 

parameters, a location parameter and a scale parameter must be there in a 

sunspot model. If there is a shape parameter, it can characterize the degree of 

asymmetry present in a cycle. 

 

 
Figure 4. Variation of the ML estimate of the parameter 𝑐 over different 

sunspot number-cycles 

Coefficient of determination (𝑅2) is considered as one of the measures of 

goodness of fit for a regression fit. For each cycle the coefficient of 

determination for the best fit are computed and is given in Table 2, column 6 

and the pictorial version is given in Figure 8. 
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Sunspot 

number 

cycle 

Number 

𝑐 α 𝑘 δ 
Coefficient of 

determination 

1 0.00095 4.62004 0.03367 1.10253 0.7 

2 0.00259 5.86033 0.52436 0.69427 0.7 

3 0.00104 6.79747 0.80867 0.65381 0.9 

4 0.00278 5.83371 0.56733 0.66284 0.9 

5 0.00213 4.21489 0.01729 1.22798 0.8 

6 0.00144 3.97518 0.00191 1.62772 0.6 

7 0.00114 4.23167 0.00323 1.53445 0.7 

8 0.00014 6.71511 0.47050 0.72610 0.8 

9 0.00044 5.30111 0.10092 0.93291 0.8 

10 0.00033 6.01638 0.37419 0.72687 0.9 

11 0.00153 5.29585 0.14993 0.89630 0.9 

12 0.00119 4.53186 0.01235 1.33943 0.8 

13 0.00226 6.11178 0.74136 0.63797 0.9 

14 0.00277 5.06902 0.26096 0.77246 0.7 

15 0.00278 4.34677 0.00650 1.48307 0.8 

16 0.00283 4.81611 0.08682 0.98842 0.8 

17 0.00096 4.98223 0.04514 1.10391 0.9 

18 0.00238 4.96288 0.06138 1.07036 0.9 

19 0.00298 5.12209 0.08539 1.02239 0.9 

20 0.00242 4.74031 0.08620 0.95019 0.9 

21 0.00236 5.06018 0.08613 1.00536 0.9 

22 0.00205 5.00316 0.06184 1.07074 0.9 

23 0.00288 4.78601 0.07280 1.00605 0.9 

24 0.00280 4.84851 0.09596 0.98271 0.8 

Table 2. The estimated model parameters for sunspot number cycles 1 to 24. 

It may be seen that the 𝑅2 value for most of the cycles are greater than 0.8. 

Especially, for modern cycles (cycle 15 to 24) the 𝑅2 values are greater than 0.8. 

This shows that the generalized Gamma model is best for modelling the shape 

of a sunspot number cycle. 

 

 𝑐 𝛼 𝑘 𝛿 

𝑐 1 -0.27 -0.09 -0.02 

𝛼  1 0.89 -0.86 

𝑘   1 -0.78 

𝛿    1 

Table 3. The correlation among the estimated model parameters. 
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Figure 5. Variation of the ML estimate of the parameter 𝛼, 𝑘, and 𝛿 over  

different sunspot number cycles. 

 
Figure 6. Linear correlation between the model parameters 𝛼 and 𝑘. 
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Figure 7. Linear correlation between the model parameters 𝛼 and 𝛿. 

Figure 8. Coefficient of determination (𝑅2) of the ML fit on different cycles. 



A Unified Shape Model for Sunspot cycles 

133 

 

 

Prediction of sunspot number cycle 25 
As an attempt has been made to predict the shape of the sunspot number 

cycle 25. Before attempting the predict cycle 25 from the proposed model, a 

direct comparison of the model of all the sunspot number cycles from 1 to 24 

has been done. Figure 9 shows this model comparison. It may be noted that, the 

length of the cycle is not being considered here. Without loss of generality one 

can assume the length as 132 months. The variation in amplitude and the 

location of the peak amplitude varies between cycles. The range of variation of 

peak amplitude is from 70 to 300 units of sunspot numbers. Since the range of 

variation of the peak amplitude is quite large, the problem of prediction of cycle 

25 is cumbersome from the previous cycle’s model parameters alone. Hence, 

we make two kinds of predictions which are statistically more probable 

forecasts. They are (1) Since the parameters 𝛼, 𝑘 and 𝛿 has lesser variation if 

we consider cycle 16-24, we fix these parameters as their average over cycle 16 

to 24 and re-estimated the other parameter 𝑐 alone for these cycles. Then for 

cycle 25, the parameter is 𝑐 taken as the average of the re-estimated values of 𝑐 

for cycle 16 to 24. This value is 0.002. The remaining parameters are,  𝛼 =
4.9246, 𝑘 = 0.0757, 𝛿 = 1.02. The prediction of cycle 25 in this direction is 

plotted in Figure 10. 

 

 
Figure 9. Model of all the 24 Sunspot number cycles. 

This prediction shows the peak amplitude as 157 units occurring at 47 

months from the beginning of sunspot number cycle 25. The second methods 

are (2) keeping the parameters 𝛼, 𝑘, and 𝛿 similar to cycle 24 and keeping the 
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parameter 𝑐 as taken in method (1). In this way the peak amplitude of cycle 25 

is 81 units of sunspot numbers occurring at 44 months from the beginning of the 

cycle 25. These two predictions can be considered as a band, inside which the 

actual cycle 25 may occur.  

 
Figure 10. Prediction of Sunspot number cycle 25 

Maximum peak occurring at 44 months with a sunspot number value of 81 units 

and 47 months with a sunspot value of 157 units. 

 

5 Conclusion 
Proposed a model which can unify many of the shape models existing in 

the literature. Also, it is shown that the shape model of sunspot number cycle 

can be described by a product of a polynomial and a negative exponential 

function. Since all the models reviewed in this paper are a product of a 

polynomial and a negative exponential, we proposed that all these models can 

be derived from the generalized Gamma probability density function by giving 

suitable parameter values. In this paper, we derived the existing models from 

the proposed generalized Gamma model and estimated the parameters of the 

proposed model from the revised version-2 monthly averaged sunspot numbers 

available in the SIDC’s website. Prediction of sunspot number cycle 25 shows 

that the peak amplitude of cycle 25 can vary between 81 to 157 units of sunspot 

numbers and this peak amplitude may occur between 44 to 47 months from the 

beginning of cycle 25. In actual date, this shows cycle 25 may peak during 

August 2023 to November 2023.  
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