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Abstract

The conceptualization of Nα-I-open sets and Nα-I-continuous func-
tions in nano ideal topology are used to study contra Nα-I-continuity.
Also the characteristics and behaviours of contra Nα-I-continuity based
on Nano Urysohn Space and Nano Ultra Hausdorff Space are dis-
cussed. Keywords: CNα-Cts function, CNα-I-Cts function, Nα-I-T2

space, Nα-I-connected.
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1 Introduction
The ideal concept in topology was developed by Kuratowski [Kuratowski,

1966].The notion of α-I-continuity was introduced in 2004 [A. Acikgoz and Yuk-
sel, 2004].The conception of nano topology was initated by L.Thivagar [Thivagar
and Richard, 2013a].In addition to that the concept of continuity, α-continuity,
kernal and clopen in Nano topology was introduced by [Karthiksankari and Sub-
bulakshmi, 2019] [Thivagar and Richard, 2013b] and [M. Lellis Thivagar and
SuthaDevi, 2017].Parimala and Jafari [Parimala and Jafari, 2018] had worked
on Nano ideals.This work aims the introduction of contra Nα-I-continuous func-
tions by applying the concept of Nα-I-open and Nα-I-continuity in nano ideal
topology.Also this contra Nα-I-continuity are compared with some existing func-
tions.Moreover, new class of functions are obtained. At every places the new
notions have been substantiated with suitable examples.Throughout this article
we use the notation NTS, NITS, N-regular, N-open, Nα-open, N-clopen, Nα-Cts
for Nano Topological Spaces, Nano Ideal Topological Spaces, nano regular space,
nano open, nano α-open, nano clopen, nano α-continuous respectively.Similar
notations are used for their respective closed sets.

2 Preliminaries
Definition 2.1. [M. Lellis Thivagar and SuthaDevi, 2017] Let (U, τR(X)) be a
NTS and S is a subset of U.The nano kernel of S is defined as NKer(S)=∩ {U : S
is a subset of U, U ∈ τR(X)}.

Theorem 2.1. [M. Lellis Thivagar and SuthaDevi, 2017] Let (U, τR(X)) be a
NTS and A1, A2 ⊆ U.We have

1. x ∈ NKer(A1) iff for any N-closed set F containing x, A1 and F are disjoint,

2. If A1 ⊆ NKer(A1) and then A1= Ker(A1) if A1 is N-open in U,

3. If A1 ⊆ A2, then NKer(A1) ⊆ NKer(A2).

Definition 2.2. [Thivagar and SuthaDevi, 2016] A NTS (U, τR(X)) along with an
ideal I defined on U is called as a NITS and is denoted by (U, τR(X),I).Throughout
this paper U represents a NTS (U, τR(X)) and UI represents a NITS (U, τR(X),I).

Definition 2.3. [Rajasekaran and Nethaji, 2018] Let (U, τR(X),I) be a nano ideal
topological space and A⊆U.Then A is said to be Nα-I-open if A⊆ Nint(Ncl∗(Nint
(A))).The complements of Nα-I-open is Nα-I-closed set.
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Theorem 2.2. [V. Inthumathi and Krishnaprakash, 2020] Let (U1, τR(X1),I) be a
NITS and (U2, τR(X1)) be a NTS.Then h : U1 → U2 is called Nα-I-Cts on U1 if
h−1(S) is Nα-I-open in U1 for any N-open set S in U2.

Definition 2.4. Bhuvaneswari and Nagaveni [2018] A NTS (U, τR(X)) is called
N-regular Space, if for each N-closed set T and each point x 6∈ T, ∃ disjoint N-open
sets G and H such that x ∈ G and T ⊂ G.

3 Contra Nα-I-Continuity
The notations used are CNα-open, CN-Cts function, CNα-Cts function, CNα-

I-Cts function for contra nano α-open, contra nano continuous, contra Nα- con-
tinuous, contra Nα-I-continuous function resp.

Definition 3.1. Let (U1, τR(X1)) and (U2, τR′(X2)) be NTS.Then h : U1 → U2 is
CNα-Cts if h−1(S) is Nα-closed in U1 whenever S is N-open set in U2.

Definition 3.2. Let h : (U1, τR(X1),I) → (U2, τR′(X2)) is CNα-I-Cts if h−1(S) is
Nα-I-closed in U1 whenever S is N-open set in U2.

Example 3.1. Let U1={i,j,k,l}, U1/R={{i},{j},{k},{l}} and X1={i}.Then τR(X1)
={U1,φ,{i}}.Let I={φ}.Here the N α-I-open sets are{U1,φ,{i},{i,j},{i,k},{i,l},{i,
j,k},{i,j,l},{i,k,l}}. Let U2={m,n,o,p} with U2/R

′={{m},{n},{o,p}} and X2={n,
o}.Then τR′(X2)={ U2,φ,{n},{o,p},{n,o,p}}.We define h:(U1,τR(X1),I)→( U2, τR′

(X2)) as f(i)=m, f(j)=n, f(k)=o and f(l)=p.Then h−1(S) is Nα-I-closed in U1 when-
ever S is N-open in U2.Therefore h is CNα-I-Cts.

Proposition 3.1. 1. Any CNα-I-Cts function is CNα-Cts.

2. Any CN-Cts function is CNα-I-Cts.
Proof. (i) Let h : (U1, τR(X1),I)→ (U2, τR′(X2)) be a CNα-I-Cts function.Let

S be a N-open in U2.Since h is CNα-I-Cts, h−1(S) is Nα-I-closed in U1.We know
that each Nα-I-closed set is Nα-closed.Hence h−1(S) is Nα-closed in U1.Hence h
is CNα-Cts.
(ii) Let h : (U1, τR(X1),I) → (U2, τR′(X2)) be a CN-Cts function.Let S be a N-
open set in U2.Since h is CN-Cts, h−1(S) is N-closed in U1.It is obvious that every
N-closed set is Nα-I-closed.Thus h−1(S) is Nα-I-closed in U1.Which implies h is
CNα-I-Cts function.2

Example 3.2. CNα-Cts ; CNα-I-Cts
Let U1={i,j,k,l}with U1/R={{i},{j,k},{l}} and X1={l}.Then τR(X1)={U1,φ,{l}}.
Let I={φ,{l}}.Here the Nα-open sets are {U1,φ,{l},{i,l},{j,l},{k,l},{i,j,l},{i,k,l},
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{j,k,l}} and Nα-I-open sets are {U1,φ,{l}}.Let U2={m,n,o,p} with U2/R
′={{m},

{n,o},{p}} and X2={m,n}.Then τR′(X2) = {U2,φ,{m},{n,o},{m,n,o}}. We define
h : (U1, τR(X1),I) → (U2, τR′(X2)) as h(i)=m, h(j)=n, h(k)=o and h(l)=p.Then
h−1(S) is Nα-closed in U1 but not Nα-I-closed whenever S is N-open set in U2.
Hence h is CNα-Cts but not CNα-I-Cts function.

Example 3.3. CNα-I-Cts ; CN-Cts
Let U1={i,j,k,l} with U1/R= {{i},{j},{k},{l}} and X1={i}.Then τR(X1)={U1,φ,{
i}}.Let I = {φ}.Here the Nα-I-open sets are {U1,φ,{i},{i,j},{i,k},{i,l},{i,j,k},{i,j,
l},{i,k,l}}.Let U2={m,n,o,p} with U2/R

′={{m},{o,p},{n}} and X2={n,o}.Then
τR′(X2) = {U2,φ,{n},{o,p},{n,o,p}}.We define h : (U1, τR(X1),I)→ (U2, τR′(X2))
as h(i) = m, h(j) = n, h(k) = o and h(l) = p.Then h−1(S) is Nα-I-closed in U1

but not N-closed whenever S is N-open set in U2. Hence h is CNα-I-Cts but not
CN-Cts function.

Theorem 3.1. Let h : (U1, τR(X1),I) → (U2, τR′(X2)), then the following state-
ments are equivalent:

1. h is CNα-I-Cts,

2. for each N-closed subset T of U2, h−1(T) ∈ NαIO(U1),

3. for each x ∈ U1 and each N-closed set T of U2 containing h(x), ∃ U ∈
NαIO(U1) such that h(U) ⊂ T,

4. h(NαI-cl(V)) ⊂ NKer(h(V)) for each V ⊆ U1,

5. NαI-cl(h−1(W)) ⊂ h−1(NKer(W)) for each W ⊆ U2.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are obvious.
(iii)⇒ (ii) Let T be any N-closed set of U2 and x ∈ h−1(T).Then h(x) ∈ T and ∃
Ux ∈ NαIO(U1) such that h(Ux) ⊂ T.Therefore, we obtain h−1(T) = ∪ { Ux : x ∈
h−1(T)} and hence h−1(T) ∈ NαIO(U1).
(ii)⇒ (iv)Let V ⊆ U1.If y 6∈ NKer(h(V)), then by Thm 2.1, ∃ a N-closed set T of
U2 containing y such that h(V) ∩ T=φ.Therefore V ∩ h−1(T) = φ and NαI-cl(V) ∩
h−1(T)=φ.Hence h(NαI-cl(V)) ∩ T=φ and y 6∈ h(NαI-cl(V)).Thus h(NαI-cl(V)) ⊂
NKer(h(V)).
(iv) ⇒ (v) Let W ⊆ U2.By the hypothesis and Thm 2.1, h(NαI-cl(h−1(W))) ⊂
NKer(h(h−1(W))) ⊂ NKer(W) and NαI-cl(h−1(W)) ⊂ h−1(NKer(W)).
(v)⇒ (i) Let W be a N-open set of U2.By Thm 2.1, NαI-cl(h−1(W))⊂ h−1(NKer(W))
= h−1(W) and NαI-cl(h−1(W)) = h−1(W).Therefore h−1(W) is Nα-I-closed in (U1,
τR(X),I).2
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Theorem 3.2. If a function h : (U1, τR(X1),I)→ (U2, τR′(X2)) is CNα-I-Cts and
V is N-regular, then h is Nα-I-Cts.
Proof. Let x ∈ U1 and Y a N-open set of U2 containing h(x).Since U2 is N-regular,
∃ a N-open set Z in U2 containing h(x) such that Ncl(Z)⊂ Y.Since h is CNα-I-Cts,
by the above theorem, ∃ X ∈ NαIO(U1) such that h(X) ⊂ Ncl(Z).Therefore h(X) ⊂
Ncl(Z) ⊂ Y.Hence h is Nα-I-Cts.2

Definition 3.3. A function h : (U1, τR(X1),I) → (U2, τR′(X2)) satisfy the Nα-I-
interiority rule if NαI-int(h−1(Ncl(W))) ⊂ h−1(W) Whenever W is N-open set of
(U2, τR′(X2)).

Theorem 3.3. If a function h : (U1, τR(X1),I) and (U2, τR′(X2)) is CNα-I-Cts and
satisfies Nα-I-interiority rule, then h is Nα-I-Cts.
Proof. Let Y be any N-open set of U2. Since h is CNα-I-Cts and Ncl(Y) is N-closed,
by Thm 3.1, h−1(Ncl(Y)) is Nα-I-open in (U1, τR(X),I).By hypothesis of h, h−1(Y)
⊂ h−1(Ncl(Y)) ⊂ NαI-int(h−1(Ncl(Y))) ⊂ NαI-int(h−1(Y)) ⊂ h−1(Y).Thus, we ob-
tain h−1(Y)=NαI-int(h−1(Y)) and consequently h−1(Y) ∈ NαIO(U).Therefore h is
Nα-I-Cts.2

Theorem 3.4. Let (U1, τR(X1),I) be any NITS and h : (U1, τR(X1),I) → (U2,
τR′(X2)) be a function and g : U1→ U1 × U2 be the graph function, given by g(x)
= (x, h(x)) for every x ∈ U1.Then f is CNα-I-Cts if and only if g is Nα-I-Cts.
Proof. Let x ∈ U1 and let T be a N-closed subset of U1 × U2 containing g(x).Then
T ∩ ({x} × U2) is N-closed in {x} × U2 containing g(x).Also {x} × U2 is home-
omorphic to U2. Hence {y ∈ U2 : (x, y) ∈ T} is a N-closed subset of U2.Since
h is CNα-I-Cts, ∪ { h−1(Y) ∈ U2 : (x, y) ∈ T } is a Nα-I-open subset of (U1,
τR(X1),I).Further, x ∈ ∪ { h−1(Y) ∈ U2 : (x, y) ∈ T } ⊂ g−1(T).Hence g−1(T) is
Nα-I-open.Then g is CNα-I-Cts. Conversely, let F be a N-closed subset of U2.Then
U1 × F is a N-closed subset of U1 × U2.Since g is CNα-I-Cts, g−1(U1 × F) is a
Nα-I-open subset of U1. Also, g−1(U1 × F)=h−1(F).Hence h is CNα-I-Cts.2

Definition 3.4. A NITS (U1, τR(X1),I) is called Nα-I-T2 if for any distinct two
points x, y ∈ U1, ∃ X, Y ∈ NαIO(U1) containing x and y, resp., such that X ∩ Y=φ.

Definition 3.5. 1. A NTS (U1, τR(X1)) is termed as a N-Urysohn Space if for
any two distinct points x, y ∈ U1, ∃ disjoint N-open subsets x ∈ A, y ∈ B
such that the N-closures A and B are disjoint N-closed subsets of U1.

2. A NTS (U1, τR(X1)) is called N-Ultra Hausdorff if any two distinct points of
U1 can be separated by disjoint N-clopen sets.

Theorem 3.5. If (U1, τR(X1),I) is an NITS and for any two distinct points x1 , x2
∈ U1, ∃ a function h into a N-Urysohn Space (U2, τR′(X2)) such that h(x1) 6= h(x2)
and h is CNα-I-Cts at x1 , x2, then (U1, τR(X1),I) is Nα-I-T2.
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Proof. Let x1 , x2 be any two distinct points of U1.Then by hypothesis there is a N-
Urysohn Space (U2, τR′(X2)) and a function h : (U1, τR(X1),I) and (U2, τR′(X2)),
which satisfies the required condition.Let yi= h(xi) for i=1,2.Then y1 6= y2. Since
(U2, τR′(X2)) is N-Urysohn, ∃ N-open neighbourhoods Xy1 and Xy2 of y1, y2

respectively in U2 such that Ncl(Xy1) ∩ Ncl(Xy2)=φ.Since h is CNα-I-Cts at xi,
∃ Nα-I-open neighbourhoods Wxi

of xi in U1 such that h(Wxi
) ⊂ Ncl(Xyi) for

i=1,2. Hence we get Wx1 ∩ Wx2=φ because Ncl(Xy1) ∩ Ncl(Xy2)=φ.Therefore
(U1, τR(X1),I) is Nα-I-T2.2

Corolary 3.1. If h is a CNα-I-Cts injective function of a NITS (U1, τR(X1),I) into
a N-Urysohn space (U2, τR′(X2)), then (U1, τR(X1),I) is a Nα-I-T2 space.
Proof. For any to two distinct points x1 , x2 in U1, h is CNα-I-Cts function of
U1 into a N-Urysohn space (U2, τR′(X2)) such that h(x1) 6= h(x2) because h is
injective.By Thm 3.5, the space (U1, τR(X1),I) is Nα-I-T2.2

Theorem 3.6. If h is a CNα-I-Cts injective function of a NTS (U1, τR(X1),I) into
N-Ultra Hausdorff space (U2, τR′(X2)), then (U1, τR(X1),I) is a Nα-I-T2 space.
Proof. Let the pair of distinct points of U1 be x1 , x2.Since f is injective, U2 is
N-Ultra Hausdorff h(x1) 6= h(x2) ∃ N-clopen sets Z1, Z2 such that h(x1) ∈ Z1, h(x2)
∈ Z2 and Z1 ∩ Z2=φ.Then xi ∈ h−1(Zi) ∈ NαIO(U1) for i=1,2 and h−1(Z1) ∩
h−1(Z2)=φ.Therefore (U1, τR(X),I) is a Nα-I-T2 space.2

Definition 3.6. Let h : (U1, τR(X1),I) → (U2, τR′(X2)).The graph G(h) of the
function h is called be CNα-I-closed in U1 × U2 if for any (x1, x2) ∈ (U1 ×
U2)\G(h), ∃ A ∈ NαIO(U1) and a N-closed set T of U2 containing x2 such that
(U1 × U2) ∩ G(h)=φ.

Lemma 3.1. Let h : (U1, τR(X1),I)→ (U2, τR′(X2)).The graph G(h) of the function
h is CNα-I-closed in U1 × U2 if and only if for each (x1, x2) ∈ (U1 × U2)\G(h), ∃
A ∈ NαIO(U1, x1) such that h(A) ∩ Ncl(T)=φ where T is a N-closed subset of U1

× U2 containing g(x1).

Theorem 3.7. If h : (U1, τR(X1),I)→ (U2, τR′(X2)) is a CNα-I-Cts function and
U2 is a N-Urysohn space, then G(h) is CNα-I-closed in U1 × U2.
Proof. Let (x1, x2) ∈ (U1 ×U2)\G(h).Then x2 6= h(x1) and ∃ N-open set A, B of U2

such that h(x1) ∈ A, x2 ∈ B and Ncl(A) ∩ Ncl(B)=φ.Since h is CNα-I-continuous,
∃ U ∈ NαIO(U1,x1) such that h(U) ⊂ Ncl(A).Therefore h(U) ∩ Ncl(B) =φ.Hence
G(h) is CNα-I-closed.2

Theorem 3.8. If h : (U1, τR(X1),I)→ (U2, τR′(X2)) is a CNα-I-Cts function and
(U2, τR′(X2)) is T2, then G(h) is CNα-I-closed.
Proof. Let (x1, x2) ∈ (U1 × U2)\G(h).Then x2 6= h(x1) and ∃ N-open set B of U2

such that h(x1) ∈ B, x2 6= B. Since h is CNα-I-Cts, ∃ U ∈ NαIO(U1,x1) such that
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h(U) ⊂ Ncl(B).Therefore h(U) ∩ (U2 - B)=φ and U2-B is a N-closed set of U2

containing x2.Hence G(h) is CNα-I-closed.2

Definition 3.7. A NITS (U, τR(X),I) is called Nα-I-connected if there exists Nα-I-
open sets A and B which form a separation of X.

Proposition 3.2. A CNα-I-Cts image of a Nα-I-connected space is connected.

Definition 3.8. A NITS (U, τR(X),I) is called Nα-I-normal if given any non-empty
disjoint N-closed sets T and F such that ∃ Nα-I-open sets A of T and B of F such
that A ∩ B=φ.

Definition 3.9. A NTS (U, τR(X)) is called N-Ultra normal if given any non-empty
disjoint N-closed sets T and F such that ∃ N-clopen sets A of T and B of F such
that A ∩ B=φ.

Theorem 3.9. If h : (U1, τR(X1),I)→ (U2, τR′(X2)) is a CNα-I-Cts closed injective
function and (U2, τR′(X2)) is N-Ultra-normal space, then (U1, τR(X1),I) is a Nα-
I-normal space.
Proof. Let the two disjoint N-closed subsets of U1 be F1 and F2. Since h is N-
closed and injective, h(F1) ∩ h(F2)=φ where h(F1) and h(F2) are N-closed subsets
of U2.Since U2 is N-Ultra normal, ∃ N-clopen sets Y1 of h(F1) and Y2 of h(F2) in
U2 such that Y1 ∩ Y2=φ.Hence Fi ⊂ f−1(Yi), f−1(Yi) ∈ NαIO(U) for i=1,2 and
f−1(Y1) ∩ f−1(Y2)=φ.Therefore (U1, τR(X),I) is a Nα-I-normal.2

Theorem 3.10. For the functions h : (U1, τR(X1),I)→ (U2, τR′(X2)) and g : (U2,
τR′(X2),I’)→ (U3, τR′′(X3)), We have

1. g ◦ h is Nα-I-Cts, if h is CNα-I-Cts and g is CN-Cts.

2. g ◦ h is CNα-I-Cts, if h is CNα-I-Cts and g is N-Cts.

Remark 3.1. In general, g ◦ h is not CNα-I-Cts functions if g and f are CNα-I-Cts
functions.The below example illustrate this result.

Example 3.4. Let U1={i,j,k,l} with U1/R={{i,k},{j},{l}}, and X1={i,l}.Then
τR(X1)={U1,φ,{l},{i,k},{i,k,l}}.Let I1={φ,j}.Let U2={m,n,o,p}with U2/R

′={{m,
n},{o,p}} and Y={o,p}.Then τR′(X2)={U2,φ,{p},{m,o},{m,o,p}}.Let I2={φ,m}.
Let W={t,u,v,w}with W/R′′={{t},{u,v},{w}} and Z={w}.Then τR′′(Z)={W,φ,{w}
}.Define h : (U1, τR(X),I1)→ (U2, τR′(X2)) by h(i)=n, h(j)=p, h(k)=m, h(l)=o and
g : (U2, τR′(Y),I2)→ (U3, τR′′(Z)) by g(m)=w, g(n)=t, g(o)=u, g(p)=v.Then h and
g are CNα-I-Cts functions but (g ◦ h)−1(w)=k which does not belongs to Nα-I-
closed in (U1, τR(X1),I).
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4 Conclusion
Through the above discussions we have summarized the conceptulation of

contra Nα-I-continuity and its characteristics based on Nano Urysohn Space and
Nano Ultra Hausdorff Space.Also, We compared contra Nα-I-continuity with
some existing functions using suitable examples.Further, this concept may be ex-
tended to Frechet Urysohn Space and Completely Hausdorff space in Nano Ideal
Topology.
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