On the traversability of near common neighborhood graph of a graph

Keerthi G. Mirajkar *
Anuradha V. Deshpande ${ }^{\dagger}$

Abstract

The near common neighborhood graph of a graph G, denoted by $n c n(G)$ is defined as the graph on the same vertices of G, two vertices are adjacent in $n c n(G)$, if there is at least one vertex in G not adjacent to both the vertices. In this research paper, the conditions for $n c n(G)$ to be disconnected are discussed and characterization for graph $n c n(G)$ to be hamiltonian and eulerian are obtained. Keywords: Near common neighborhood graph; Hamiltonian graph; Eulerian graph. 2020 AMS subject classifications: 05C07, 05C10, 05C38, 05C60, 05C76. ${ }^{1}$

[^0]
1 Introduction

Let G be a graph. The near common neighborhood graph of G denoted by $n c n(G)$ is a graph with the same vertices as G in which two vertices u and v are adjacent if there exists at least one vertex $w \in V(G)$ not adjacent to both of u and v [A1Kenani et al., 2016].

A cycle in a graph G that contains every vertex of G is called spanning cycle of G. Thus a hamiltonian cycle of G is a spanning cycle of G. A hamiltonian graph is a graph that contains a hamiltonian cycle.

An euler trail in a graph G is a trail that contains every edge of that graph. An euler tour is a closed euler trail. An eulerian graph is a graph that has an euler tour.

The graphs cosiderered in this paper are simple, undirected and connected with vertex set $v_{i} \in V(G), i=1,2,3, \ldots, n$. Let $\operatorname{deg}\left(v_{i}\right)$ be the degree of vertices of G. Basic terminologies are referred from [Harary, 1969].

The common neighborhood graph (congraph) of G [Zadeh et al., 2014] which is exactly the opposite of near common neighborhood is denoted by $\operatorname{con}(G)$ is a graph with vertex set, in which two vertices are adjacent if and only if they have at least one common neighbor in the graph G. Here the common neighborhood of some composite graphs are computed and also the relation between hamiltonicity of graph G and $\operatorname{con}(G)$ is investigated. [Hamzeh et al., 2018] computed the congraphs of some composite graphs and also results have been calculated for graph valued functions. [Sedghi et al., 2020] obtained the characteristics of congraphs under graph operations and relations between Cayley graphs and its congraphs.
[Al-Kenani et al., 2016] studied near common neighborhood of a graph and obtained results for paths, cycles and complete graphs. Motivated by the results on [Zadeh et al., 2014], [Hamzeh et al., 2018] and [Sedghi et al., 2020], in this paper, the conditions for $\operatorname{ncn}(G)$ to be disconnected are discussed and also theorems stating necessary and sufficient conditions for a graph $n c n(G)$ to possess hamiltonian and eulerian cycle are studied.

2 Prelimnaries

Below mentioned some important results are used through out the paper for proving the theorems.

Proposition 2.1. [Al-Kenani et al., 2016] For any path P_{n},

$$
n c n\left(P_{n}\right)= \begin{cases}\overline{K_{n}}, & \text { if } n=2,3 \\ 2 K_{2}, & \text { if } n=4 \\ K_{n}, & \text { if } n \geq 7\end{cases}
$$

On the traversability of near common neighborhood graph of a graph

Proposition 2.2. [Al-Kenani et al., 2016] For any path C_{n},

$$
n c n\left(C_{n}\right)= \begin{cases}\overline{K_{n}}, & \text { if } n=3,4 \\ C_{5}, & \text { if } n=5 \\ K_{n}, & \text { if } n \geq 7 .\end{cases}
$$

Proposition 2.3. [Al-Kenani et al., 2016]. For any complete graph K_{n} and totally disconnected graph $\overline{K_{n}}$, we have

$$
\begin{aligned}
& 1 . n c n\left(K_{n}\right)=\overline{K_{n}} \\
& 2 . n c n\left(\overline{K_{n}}\right)=K_{n}, n \geq 3
\end{aligned}
$$

Theorem 2.1. [Singh, 2010]. Let G be a simple graph with $p \geq 3$ and $\delta \geq p / 2$. Then G is Hamiltonian.

Theorem 2.2. [Singh, 2010] A nonempty connected graph is Eulerian if and only if it has no vertices of odd degree.

Remark 2.1. [Singh, 2010] The complete graph K_{p}, for $p \geq 3$, is always Hamiltonian.

3 Results

Theorem 3.1. If G is a graph with n vertices, then $n c n(G)$ is disconnected if any one of the following conditions holds

1. G is $P_{n}, C_{n}, n \leq 4$
2. G is $K_{n}, n \geq 3$
3. G has $\Delta(G)=n-1$
4. G is a graph with two complete graphs connected by bridge
5. G is $K_{n} \bullet P_{t}, n \geq 3, t \leq 3$

Proof. The proof of the theorem is constructed by considering the following cases.
Case 1. Suppose $G=P_{n}$ or $C_{n}, n \leq 4$.
We consider the following two subcases.
Subcase 1.1. Suppose $G=P_{n}, n \leq 4$.
If $n=2,3,4$, then by the proposition $2.1, n c n(G)$ is disconnected.
Subcase 1.2. Suppose $G=C_{n}, n \leq 4$.
If $n=3,4$, then from the proposition 2.2, $n c n(G)$ is disconnected.
Case 2. Suppose $G=K_{n}, n \geq 3$.
Then from the proposition 2.3, $\operatorname{ncn}(G)$ is disconnected.
Case 3. Let G be a graph with vertex set $V(G)=\left\{v_{i} \mid i \in N\right\}$ and $\Delta(G)=n-1$. Near common neighbourhood graph $n c n(G)$ is a graph with same vertices v_{i} as
G. The vertices v_{i} and $v_{j}, j=1,2,3, \ldots, n, i \neq j$ of $n c n(G)$ are adjacent if there is at least one vertex $w \in V(G)$ not adjacent to both v_{i} and v_{j}.
Since $\Delta(G)=n-1$ in G (that is v_{i} is adjacent to all other vertices of G), there does not exists any nonadjacent vertex for v_{i} and thus v_{i} cannot be connected to any vertex of $n c n(G)$. This results $n c n(G)$ into disconnected.
Case 4. Let G be a graph with two complete graphs K_{m} and K_{n} connected by bridge. Let $v_{i} \in V(G), i=1,2,3, \ldots, m$ be the vertex set of K_{m} and $v_{j} \in V(G)$, $j=m+1, m+2, m+3, \ldots, n$ be the vertex set of K_{n}, where m and n are the vertices of bridge.
As G consists of two complete graphs, vertices v_{i} of K_{m} and v_{j} of K_{n} are respectively mutually adjacent. Nonadjacent vertices for all the vertices $v_{i} \in K_{m}$ exists in K_{n} and for $v_{j} \in K_{n}$ exists in K_{m}. Thus the vertices v_{i} of K_{m} and v_{j} of K_{n} are mutually connected in $n c n(G)$. This produces the disconnected graph with two components. Further, the end points of bridge are also mutually adjacent to all the vertices of K_{m} and K_{n} respectively. Hence nonadjacent vertex does not exists for end points of bridge. This produces the graph $\operatorname{ncn}(G)$ into disconnected.
Case 5. Let G be a $K_{n} \bullet P_{t}, n \geq 3$ and $t \leq 3$.
$n c n(G)$ has the same vertices as G. Two vertices of $n c n(G)$ are adjacent if there is at least one vertex $w \in V(G)$ not adjacent to both the vertices.
Let $v_{i}, i=1,2,3, \ldots, n, n+1, n+2$ be the vertex set of $K_{n} \bullet P_{t}$. The vertices of K_{n} are $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and vertices of P_{t} are v_{n}, v_{n+1}, v_{n+2}. The vertex v_{n} is the common vertex which connects K_{n} and P_{t}.

We consider the following subcases.
Subcase 5.1 Suppose $t=2$ that is P_{t} is path with two vertices, then $G=K_{n} \bullet P_{2}$. Since $\Delta(G)=n-1$, there exists at least one vertex which is adjacent to all the other vertices of G. From theorem 3.1 (Case 3), $n c n(G)$ is disconnected.
Subcase 5.2 Suppose $t=3$ that is $t=n, n+1, n+2$.
In G, all the pairs of vertices of K_{n} have the nonadjacent vertex as v_{n+2} and can be mutually connected in $n c n(G)$. Also the vertices of P_{t}, v_{n+1} and v_{n+2} have the nonadjacent vertices in K_{n} and can be connected in $n c n(G)$. As there does not exist any nonadjacent vertices for the pair of common vertex n and the vertices of P_{t} in G, they cannot be connected in $n c n(G)$. This produces the the graph $n c n(G)$ with two components. Thus $n c n(G)$ is disconnected.

Theorem 3.2. For any graph $G, \operatorname{ncn}(G)$ is hamiltonian if and only if

1. G contains all the vertices of deg $\left(v_{i}\right)<n-1$ except for $C_{4} \bullet P_{2}$ and G is a graph with two complete graphs connected by bridge.
2. $G=P_{n}$ or $C_{n}, n \geq 5$.
3. G is $K_{n} \bullet P_{t}, n \geq 3, t \geq 4$.

Proof. Let G be graph with vertex set $V(G)$. Suppose $n c n(G)$ is hamiltonian.

In light of the above theorem 3.1 that $n c n(G)$ is disconnected if G is P_{n}, C_{n}, $n \leq 4, K_{n}, n \geq 3, G$ has $\Delta(G)=n-1, G$ is a graph with two complete graphs connected by bridge and G is $K_{n} \bullet P_{t}, n \geq 3, t \leq 3$.
Now we consider the graphs for which $n c n(G)$ is connected.
Case 1. Suppose G contains all the vertices of $\operatorname{deg}\left(v_{i}\right)<n-1$.
Let G be a graph $v_{i} \in V(G)$ vertices with $\operatorname{degree}\left(v_{i}\right)<n-1$ (v_{i} is not adjacent to all the vertices) and $n c n(G)$ be the graph with same set of vertices as G.
As $\operatorname{deg}\left(v_{i}\right)<n-1$ in G, there exists at least one nonadjacent vertex for any pair of vertices of G. Hence by definition of $n c n(G)$, those vertices in $n c n(G)$ can be connected which produces connected $n c n(G)$ graph.
Further, since for each pair of vertices of G there exists a nonadjacent vertex, $n c n(G)$ contains a cycle and $\delta \geq n / 2$. From the theorem $2.1 n c n(G)$ is hamiltonian.
Next suppose $G=C_{4} \bullet P_{2}$. Let $v_{i}, i=1,2,3,4,5$ be the vertex set of $C_{4} \bullet P_{2}$ with one common vertex between C_{4} and P_{2}. Among the four vertices of C_{4} of G, three vertices (except the common vertex) can be connected mutually adjacent as they have nonadjacent vertex (not common vertex) in P_{2}.
Similarly, a vertex of P_{2} which is not common can be connected with only three vertices of C_{4} in $n c n(G)$ as there exists a nonadjacent vertex for these each pair of vertices. Whereas the common vertex can be connected only with a vertex of P_{2} in $n c n(G)$ which is not common, since there exists a nonadjacent vertex in C_{4} for this pair and there does not exist nonadjacent vertex for the pair of vertices with C_{4}.
This results $n c n(G)$ into connected graph with one pendent vertex and consequently does not contain hamiltonian cycle.
Thus, $n c n\left(C_{4} \bullet P_{2}\right)$ is connected but not hamiltonian.
Case 2. Suppose G is P_{n} or $C_{n}, n \geq 5$.
Let G be a P_{n} or $C_{n}, n \geq 5$. From the propositions 2.1 and $2.2, n c n\left(P_{n}\right)$ and $n c n\left(C_{n}\right), n=5,6$ are connected which contains a cycle and $\delta \geq n / 2$. For $n \geq 7$, $n c n(G)$ is K_{n}. From the theorem 2.1 and remark 2.1, $n c n(G)$ is hamiltonian.
Case 3. Suppose G is $K_{n} \bullet P_{t}, n \geq 3, t \geq 4$.
Let G be a $K_{n} \bullet P_{t}, n \geq 3, t \geq 4$, where n is the number of vertices of K_{n} and t is the number of vertices of P_{t}.
Let $v_{i} \in V(G), i=1,2,3, \ldots, n$ be the vertex set of K_{n} and $v_{j} \in V(G)$, $j=n, n+1, n+2, \ldots, t$ be the vertex set of P_{t}, where n is the common vertex of K_{n} and P_{t}.
As there is increase in the number of vertices (path length) in P_{t} of G, there exists a nonadjacent vertex for each pair of vertices of K_{n} and vertices of P_{t}, which produces connected graph $n c n(G)$ with cycles and also $\delta \geq n / 2$. From the theorem 2.1, $\operatorname{ncn}(G)$ is hamiltonian.

Converse is obvious.

Theorem 3.3. For any graph G, $n c n(G)$ is eulerian if only if G is

1. $P_{n}, n \geq 7$.
2. $K_{n} \bullet P_{t}, n \geq 3, t \geq 5$.
3. $G=C_{n}, n=5,6$.

Proof. Let G is a graph with vertex set $v_{i} \in G, i=1,2,3, \ldots, n$.
Suppose $n c n(G)$ is eulerian, then degree of each v_{i} of $n c n(G)$ is even. From the theorems 3.1 and 3.2, $n c n(G)$ is disconnected if G is $P_{n}, C_{n}, n \leq 4, K_{n}, n \geq 3$, G has $\Delta(G)=n-1, G$ is a graph with two complete graphs connected by bridge, G is $K_{n} \bullet P_{t}, n \geq 3, t \leq 3$ and is connected only if G contains all the vertices of $\operatorname{deg}\left(v_{i}\right)<n-1, G=P_{n}$ or $C_{n}, n \geq 5$ and G is $K_{n} \bullet P_{t}, n \geq 3, t \geq 4$.
From the proposition 2.1, $n c n\left(G=P_{n}\right)$ is K_{n} with even degree; $n \geq 7$, where $n=2 s+1, s=2,3,4, \ldots$.
From the proposition 2.2, $n c n\left(G=C_{n}\right), n=5,6$ is K_{n} of even degree.
From the theorem 3.2, $n c n\left(G=K_{n} \bullet P_{t}\right)$ is K_{n} with even degree; $n \geq 3, t \geq 5$, where $n=2 s+1, s=1,2,3, \ldots$.
Hence from the theorem 2.2, $n c n(G)$ is eulerian.
Conversely, $n c n(G)$ is a graph with same vertices as G.
From theorem 3.1, $n c n(G)$ is disconnected if G is $P_{n}, C_{n} ; n \leq 4, K_{n} ; n \geq 3, G$ has $\Delta(G)=n-1, G$ is a graph with two complete graphs connected by bridge and G is $K_{n} \bullet P_{t} ; n \geq 3, t \leq 3$ in all other cases it is connected.

We consider the following cases.
Case 1. Suppose $n c n(G)$ is $K_{n}, n=1,2,3, \ldots, n$, then from the theorem 3.2, if $n c n(G)$ is connected and it is K_{n} for $G=P_{n}, C_{n}, n \geq 5$ and $K_{n} \bullet P_{t} ; n \geq 3$, $t \geq 5$.
Subcase 1.1 Suppose $G=P_{n}$ or C_{n}, then from the propositions 2.1 and 2.2, $n c n(G)$ is $K_{n}, n \geq 7$. The degree of each vertex of K_{n} is even and $n=2 s+1$, $s=1,2,3, \ldots, n$. From theorem $2.2, n c n(G)$ is eulerian.
Subcase 1.2. Suppose $G=K_{n} \bullet P_{t}, n \geq 3, t \geq 5$, then from the theorem 3.2, if $n c n(G)$ is connected and it is K_{n} for $n \geq 3, t \geq 5$. The degree of K_{n} is even if n is odd.
From the theorem 2.2, $\operatorname{ncn}(G)$ is eulerian.
Case 2. Suppose $G=C_{n}, n=5,6$.
Subcase 2.1 Suppose $G=C_{n}, n=5$, then from the proposition 2.2, $n c n(G)$ is C_{5} or 2-regular graph. From the theorem $2.2 \operatorname{ncn}(G)$ is eulerian.
Subcase 2.2 Suppose $G=C_{n}, n=6$, then from the proposition 2.2, $n c n(G)$ is 2-regular graph. Hence from the theorem 2.2, $n c n(G)$ is eulerian.
Case 3. Suppose $G=K_{n} \bullet P_{t}, n \geq 3, t \geq 5$.
From the theorem 3.2, if $n c n(G)$ is connected and it is K_{n} for $n \geq 3, t \geq 5$.
The degree of K_{n} is even if n is odd. From the theorem 2.2, $\operatorname{ncn}(G)$ is eulerian.

4 Conclusions

In this paper the study on near common neighborhood graph of a graph is extended and various general conditions for which $n c n(G)$ to be disconnected are discussed. It is disconnected for the graphs $P_{n}, C_{n} ; n \leq 4, K_{n} ; n \geq 3, G$ has $\Delta(G)=n-1, G$ is a graph with two complete graphs connected by bridge and G is $K_{n} \bullet P_{t} ; n \geq 3, t \leq 3$ in all other cases it is connected. We have also obtained the necessary and sufficient condition for $\operatorname{ncn}(G)$ to possess hamiltonian and eulerian cycles. It contains hamiltonian cycle whenever it is connected except for $C_{4} \bullet P_{2}$. It contains eulerian cycle if $n c n(G)$ is K_{n} with odd vertices and G is $C_{n}, n=5,6$.

References

A.N Al-Kenani, A. Alwardi, and O.A. Al-Attas. On the near-common neighborhood graph of a graph. International Journal of Computer Applications, 146 (1):1-4, 2016.
A. Hamzeh, A. Iranmanesh, S.H. Zadeh, M.A. Hosseinzadeh, and I. Gutman. On common neighborhood graphs ii. Iranian Journal of Mathematical Chemistry, 9(1):37-46, 2018.
F. Harary. Graph Theory. Addison-Wesley Mass, Reading, New York, 1969.
S. Sedghi, D.W. Lee, and N. Shobe. Characteristics of common neighborhood graph under graph operations and on cayley graphs. Iranian Journal of Mathematical Sciences and Informatics, 15(2):13-20, 2020.
G.S. Singh. Graph Theory. PHI Learning Private Limited, New York, 2010.
S.H Zadeh, A. Iranmanesh, A. Hamzeh, and M.A Hosseinzadeh. On the common neighborhood graphs. Electronic Notes in Discrete Mathematics, 45:51-56, 2014.

[^0]: *Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad 580001, Karnataka, INDIA; keerthi.mirajkar@gmail.com.
 ${ }^{\dagger}$ Department of Mathematics, Karnatak University’s Karnatak Arts College, Dharwad 580001, Karnataka, INDIA; anudesh08@ gmail.com.
 ${ }^{1}$ Received on July 9, 2021. Accepted on November 23, 2021. Published on December 31, 2021. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 41 \mathrm{i} 0.626$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

