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Abstract

In this paper, we introduce a Tikhonov type regularization method for
an ill-posed operator equation Tx = y, where T is a closed densely
defined unbounded operator on a Hilbert space H .
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1 Introduction

Most of the problems arise in the field of science and engineering can be mod-
elled as an operator equation

Tx = y (1)

where T : X → Y is a bounded linear map from a normed linear space X to a
normed linear space Y . In most of the cases (1) is Ill-posed. Certain regularization
procedures are known for solving ill-posed operator equation (1). For example
Tikhonov regularization, Mollifier method, Ritz method [5, 3]. In this paper we
introduce a Tikhonov type regularization method for solving an ill-posed operator
equation (1), where T is a closed densely defined operator on a Hilbert space H
and we study the order of convergence.

2 Preliminaries

Let L(H), C(H) and B(H) denote the space of all linear, closed linear and
bounded linear operators on a Hilbert space H respectively. For T ∈ L(H),
the domain, range of T are denoted by D(T ), N(T ) respectively. An operator
T ∈ L(H) is said to be densely defined if D(T ) = H.
For example let T : l2(N)→ l2(N) defined by

T (x1, x2, x3, ...., xn, ....) = (x1, 2x2, 3x3, ....., nxn, ....)

with domain

D(T ) = {(x1, x2, x3, ...., xn, ....) ∈ H : Σ∞j=1|jxj|2 <∞}.

Then T is closed and unbounded. Since c00 ⊆ D(T ) and c00 is dense in l2(N),
D(T ) is dense in l2(N).

Proposition 2.1. Let T ∈ C(H) be a densely defined operator. Then there exist a
unique operator T ∗ ∈ C(H) such that

〈Tx, y〉 = 〈x, T ∗y〉 ∀x ∈ D(T ), ∀y ∈ D(T ∗).

Proof. Let D(T ∗) = {y ∈ H : 〈Tx, y〉 is continuous for every x ∈ D(T ) }. For
y ∈ D(T ), define f : D(T ) → C by f(x) = 〈Tx, y〉 ∀x ∈ D(T ). Extend f to
f0 : H → C by f0(x) = lim

n→∞
〈Txn, y〉 where (xn) is a sequence in D(T ) such

that xn → x.
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Next we prove that f0 is well defined. For, let (xn) and (yn) be two sequences
inD(T ) converges to x. Since T is closed, T (xn−yn)→ 0. If 〈Txn, y〉 → 〈x, y〉,
then

|〈Tyn, y〉 − 〈x, y〉| = |〈Tyn − Txn + Txn − x, y〉|
≤ ‖T (yn − xn)‖‖y‖+ |〈Txn − x, y〉|
→ 0 as n→∞

Hence f0 is well defined.
Since f0 is a bounded linear functional on the Hilbert space H, by Riesz rep-

resentation theorem there exist a unique y∗ ∈ H such that f0(x) = 〈x, y∗〉. Thus
〈Tx, y〉 = 〈x, y∗〉 ∀x ∈ D(T ). Define T ∗ : D(T ∗) → H by T ∗y = y∗. Then T ∗

is well-defined. Also 〈Tx, y〉 = 〈x, T ∗y〉 ∀x ∈ D(T ), ∀y ∈ D(T ∗).

Consider an ill-posed operator equation

Tx = y (2)

where T is a closed densely defined operator on H.

Definition 2.1. [7]
Let T ∈ C(H) be densely defined. Then there exist a unique densely defined

operator T † ∈ C(H) with domainD(T †) = R(T )⊕R(T )⊥ satisfies the following
properties

(i) TT †y = PR(T ) y for all y ∈ D(T †),

(ii) T †Tx = QN(T )⊥x for all x ∈ D(T ).
(iii) N(T †) = R(T )⊥.
where P and Q are the orthogonal projection on to R(T ) and N(T⊥) respec-

tively. The operator T † is called the Moore-Penrose inverse of T .

For y ∈ D(T †), let Sy = {x ∈ D(T ) : ‖Tx − y‖ ≤ ‖Tu − y‖ ∀u ∈ D(T )}.
Then u ∈ Sy is called least square solution of the operator equation (2). Note that
‖T †y‖ ≤ ‖x‖ ∀x ∈ Sy, is called least square solution of minimal norm and is
denoted by x̂ [7].

IfR(T ) is not closed, then T † is not continuous. Now we introduce a Tikhonov
type regularization procedure for finding an approximate solution for T †y.

3 Tikhonov type regularization
In this section we introduce a Tikhonov type regularization procedure for solv-

ing (2).
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Lemma 3.1. Let T ∈ C(H) be densely defined and α > 0. Then T ∗T + αI and
TT ∗+αI are bijective closed densely defined operators onH . Also (TT ∗+αI)−1

and (T ∗T + αI)−1 are bounded, self adjoint operators on H .

Proof. Let T ∈ C(H) and α > 0. By proposition 2.1, we have T ∗ ∈ C(H).
Hence, (TT ∗ + αI) and (T ∗T + αI) are closed densely defined operators on
H . Since 〈(TT ∗ + αI)x, x〉 = 〈T ∗x, T ∗x〉 + α〈x, x〉 ≥ 0,∀x ∈ D(T ∗), we have
(TT ∗+αI) is a positive operator. Similarly (T ∗T+αI) is also a positive operator.
Since T ∗T + αI is positive,

‖(T ∗T + αI)x‖‖x‖ ≥ 〈(T ∗T + αI)x, x〉
= 〈T ∗Tx, x〉+ α‖x‖2

≥ α‖x‖2 ∀x ∈ H

Thus
‖(T ∗T + αI)x‖ ≥ α‖x‖ ∀x ∈ H (3)

Since T ∗T + αI is bounded below, it is one-one and its inverse from the range is
continuous. Also R(T ∗T + αI) is closed. Since T ∗T + αI is also self adjoint,
R(T ∗T + αI) = N(T ∗T + αI)⊥ = H . Hence T ∗T + αI is onto. Therefore
(T ∗T + αI)−1 ∈ B(H). Similary (TT ∗ + αI)−1 ∈ B(H). From (3),

‖(T ∗T + αI)−1‖ ≤ 1

α
.

Theorem 3.1. Let T ∈ C(H) be densely defined. Then T ∗(TT ∗ + αI)−1 and
T (T ∗T + αI)−1 are bounded operators on H . Also ‖ T ∗(TT ∗ + αI)−1 ‖≤ 1√

α
and ‖ T (T ∗T + αI)−1 ‖≤ 1√

α
.

Proof. We have (T ∗T + αI)−1T ∗T = I − α(T ∗T + αI)−1

Since 〈(T ∗T + αI)−1x, x〉 ≥ 0 ∀x ∈ H,

〈(T ∗T + αI)−1T ∗Tx, x〉 = 〈I − α(T ∗T + αI)−1x, x〉
= 〈x, x〉 − α〈(T ∗T + αI)−1x, x〉 ≤ 〈x, x〉.

Since (T ∗T + αI)−1T ∗T self adjoint, ‖(T ∗T + αI)−1T ∗T‖ ≤ 1.
Let x ∈ H .

‖T ∗(TT ∗ + αI)−1x‖2 = 〈T ∗(TT ∗ + αI)−1x, T ∗(TT ∗ + αI)−1x〉
= 〈TT ∗(TT ∗ + αI)−1x, (TT ∗ + αI)−1x〉
= 〈(TT ∗ + αI)−1TT ∗x, (TT ∗ + αI)−1x〉
≤ ‖(TT ∗ + αI)−1TT ∗x‖‖(TT ∗ + αI)−1x‖

≤ 1

α
‖x‖2
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we have ‖T ∗(TT ∗ + αI)−1x‖2 ≤ 1

α
‖x‖2 ∀x ∈ H .

Thus ‖T ∗(TT ∗ + αI)−1‖ ≤ 1√
α

. Hence T ∗(TT ∗ + αI)−1 is bounded. Similarly

T (T ∗T + αI)−1 is bounded.

Lemma 3.2. [7]
Let T ∈ C(H) be densely defined. Then

(i) (TT ∗ + I)−1T ⊆ T (T ∗T + I)−1

(ii) (T ∗T + I)−1T ∗ ⊆ T ∗(TT ∗ + I)−1

Remark 3.1. From Theorem 3.1 , we have T ∗(TT ∗+αI)−1 and T (T ∗T +αI)−1

are bounded. Therefore from Lemma 3.2, we have (TT ∗ + αI)−1T and
(T ∗T + αI)−1T ∗ are bounded.

Lemma 3.3. Let T ∈ C(H) be densely defined. For every x ∈ D(T ) ∩ N(T )⊥

‖α(T ∗T + αI)−1x‖ −→ 0, as α→ 0.

Proof. Let Tα = α(T ∗T + αI)−1, α > 0.

From (3.1) we have ‖(T ∗T +αI)−1‖ ≤ 1

α
. Hence ‖Tα‖ ≤ 1 for every α > 0. Let

u ∈ R(T ∗T ) then there exist v ∈ D(T ∗T ) such that T ∗Tv = u.

‖Tαu‖ = ‖TαT ∗Tv‖
= α‖(T ∗T + αI)−1T ∗Tv‖
≤ α‖(T ∗T + αI)−1T ∗T‖‖v‖
≤ α‖v‖

Hence ‖Tαu‖ ≤ α‖v‖ ∀u ∈ R(T ∗T ).
Thus for every u ∈ R(T ∗T ), ‖α(T ∗T + αI)−1u‖ −→ 0 as α −→ 0. Since
R(T ∗T ) = N(T )⊥, ‖α(T ∗T + αI)−1x‖ −→ 0, ∀x ∈ D(T ) ∩N(T )⊥.

Theorem 3.2. Let T ∈ C(H) be densely defined and Rα = (T ∗T + αI)−1T ∗.
Then {Rα}α>0 is a regularization family for (2).

Proof. Let y ∈ D(T ∗). Then (T ∗T + αI)x̂ = T ∗y + αx̂.
Hence x̂ = (T ∗T + αI)−1(T ∗y + αx̂). Thus

T †y −Rαy = x̂− (T ∗T + αI)−1T ∗y

= (T ∗T + αI)−1(T ∗y + αx̂)− (T ∗T + αI)−1T ∗y

= (T ∗T + αI)−1αx̂
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Hence ‖T †y −Rαy‖ = α‖(T ∗T + αI)−1x̂‖.
Since x̂ ∈ D(T ) ∩N(T )⊥, by Lemma 3.3, ‖T †y −Rαy‖ −→ 0 as α −→ 0.
Thus {Rα}α>0 is a regularization family for (2).

4 Order estimate
In this section we find an error estimate for the regularization family

Rα = (T ∗T +αI)−1T ∗, where T is a closed densely defined operator. We use the
following lemmas.

Lemma 4.1. [7]
For T ∈ C(H) we have the following
(i) If µ ∈ C and λ ∈ σ(T ) then λ+ µ ∈ σ(T + µI)
(ii) If α ∈ C and λ ∈ σ(T ) then αλ ∈ σ(αT )
(iii) σ(T 2) = {λ2 : λ ∈ σ(T )}

Lemma 4.2. [7]
Let T ∈ L(H) be a positive operator. Then the following results bold.
(i) T † is positive.
(ii) σ(T ) = σa(T )
(iii) 0 /∈ σ(I + T ) that is (I + T )−1 ∈ B(H)

(iv) If 0 /∈ σ(T ) then 0 6= λ ∈ σ(T ) if and only if
1

λ
∈ σ(T−1)

Theorem 4.1. Suppose T ∈ C(H) is densely defined positive operator. Then for
every α > 0

σ
(

(T + αI)−2T
)

=
{ λ

(λ+ α)2
: λ ∈ σ(T )

}
Proof. Since T is positive, T + αI is bijective.
Also (T + αI)−2T = (T + αI)−1 − α(T + αI)−2.
From Lemmas 4.1, 4.2 for α, λ > 0, we have
λ ∈ σ(T ) if and only if (λ+ α)−1 ∈ σ

(
(T + αI)−1

)
.

Hence

σ
(

(T + αI)−2T
)

=
{
µ− αµ2 : µ ∈ σ

(
(T + αI)−1

)}
=
{ 1

λ+ α
− α

(λ+ α)2
: λ ∈ σ(T )

}
=
{ λ

(λ+ α)2
: λ ∈ σ(T )

}
.
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Corolary 4.1. Let T ∈ C(H) be densely defined and α > 0.

Then ‖(T ∗T + αI)−1T ∗‖ = sup
{ √λ
λ+ α

: λ ∈ σ(T ∗T )
}
6

1

2
√
α

Proof. We have Rα = (T ∗T + αI)−1T ∗. Hence R∗αRα = T (T ∗T + αI)−2T ∗.
From Lemma 2.2 in [2], we have R∗αRα = (TT ∗ + αI)−2TT ∗.
Since R∗αRα is self adjoint and bounded, ‖Rα‖2 = ‖R∗αRα‖

= Sup
{
|k| : k ∈ σ(R∗αRα)

}
= Sup

{ λ

(λ+ α)2
: λ ∈ σ(TT ∗)

}
‖Rα‖ = Sup

{ √λ
λ+ α

: λ ∈ σ(TT ∗)
}
.

Since 2
√
αλ(λ+ α)−1 6 1 for λ, α > 0, we have ‖Rα‖ 6

1

2
√
α
.

Now we find an order estimate for Rα.

Corolary 4.2. Let T ∈ C(H) is densely defined and Rα = (T ∗T + αI)−1T ∗.
For every α > 0 and δ > 0, let yδ ∈ H be such that ‖y − yδ‖ 6 δ. Then

‖Rαy −Rαy
δ‖ 6 δ

2
√
α
.

Proof. For ‖y − yδ‖ 6 δ,

‖Rαy −Rαy
δ‖ 6 ‖Rα‖‖y − yδ‖

6
1

2
√
α
‖y − yδ‖

6
δ

2
√
α

Theorem 4.2. Let T ∈ C(H) is densely defined andRα = (T ∗T+αI)−1T ∗. Then

‖x̂− Rαy
δ‖ 6 ‖x̂− Rαy‖ +

δ

2
√
α

. If α = α(δ) is chosen such that α(δ) −→ 0

and
δ√
α(δ)

−→ 0 as δ −→ 0, then ‖x̂−Rδ
α(δ)‖ −→ 0 as δ −→ 0.

Proof. ‖x̂−Rαy
δ‖ ≤ ‖x̂−Rαy‖+ ‖Rαy −Rαy

δ‖
≤ ‖x̂−Rαy‖+

δ

2
√
α

by Theorem 3.6, ‖x̂−Rαy‖ −→ 0 as α −→ 0.
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