Tikhonov type regularization for unbounded operators

E Shine Lal* P Ramya[†]

Abstract

In this paper, we introduce a Tikhonov type regularization method for an ill-posed operator equation Tx = y, where T is a closed densely defined unbounded operator on a Hilbert space H.

Keywords: densely defined operator, closed operator, Tikhonov type regularization.

2020 AMS subject classifications: 47A10, 47A52¹

^{*}E Shine Lal, (Department of Mathematics, University College, Thiruvananthapuram, Kerala, India -695034); shinelal.e@gmail.com

[†]P Ramya, (Department of Mathematics, N.S.S College, Nemmara, Kerala, India-678508); ramyagcc@gmail.com

¹Received on September 20, 2021. Accepted on December 10, 2021. Published on December 31, 2021. doi: 10.23755/rm.v41i0.663. ©The Authors. This paper is published under the CC-BY licence agreement.

1 Introduction

Most of the problems arise in the field of science and engineering can be modelled as an operator equation

$$Tx = y \tag{1}$$

where $T: X \to Y$ is a bounded linear map from a normed linear space X to a normed linear space Y. In most of the cases (1) is Ill-posed. Certain regularization procedures are known for solving ill-posed operator equation (1). For example Tikhonov regularization, Mollifier method, Ritz method [5, 3]. In this paper we introduce a Tikhonov type regularization method for solving an ill-posed operator equation (1), where T is a closed densely defined operator on a Hilbert space H and we study the order of convergence.

2 Preliminaries

Let L(H), C(H) and B(H) denote the space of all linear, closed linear and bounded linear operators on a Hilbert space H respectively. For $T \in L(H)$, the domain, range of T are denoted by $\underline{D}(T), N(T)$ respectively. An operator $T \in L(H)$ is said to be densely defined if $\overline{D}(T) = H$. For example let $T : l^2(\mathbb{N}) \to l^2(\mathbb{N})$ defined by

$$T(x_1, x_2, x_3, \dots, x_n, \dots) = (x_1, 2x_2, 3x_3, \dots, nx_n, \dots)$$

with domain

$$D(T) = \{ (x_1, x_2, x_3, \dots, x_n, \dots) \in H : \sum_{j=1}^{\infty} |jx_j|^2 < \infty \}.$$

Then T is closed and unbounded. Since $c_{00} \subseteq D(T)$ and c_{00} is dense in $l^2(\mathbb{N})$, D(T) is dense in $l^2(\mathbb{N})$.

Proposition 2.1. Let $T \in C(H)$ be a densely defined operator. Then there exist a unique operator $T^* \in C(H)$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle \ \forall x \in D(T), \ \forall y \in D(T^*).$$

Proof. Let $D(T^*) = \{y \in H : \langle Tx, y \rangle \text{ is continuous for every } x \in D(T) \}$. For $y \in D(T)$, define $f : D(T) \to \mathbb{C}$ by $f(x) = \langle Tx, y \rangle \forall x \in D(T)$. Extend f to $f_0 : H \to \mathbb{C}$ by $f_0(x) = \lim_{n \to \infty} \langle Tx_n, y \rangle$ where (x_n) is a sequence in D(T) such that $x_n \to x$.

Next we prove that f_0 is well defined. For, let (x_n) and (y_n) be two sequences in D(T) converges to x. Since T is closed, $T(x_n - y_n) \to 0$. If $\langle Tx_n, y \rangle \to \langle x, y \rangle$, then

$$\begin{aligned} |\langle Ty_n, y \rangle - \langle x, y \rangle| &= |\langle Ty_n - Tx_n + Tx_n - x, y \rangle| \\ &\leq ||T(y_n - x_n)|| ||y|| + |\langle Tx_n - x, y \rangle| \\ &\to 0 \text{ as } n \to \infty \end{aligned}$$

Hence f_0 is well defined.

Since f_0 is a bounded linear functional on the Hilbert space H, by Riesz representation theorem there exist a unique $y^* \in H$ such that $f_0(x) = \langle x, y^* \rangle$. Thus $\langle Tx, y \rangle = \langle x, y^* \rangle \ \forall x \in D(T)$. Define $T^* : D(T^*) \to H$ by $T^*y = y^*$. Then T^* is well-defined. Also $\langle Tx, y \rangle = \langle x, T^*y \rangle \ \forall x \in D(T), \ \forall y \in D(T^*)$. \Box

Consider an ill-posed operator equation

$$Tx = y \tag{2}$$

where T is a closed densely defined operator on H.

Definition 2.1. [7]

Let $T \in C(H)$ be densely defined. Then there exist a unique densely defined operator $T^{\dagger} \in C(H)$ with domain $D(T^{\dagger}) = R(T) \oplus R(T)^{\perp}$ satisfies the following properties

(i) $TT^{\dagger}y = P_{\overline{R(T)}} y$ for all $y \in D(T^{\dagger})$, (ii) $T^{\dagger}Tx = Q_{N(T)^{\perp}}x$ for all $x \in D(T)$. (iii) $N(T^{\dagger}) = R(T)^{\perp}$.

where P and Q are the orthogonal projection on to $\overline{R(T)}$ and $N(T^{\perp})$ respectively. The operator T^{\dagger} is called the Moore-Penrose inverse of T.

For $y \in D(T^{\dagger})$, let $S_y = \{x \in D(T) : ||Tx - y|| \le ||Tu - y|| \forall u \in D(T)\}$. Then $u \in S_y$ is called least square solution of the operator equation (2). Note that $||T^{\dagger}y|| \le ||x|| \forall x \in S_y$, is called least square solution of minimal norm and is denoted by \hat{x} [7].

If R(T) is not closed, then T^{\dagger} is not continuous. Now we introduce a Tikhonov type regularization procedure for finding an approximate solution for $T^{\dagger}y$.

3 Tikhonov type regularization

In this section we introduce a Tikhonov type regularization procedure for solving (2).

E Shine Lal, P Ramya

Lemma 3.1. Let $T \in C(H)$ be densely defined and $\alpha > 0$. Then $T^*T + \alpha I$ and $TT^* + \alpha I$ are bijective closed densely defined operators on H. Also $(TT^* + \alpha I)^{-1}$ and $(T^*T + \alpha I)^{-1}$ are bounded, self adjoint operators on H.

Proof. Let $T \in C(H)$ and $\alpha > 0$. By proposition 2.1, we have $T^* \in C(H)$. Hence, $(TT^* + \alpha I)$ and $(T^*T + \alpha I)$ are closed densely defined operators on H. Since $\langle (TT^* + \alpha I)x, x \rangle = \langle T^*x, T^*x \rangle + \alpha \langle x, x \rangle \ge 0, \forall x \in D(T^*)$, we have $(TT^* + \alpha I)$ is a positive operator. Similarly $(T^*T + \alpha I)$ is also a positive operator. Since $T^*T + \alpha I$ is positive,

$$\begin{aligned} \|(T^*T + \alpha I)x\| \|x\| &\geq \langle (T^*T + \alpha I)x, x \rangle \\ &= \langle T^*Tx, x \rangle + \alpha \|x\|^2 \\ &\geq \alpha \|x\|^2 \,\forall x \in H \end{aligned}$$

Thus

$$\|(T^*T + \alpha I)x\| \ge \alpha \|x\| \ \forall x \in H$$
(3)

Since $T^*T + \alpha I$ is bounded below, it is one-one and its inverse from the range is continuous. Also $R(T^*T + \alpha I)$ is closed. Since $T^*T + \alpha I$ is also self adjoint, $R(T^*T + \alpha I) = N(T^*T + \alpha I)^{\perp} = H$. Hence $T^*T + \alpha I$ is onto. Therefore $(T^*T + \alpha I)^{-1} \in B(H)$. Similary $(TT^* + \alpha I)^{-1} \in B(H)$. From (3), $\|(T^*T + \alpha I)^{-1}\| \leq \frac{1}{\alpha}$.

Theorem 3.1. Let $T \in C(H)$ be densely defined. Then $T^*(TT^* + \alpha I)^{-1}$ and $T(T^*T + \alpha I)^{-1}$ are bounded operators on H. Also $|| T^*(TT^* + \alpha I)^{-1} || \le \frac{1}{\sqrt{\alpha}}$ and $|| T(T^*T + \alpha I)^{-1} || \le \frac{1}{\sqrt{\alpha}}$.

Proof. We have $(T^*T + \alpha I)^{-1}T^*T = I - \alpha (T^*T + \alpha I)^{-1}$ Since $\langle (T^*T + \alpha I)^{-1}x, x \rangle \ge 0 \ \forall x \in H$,

$$\langle (T^*T + \alpha I)^{-1}T^*Tx, x \rangle = \langle I - \alpha (T^*T + \alpha I)^{-1}x, x \rangle$$

= $\langle x, x \rangle - \alpha \langle (T^*T + \alpha I)^{-1}x, x \rangle \leq \langle x, x \rangle.$

Since $(T^*T + \alpha I)^{-1}T^*T$ self adjoint, $||(T^*T + \alpha I)^{-1}T^*T|| \le 1$. Let $x \in H$.

$$\begin{aligned} \|T^*(TT^* + \alpha I)^{-1}x\|^2 &= \langle T^*(TT^* + \alpha I)^{-1}x, T^*(TT^* + \alpha I)^{-1}x \rangle \\ &= \langle TT^*(TT^* + \alpha I)^{-1}x, (TT^* + \alpha I)^{-1}x \rangle \\ &= \langle (TT^* + \alpha I)^{-1}TT^*x, (TT^* + \alpha I)^{-1}x \rangle \\ &\leq \|(TT^* + \alpha I)^{-1}TT^*x\| \|(TT^* + \alpha I)^{-1}x\| \\ &\leq \frac{1}{\alpha} \|x\|^2 \end{aligned}$$

we have $||T^*(TT^* + \alpha I)^{-1}x||^2 \leq \frac{1}{\alpha} ||x||^2 \forall x \in H.$ Thus $||T^*(TT^* + \alpha I)^{-1}|| \leq \frac{1}{\sqrt{\alpha}}$. Hence $T^*(TT^* + \alpha I)^{-1}$ is bounded. Similarly $T(T^*T + \alpha I)^{-1}$ is bounded.

$$\square$$

Lemma 3.2. [7] Let $T \in C(H)$ be densely defined. Then (i) $(TT^* + I)^{-1}T \subseteq T(T^*T + I)^{-1}$ (ii) $(T^*T + I)^{-1}T^* \subseteq T^*(TT^* + I)^{-1}$

Remark 3.1. From Theorem 3.1, we have $T^*(TT^* + \alpha I)^{-1}$ and $T(T^*T + \alpha I)^{-1}$ are bounded. Therefore from Lemma 3.2, we have $(TT^* + \alpha I)^{-1}T$ and $(T^*T + \alpha I)^{-1}T^*$ are bounded.

Lemma 3.3. Let $T \in C(H)$ be densely defined. For every $x \in D(T) \cap N(T)^{\perp}$ $\|\alpha(T^*T + \alpha I)^{-1}x\| \longrightarrow 0$, as $\alpha \to 0$.

Proof. Let $T_{\alpha} = \alpha (T^*T + \alpha I)^{-1}, \alpha > 0.$ From (3.1) we have $||(T^*T + \alpha I)^{-1}|| \le \frac{1}{\alpha}$. Hence $||T_{\alpha}|| \le 1$ for every $\alpha > 0$. Let $u \in R(T^*T)$ then there exist $v \in D(T^*T)$ such that $T^*Tv = u$.

$$\begin{aligned} |T_{\alpha}u|| &= ||T_{\alpha}T^{*}Tv|| \\ &= \alpha ||(T^{*}T + \alpha I)^{-1}T^{*}Tv|| \\ &\leq \alpha ||(T^{*}T + \alpha I)^{-1}T^{*}T|| ||v|| \\ &\leq \alpha ||v|| \end{aligned}$$

Hence $||T_{\alpha}u|| \leq \alpha ||v|| \ \forall u \in R(T^*T).$ Thus for every $u \in R(T^*T), ||\alpha(T^*T + \alpha I)^{-1}u|| \longrightarrow 0$ as $\alpha \longrightarrow 0$. Since $\overline{R(T^*T)} = N(T)^{\perp}, ||\alpha(T^*T + \alpha I)^{-1}x|| \longrightarrow 0, \forall x \in D(T) \cap N(T)^{\perp}.$

Theorem 3.2. Let $T \in C(H)$ be densely defined and $R_{\alpha} = (T^*T + \alpha I)^{-1}T^*$. Then $\{R_{\alpha}\}_{\alpha>0}$ is a regularization family for (2).

Proof. Let $y \in D(T^*)$. Then $(T^*T + \alpha I)\widehat{x} = T^*y + \alpha \widehat{x}$. Hence $\widehat{x} = (T^*T + \alpha I)^{-1}(T^*y + \alpha \widehat{x})$. Thus

$$T^{\dagger}y - R_{\alpha}y = \hat{x} - (T^{*}T + \alpha I)^{-1}T^{*}y$$

= $(T^{*}T + \alpha I)^{-1}(T^{*}y + \alpha \hat{x}) - (T^{*}T + \alpha I)^{-1}T^{*}y$
= $(T^{*}T + \alpha I)^{-1}\alpha \hat{x}$

Hence $||T^{\dagger}y - R_{\alpha}y|| = \alpha ||(T^*T + \alpha I)^{-1}\widehat{x}||.$ Since $\widehat{x} \in D(T) \cap N(T)^{\perp}$, by Lemma 3.3, $||T^{\dagger}y - R_{\alpha}y|| \longrightarrow 0$ as $\alpha \longrightarrow 0$. Thus $\{R_{\alpha}\}_{\alpha>0}$ is a regularization family for (2).

4 Order estimate

In this section we find an error estimate for the regularization family $R_{\alpha} = (T^*T + \alpha I)^{-1}T^*$, where T is a closed densely defined operator. We use the following lemmas.

Lemma 4.1. [7]

For $T \in C(H)$ we have the following (i) If $\mu \in \mathbb{C}$ and $\lambda \in \sigma(T)$ then $\lambda + \mu \in \sigma(T + \mu I)$ (ii) If $\alpha \in \mathbb{C}$ and $\lambda \in \sigma(T)$ then $\alpha \lambda \in \sigma(\alpha T)$ (iii) $\sigma(T^2) = \{\lambda^2 : \lambda \in \sigma(T)\}$

Lemma 4.2. [7]

Let $T \in L(H)$ be a positive operator. Then the following results bold. (i) T^{\dagger} is positive. (ii) $\sigma(T) = \sigma_a(T)$ (iii) $0 \notin \sigma(I+T)$ that is $(I+T)^{-1} \in B(H)$ (iv) If $0 \notin \sigma(T)$ then $0 \neq \lambda \in \sigma(T)$ if and only if $\frac{1}{\lambda} \in \sigma(T^{-1})$

Theorem 4.1. Suppose $T \in C(H)$ is densely defined positive operator. Then for every $\alpha > 0$

$$\sigma\Big((T+\alpha I)^{-2}T\Big) = \Big\{\frac{\lambda}{(\lambda+\alpha)^2} : \lambda \in \sigma(T)\Big\}$$

Proof. Since T is positive, $T + \alpha I$ is bijective. Also $(T + \alpha I)^{-2}T = (T + \alpha I)^{-1} - \alpha (T + \alpha I)^{-2}$. From Lemmas 4.1, 4.2 for $\alpha, \lambda > 0$, we have $\lambda \in \sigma(T)$ if and only if $(\lambda + \alpha)^{-1} \in \sigma((T + \alpha I)^{-1})$. Hence

$$\sigma\Big((T+\alpha I)^{-2}T\Big) = \Big\{\mu - \alpha\mu^2 : \mu \in \sigma\Big((T+\alpha I)^{-1}\Big)\Big\}$$
$$= \Big\{\frac{1}{\lambda+\alpha} - \frac{\alpha}{(\lambda+\alpha)^2} : \lambda \in \sigma(T)\Big\}$$
$$= \Big\{\frac{\lambda}{(\lambda+\alpha)^2} : \lambda \in \sigma(T)\Big\}.$$

Tikhonov type regularization for unbounded operators

Corolary 4.1. Let $T \in C(H)$ be densely defined and $\alpha > 0$. Then $||(T^*T + \alpha I)^{-1}T^*|| = \sup \left\{\frac{\sqrt{\lambda}}{\lambda + \alpha} : \lambda \in \sigma(T^*T)\right\} \leq \frac{1}{2\sqrt{\alpha}}$

Proof. We have $R_{\alpha} = (T^*T + \alpha I)^{-1}T^*$. Hence $R_{\alpha}^*R_{\alpha} = T(T^*T + \alpha I)^{-2}T^*$. From Lemma 2.2 in [2], we have $R_{\alpha}^*R_{\alpha} = (TT^* + \alpha I)^{-2}TT^*$. Since $R_{\alpha}^*R_{\alpha}$ is self adjoint and bounded, $||R_{\alpha}||^2 = ||R_{\alpha}^*R_{\alpha}||$

$$= \sup \left\{ |k| : k \in \sigma(R_{\alpha}^*R_{\alpha}) \right\}$$
$$= \sup \left\{ \frac{\lambda}{(\lambda + \alpha)^2} : \lambda \in \sigma(TT^*) \right\}$$
$$\|R_{\alpha}\| = \sup \left\{ \frac{\sqrt{\lambda}}{\lambda + \alpha} : \lambda \in \sigma(TT^*) \right\}.$$
Since $2\sqrt{\alpha\lambda}(\lambda + \alpha)^{-1} \leq 1$ for $\lambda, \alpha > 0$, we have $\|R_{\alpha}\| \leq \frac{1}{2\sqrt{\alpha}}.$

Now we find an order estimate for R_{α} .

Corolary 4.2. Let $T \in C(H)$ is densely defined and $R_{\alpha} = (T^*T + \alpha I)^{-1}T^*$. For every $\alpha > 0$ and $\delta > 0$, let $y^{\delta} \in H$ be such that $||y - y^{\delta}|| \leq \delta$. Then $||R_{\alpha}y - R_{\alpha}y^{\delta}|| \leq \frac{\delta}{2\sqrt{\alpha}}$.

Proof. For $||y - y^{\delta}|| \leq \delta$,

$$\|R_{\alpha}y - R_{\alpha}y^{\delta}\| \leq \|R_{\alpha}\| \|y - y^{\delta}\|$$
$$\leq \frac{1}{2\sqrt{\alpha}} \|y - y^{\delta}\|$$
$$\leq \frac{\delta}{2\sqrt{\alpha}}$$

Theorem 4.2. Let $T \in C(H)$ is densely defined and $R_{\alpha} = (T^*T + \alpha I)^{-1}T^*$. Then $\|\widehat{x} - R_{\alpha}y^{\delta}\| \leq \|\widehat{x} - R_{\alpha}y\| + \frac{\delta}{2\sqrt{\alpha}}$. If $\alpha = \alpha(\delta)$ is chosen such that $\alpha(\delta) \longrightarrow 0$ and $\frac{\delta}{\sqrt{\alpha(\delta)}} \longrightarrow 0$ as $\delta \longrightarrow 0$, then $\|\widehat{x} - R_{\alpha(\delta)}^{\delta}\| \longrightarrow 0$ as $\delta \longrightarrow 0$.

Proof. $\|\widehat{x} - R_{\alpha}y^{\delta}\| \leq \|\widehat{x} - R_{\alpha}y\| + \|R_{\alpha}y - R_{\alpha}y^{\delta}\|$ $\leq \|\widehat{x} - R_{\alpha}y\| + \frac{\delta}{2\sqrt{\alpha}}$ by Theorem 3.6, $\|\widehat{x} - R_{\alpha}y\| \longrightarrow 0$ as $\alpha \longrightarrow 0$.

E Shine Lal, P Ramya

References

- [1] P Mathe B Hofmann and H. R.V Weizsacker. *Regularization in Hilbert space under Unbounded operators and general source conditions*. IOP Publishing Inverse Problems, 2009.
- [2] C. W Groetsch. Spectral methods for linear inverse problems with unbounded operators. *Journal of approximation theory*, 70:16–28, 1992.
- [3] S. H Kulkarni and M. T Nair. A characterization of closed range operators. *Indian J.Pure Appl. Math.*, 31:353–361, 2000.
- [4] S. H Kulkarni and G Ramesh. Projection method for inversion of unbounded operators. *Indian J.Pure Appl. Math*, 39:185–202, 2008.
- [5] A. K Louis and P Maass. A mollifier method for linear operator equations of the first kind. *inverse problem*, 1990.
- [6] A. G Rahim. Ill-posed problems with unbounded operators. *Journal of mathematical analysis and application*, 325:490–495, 2007.
- [7] M. T Nair S. H Kulkarni and G Ramesh. Some properties of unbounded operators with closed range. *Proc.Indian Acadamy of science*, 118:613–625, 2008.