On δ -preregular e^{*}-open sets in topological spaces

Jagadeesh B.Toranagatti*

Abstract

In this paper, we introduce a new class of sets called, δ -preregular e^* open sets and investigate their properties and characterizations. By using δ -preregular e^* -open sets, we obtain decompositions of complete continuity and decompositions of perfect continuity.

Keywords: δ -preopen; e^* -open; e^* -closed; $\delta p e^*$ -open; $\delta p e^*$ -closed; $\delta p e^*$ -continuity.

2020 AMS subject classifications: 54A05,54C08.¹

^{*}Department of Mathematics, Karnatak University's Karnatak College, Dharwad-580001, Karnataka, INDIA; jagadeeshbt2000@gmail.com

¹Received on May 5th, 2021. Accepted on June 22nd, 2021. Published on June 30th, 2021.doi: 10.23755/rm.v40i1.609. ISSN: 1592-7415. eISSN: 2282-8214. ©Toranagatti

This paper is published under the CC-BY licence agreement.

1 Introduction

The study of δ -open sets was initiated by Veličko[Velicko, 1968] in 1968. Following this Raychaudhuri and Mukherjee[Raychaudhuri and Mukherjee, 1993] established the concept of δ -preopen sets. Later, Ekici[Ekici, 2009] introduced the concept of e^* -open sets as a generalization of e-open sets. The aim of this paper is to introduce and study a new class of sets called, δ -preregular e^* -open sets using δ -preinterior and e^* -closure operators. The notion of $\delta p e^*$ -continuity is also introduced which is stronger than δ -precontinuity.Finally, we obtain decompositions of complete continuity and decompositions of perfect continuity.

Throughout this paper, (U,τ) and (V,η) (or simply U and V) represent topological spaces on which no separation axioms are assumed unless explicitly stated and $f:(U,\tau) \rightarrow (V,\eta)$ or simply $f:U \rightarrow V$ denotes a function f of a topological space U into a topological space V. Let $N \subseteq U$, then $cl(N) = \cap \{F: N \subseteq F \text{ and } F^c \in \tau\}$ is the closure of N and $int(N) = \cup \{O: O \subset N \text{ and } O \in \tau\}$ is the interior of N.

2 Preliminaries

Definition 2.1. A set $M \subseteq U$ is called δ -closed[Velicko, 1968] if $M = \delta$ -cl(M) where δ -cl(M)={ $p \in U$:int(cl(G)) $\cap M \neq \phi, G \in \tau$ and $p \in G$ }.

Definition 2.2. A set $M \subseteq U$ is called

(1) *e-open*[*Ekici*, 2008*c*] if $M \subseteq cl(\delta - int(M)) \cup int(\delta - cl(M))$ and *e-closed* if $cl(\delta - int(M)) \cap int(\delta - cl(M)) \subseteq M$.

(2) *a-open*[*Ekici*, 2008*d*] if $M \subseteq int(cl(\delta - int(M)))$ and *a-closed* if $cl(int(\delta - cl(M))) \subseteq M$. (3) e^* -open[*Ekici*, 2009] if $M \subseteq cl(int(\delta - cl(M)))$ and e^* -closed if $int(cl(\delta - int(M))) \subseteq M$.

(4) δ -semiopen[Park et al., 1997] if $M \subseteq cl(\delta$ -int(M))) and δ -semiclosed if int(δ - $cl(M)) \subseteq M$).

 $(5)\delta$ -preopen[Raychaudhuri and Mukherjee, 1993] if $M \subseteq int(\delta - cl(M))$ and δ -preclosed if $cl(\delta - int(M)) \subseteq M$.

(6) regular-open[Stone, 1937] if M = int(cl(M)) and regular-closed if M = cl(int(M)).

Definition 2.3. [*Ekici*, 2008b] A subst M of a space U is said to be a δ -dense set if δ -cl(M)=U.

The class of open(resp,closed, regular open, δ -preopen, δ -semiopen, e^* -open and clopen) sets of (U,τ) is denoted by O(U) (resp,C(U), RO(U), δ PO(U), δ SO(U), $e^*O(U)$ and CO(U)).

Theorem 2.1. [*Raychaudhuri and Mukherjee, 1993*] Let M be a subset of a space (U,τ) , then δ -pcl $(M)=M\cup$ cl $(\delta$ -int(M)) and δ -pint $(M)=M\cap$ int $(\delta$ -cl(M)).

Theorem 2.2. [*Ekici*, 2009]Let *M* be a subset of a space (U,τ) ,then: (*i*) e^* - $cl(M) = M \cup int(cl(\delta - int(M)))$ and e^* - $int(M) = M \cap cl(int(\delta - cl(M)))$ (*ii*) $int(cl(\delta - int(M)) = e^*$ - $cl(\delta - int(M)) = \delta$ - $int(e^* - cl(M))$.

Theorem 2.3. Let M be a subset of a space (U,τ) , then: $(i)\delta$ -pint $(e^*-cl(M))=e^*-cl(M)\cap int(\delta-cl(M))$. $(ii)\delta$ -pint $(e^*-cl(M))=\delta$ -pint $(M)\cup int(cl(\delta-int(M))$. $(iii)\delta$ -pint $(e^*-cl(M))=\delta$ -pint $(M)\cup e^*-cl(\delta-int(M))$ $(iv)\delta$ -pint $(e^*-cl(M))=\delta$ -pint $(M)\cup \delta$ -int $(e^*-cl(M))$. $(v) \delta$ -pint $(e^*-cl(M))=(M\cap int(\delta-cl(M))\cup int(cl(\delta-int(M)))$

Lemma 2.1. [Benchalli et al., 2017]For a subset M of a space (U,τ),the following are equivalent:
(a)M is clopen;
(b)M is δ-open and δ-closed;
(c)M is regular-open and regular-closed.

Definition 2.4. [Kohli and Singh, 2009] A space (U,τ) is called δ -partition if $\delta O(U)=C(U)$.

Definition 2.5. [Caldas and Jafari, 2016] A space (U,τ) is a δ -door space if every subset of U is δ -open or δ -closed.

Theorem 2.4. [Caldas and Jafari, 2016] If (U,τ) is a δ -door space, then every δ -preopen set in (U,τ) is δ -open.

3 δ -preregular e^* -open sets in topological spaces

Definition 3.1. A subset N of a space (U,τ) is said to be δ -preregular e^* -open(briefly δpe^* -open) if $N = \delta$ -pint(e^* -cl(N)). The complement of a δ -preregular e^* -open is called a δ -preregular e^* -closed(briefly δpe^* -closed) set.

Clearly, N is δpe^* -closed if and only if $N = \delta$ -pcl(e^* -int(N))

The class of δpe^* -open (resp, δpe^* -closed) sets of (U,τ) will be denoted by $\delta PE^*O(U)$ (resp, $\delta PE^*C(U)$).

Theorem 3.1. *Let* (U,τ) *be a topological space and* $M, N \subseteq U$ *. Then the following hold:*

(*i*) If $M \subseteq N$, then δ -pint(e^* -cl(M) $\subseteq \delta$ -pint(e^* -cl(N)). (*ii*) If $M \in \delta PO(U)$, then $M \subseteq \delta$ -pint(e^* -cl(M)). (*iii*) If $M \in e^*C(U)$, then e^* -cl(δ -pint(M)) $\subseteq M$.

Jagadeesh B.Toranagatti

(iv) δ -pint(e^* -cl(N)) is $\delta p e^*$ -open (v) If $M \in e^*C(U)$, then δ -pint(M) is δpe^* -open.. **Proof:**(*i*)Obvious. (ii) Let $M \in \delta PO(U)$. As $M \subseteq e^*$ -cl(M), then $M \subseteq \delta$ -pint(e^* -pcl(M). (iii) Let $M \in e^*C(U)$. Since δ -pint(M) $\subseteq M$, then e^* -cl(δ -pint(M)) $\subseteq M$. (iv) We have δ -pint(e^* -cl(δ -pint(e^* -cl(M)) $\subseteq \delta$ -pint(e^* -cl(e^* -cl(M)) = δ -pint(e^* -cl(M) and δ -pint(e^* -cl(δ -pint(e^* -cl(M))) $\supseteq \delta$ -pint(δ -pint(e^* -cl(M)) = δ -pint(e^* -cl(M). Hence δ -pint(e^* -cl(δ -pint(e^* -cl(M))) = δ -pint(e^* -cl(M). (v) Suppose that $M \in e^*C(U)$. By (i), δ -pint(e^* -cl(δ -pint(M)) $\subseteq \delta$ -pint(e^* -cl(M)= δ -pint(M). *On the other hand, we have* δ -pint(M) $\subseteq e^*$ -cl(δ -pint(M) so that δ -pint(M) $\subseteq \delta$ -pint(e^* -cl(δ -pint(M)). Therefore δ -pint(e^* -cl(δ -pint(M))= δ -pint(M). *This shows that* δ *-pint(M) is* δpe^* *-open.*

Theorem 3.2. (*i*)Every δpe^* -open set is δ -preopen(hence e-open, e^* -open). (*ii*)Every δpe^* -open set is e^* -closed.. **Proof:** (*i*)Let M be δpe^* -open, then by Theorem 2.3(*i*), δ -pint(e^* -cl(M))= e^* -cl(M) \cap int(δ -cl(M). Therefore, $M \subseteq$ int(δ -cl(M), M is δ -preopen. (*ii*)Let N be δpe^* -open.By Theorem 2.3(*ii*), $N = \delta$ -pint(N) \cup int(cl(δ -int(N))). Therefore, int(cl(δ -int(N))) $\subseteq N$. Thus N is e^* -closed.

Remark 3.1. By the following example, we show that every δ -preopen(resp,e^{*}-closed) set need not be a δpe^* -open set

Example 3.1. Let $U = \{a,b,c,d\}$ and $\tau = \{U, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}$. Then $\{a,b,c\}$ is a δ -preopen set but $\{a,b,c\} \notin \delta PE^*O(U)$ and $\{d\}$ is e^* -closed but $\{d\} \notin \delta PE^*O(U)$ it is not δpe^* -open

Corolary 3.1. For a topological space (U,τ) , we have δ -PO $(U) \cap \delta$ -PC $(U) \subseteq \delta PE^*O(U) \subseteq e^*O(U) \cap e^*C(U)$. **Proof:** Obvious. The converse inclusions in the above corollary need not be true as seen from the following example

Example 3.2. Let (U,τ) as in Example 3.1, then $\{b\}$ is δpe^* -open but it is not δ -preclopen. Moreover, $\{a,d\}$ is e^* -clopen but not δpe^* -open

Remark 3.2. The notions of $\delta p e^*$ -open sets and δ -open sets (hence a-open sets, δ -semiopen sets, δ^* -sets) are independent of each other.

Example 3.3. Consider (U,τ) as in Example 3.1. The set $\{a\}$ is δpe^* -open but it is not δ^* -set. Moreover, $\{a,b,c\}$ is δ -open but not δpe^* -open

Theorem 3.3. In a δ -partition space (U,τ) , a subset M of U is δpe^* -open if and only if it is δ -preopen.

Proof: Necessity: It follows from Theorem 3.2(*i*). Sufficiency: Let N be δ -preopen. Since (U,τ) is δ -partition and by Theorem 2.3(*ii*), we have δ -pint $(e^*-cl(M)) = \delta$ -pint $(M) \cup int(cl(\delta-int(M)))$

 $= M \cup int(cl(cl(M)))$ = $M \cup int(cl(M))$ = $M \cup \delta$ -int(cl(M)) = $M \cup \delta$ -int(δ -int(M)) = $M \cup \delta$ -int(M) = MTherefore, δ -pint(e^* -cl(M)) = M.Hence M is δpe^* -open.

Theorem 3.4. A subset $N \subseteq U$ is δpe^* -open if and only if N is e^* -closed and δ -preopen.

Proof: *Necessity: It follows from Theorem 3.2.*

Sufficiency:Let N be both e^* -closed and δ -preopen. Then $N = e^*$ -cl(N) and $N = \delta$ -pint(N). Therefore, δ -pint(e^* -cl(N)) = δ -pint(N) = N. Hence N is $\delta p e^*$ -open.

Remark 3.3. The class of δpe^* -open sets is not closed under finite union as well as finite intersection. It will be shown in the following example.

Example 3.4. Consider (U,τ) as in Example 3.1. Let $A = \{a,c\}$ and $B = \{b,c\}$, the A and B are δpe^* -open sets but $A \cup B = \{a,b,c\} \notin \delta PE^*O(U)$. Moreover, $C = \{a,b,d\}$ and $D = \{b,c,d\}$ are δpe^* -open sets but $C \cap D = \{b,d\} \notin \delta PE^*O(U)$.

Theorem 3.5. For a subset M of a space (U,τ) , the following are equivalent: (i) M is δpe^* -open. (ii) $M = e^* - cl(M) \cap int(\delta - cl(M))$. (iii) $M = \delta$ -pint $(M) \cup int(cl(\delta - int(M)))$. (iv) $M = \delta$ -pint $(M) \cup e^* - cl(\delta - int(M))$ (v) $M = \delta$ -pint $(M) \cup \delta$ -int $(e^* - cl(M))$. (vi) $M = (M \cap int(\delta - cl(M)) \cup int(cl(\delta - int(M)))$. **Proof:** It follows from Theorem 2.3

Theorem 3.6. In any space (U,τ) , the empty set is the only subset which is nowhere δ -dense and δpe^* -open. **Proof:** Suppose M is nowhere δ -dense and δpe^* -open. Then by Theorem 2.3(i), $M = \delta$ -pint $(e^*-cl(M)) = e^*-cl(M) \cap int(\delta - cl(M)) = e^*-cl(M) \cap \phi = \phi$. **Lemma 3.1.** If (U,τ) is a δ -door space, then any finite intersection of δ -preopen sets is δ -preopen.

Proof:*Obvious since* $\delta O(X)$ *is closed under finite intersection.*

Theorem 3.7. If (U,τ) is a δ -door space, then any finite intersection of δpe^* -open sets is $\delta p e^*$ -open.

Proof:Let $\{A_i: i=1,2,...,n\}$ be a finite family of δpe^* -open. Since the space (U,τ)

is δ -door, then by Lemma 3.1, we have $\bigcap_{i=n}^{n} A_i \in \delta PO(U)$. By Theorem 3.1(ii), $\bigcap_{i=n}^{n} A_i \subseteq \delta$ -pint(e^* -cl($\bigcap_{i=n}^{n} A_i$). For each i, we have $\bigcap_{i=n}^{n} A_i \subseteq A_i$ and thus δ -pint(e^* -cl($\bigcap_{i=n}^{n} A_i$) $\subseteq \delta$ -pint(e^* -cl(A_i) = A_i . Therefore, δ -pint(e^* -cl($\bigcap_{i=n}^{n} A_i$) $\subseteq \bigcap_{i=n}^{n} A_i$.

Lemma 3.2. If a subset M of a space (U,τ) is regular open, then $M = int(cl(M) = int(\delta - cl(M)).$

Theorem 3.8. Every regular open set is δpe^* -open. **Proof:** Let M be regular open. Then $M=int(cl(M))=int(\delta-cl(M))$. By Theorem 2.6(i), δ -pint(e^* -cl(M)) = e^* -cl(M) \cap int(δ -cl(M))= e^* -cl(M) $\cap M$ =M. This shows that *M* is $\delta p e^*$ -open.

Definition 3.2. A subset M of a space (U,τ) is called δ^* -set if $int(\delta - cl(M)) \subseteq cl(\delta - int(M))$

Theorem 3.9. (*i*) Every δ -semiopen set is δ^* -set. (*ii*)*Every* δ -semiclosed set is δ^* -set. **Proof:**Clear

Definition 3.3. A subset M of a space (U,τ) is called b^* -open if $M = cl(\delta$ -int $(M)) \cup$ int $(\delta$ -cl(M)). b^* -closed if $M = cl(\delta - int(M)) \cap int(\delta - cl(M))$

Theorem 3.10. A subset M of a space (U,τ) is regular open if and only if it is b^* -closed.

Proof:Let M be regular open. Then by Lemma 3.2, $M = int(cl(M)=int(\delta-cl(M)))$. Since every regular open set is δ -open, we have $cl(\delta$ -int $(M)) \cap$ int $(\delta$ -cl(M)) = $cl(M) \cap M = M$. Hence A is b^* -closed.

Conversely, let M be b^* -closed.Then $int(cl(\delta-int(M))\subseteq int(\delta-cl(\delta-int(M))\subseteq cl(\delta-int(M)))\subseteq cl(\delta-int(M))$ int(M)) \cap $int(\delta$ -cl(M))=M. By Definition 3.3, we have $M \subseteq int(\delta$ -cl(M)) $\subseteq int(\delta$ $cl(cl(\delta - int(M))) = int(cl(cl(\delta - int(M)))) = int(cl(\delta - int(M))).$

Therefore, $M = int(cl(\delta - int(M)))$. Now, $int(cl(M)) = int(cl(int(cl(\delta - int(M))))) = int(cl(\delta - int(M)))$ int(M) = M. Hence M is regular open.

Theorem 3.11. (*i*) Every b^* -closed set is δ -preopen. (*ii*)Every b^* -closed set is δ -semiopen. (*iii*)Every b^* -closed set is δpe^* -open. **Proof:**(*i*) and (*ii*) are obvious (*iii*)Let M be b^* -closed,then we have $M = int(cl(\delta - int(M)))$. Then δ -pint(e^* -cl(M)) $= \delta$ -pint(M) \cup int(cl(δ -int(M))) $= \delta$ -pint(M) $\cup M = M$.Hence M is δpe^* -open

Remark 3.4. The above discussions can be summarized in the following diagram: DIAGRAM

 $\begin{array}{c} \textit{regular open} \longrightarrow \delta \textit{-open} \longrightarrow a\textit{-open} \longrightarrow \delta \textit{-semiopen} \longrightarrow \delta^{*}\textit{-set} \\ \uparrow & \downarrow & \downarrow \\ b^{*}\textit{-closed} \longrightarrow \delta pe^{*}\textit{-open} \longrightarrow \delta \textit{-preopen} \longrightarrow e\textit{-open} \longrightarrow e^{*}\textit{-open} \end{array}$

Theorem 3.12. For a subset M of a space (U,τ) , the following are equivalent:

(i) *M* is regular open; (ii) *M* is δpe^* -open and δ -open; (iii) *M* is δpe^* -open and a-open; (iv) *M* is δpe^* -open and δ -semiopen; (v) *M* is δpe^* -open and δ^* -set. **Proof:** (i) \longrightarrow (ii) \longrightarrow (iii) \longrightarrow (iv) \longrightarrow (v):Follows from the above diagram (v) \longrightarrow (i):Let *M* be δpe^* -open and δ^* -set.Then int(δ -cl(*M*)) \subseteq cl(δ -int(*M*)) and int(δ -cl(*M*)) \subseteq int(cl(δ -int(*M*)) \subseteq int(δ -cl(δ -int(*M*))) \subseteq int(δ -cl(*M*)). Therefore we have int(δ -cl(*M*))=int(cl(δ -int(*M*)). Since *M* is δpe^* -open, $M = \delta$ -pint(δ -pcl(*M*)) =($M \cup$ int(cl(δ -int(*M*)) \cap int(δ -cl(*M*)) =int(δ -cl(*M*)). Therefore *M* =int(δ -cl(*M*))=int(cl(*M*)) and hence *M* is regular open.

Theorem 3.13. For a subset M of a space (U,τ) , the following are equivalent: (i) M is regular open. (ii) M is δpe^* -open and δ -semiclosed. (iii) M is e^* -closed and a-open. **Proof:** (i) \longrightarrow (ii):It follows from Theorem 3.8 (ii) \longrightarrow (i):Let M be δpe^* -open and δ -semiclosed. Since every δ -semiclosed set is δ^* -set. Hence by Theorem 3.12(v), M is regular open. (ii) \longrightarrow (iii):Clear (i) \longleftrightarrow (iii):It is shown in Theorem 3 [Ekici, 2008b]

Corolary 3.2. For a subset M of a space (U,τ) , the following are equivalent: (i) M is regular open; (ii) M is δpe^* -open and δ -open;

Jagadeesh B.Toranagatti

(iii) M is δpe*-open and a-open;
(iv) M is δpe*-open and δ-semiopen;
(v) M is δpe*-open and δ*-set;.
(vi) M is δpe*-open and δ-semiclosed;
(vii) M is e*-closed and a-open;
(viii) M is b*-closed.

Theorem 3.14. For a subset M of a space (U, τ) , the following are equivalent:

(i) *M* is clopen; (ii) *M* is δ -open and δ -closed; (iii) *M* is regular open and regular closed; (iv) *M* is δpe^* -open and δ -closed. **Proof:** (i) \longleftrightarrow (ii) \longleftrightarrow (iii): Follows from Lemma 2.1 (iii) \longrightarrow (iv). It follows from Theorem 3.8 (iv) \longrightarrow (ii)Let *M* be δpe^* -open and δ -closed.By Theorem 2.3(i), we have $N = e^*$ -cl(N) \cap int(δ -cl(N)) = e^* -cl(N) $\cap \delta$ -int(δ -cl(N))= δ -pcl(N) $\cap \delta$ -int(N)= δ -int(N). Therefore *M* is δ -open.

4 Decompositions of complete continuity

In this section, the notion of regular δ -preopen continuity is introduced and the decompositions of complete continuity are discussed.

Definition 4.1. A function $f:(U,\tau) \rightarrow (V,\sigma)$ is said to be

(i) $\delta p e^*$ -continuous if the inverse image of every open subset of (V,σ) is $\delta p e^*$ -open set in (U,τ) .

(ii)perfectly continuous[Noiri, 1984] (resp,e-continuous[Ekici, 2008c], e*-continuous[Ekici, 2009], δ -almost continuous[Raychaudhuri and Mukherjee, 1993], δ *-continuous, contra-super-continuous[Jafari and Noiri, 1999], completely continuous[Arya and Gupta, 1974], RC-continuous[Dontchev and Noiri, 1998], super-continuous[Munshi and Bassan, 1982], contra continuous[Dontchev, 1996], a-continuous[Ekici, 2008d], δ -semicontinuous[Noiri, 2003], contra e*-continuous[Ekici, 2008a], contra δ -semicontinuous[Ekici, 2004], contra b*-continuous) if the inverse image of every open subset of (V, σ) is clopen (resp,e-open,e*-open, δ -preopen, δ *-set, δ -closed, regular open, regular closed, δ -open, closed, a-open, δ -semicopen, e*-closed, δ -semiclosed, b*-closed) set in (U, τ)

By Theorems 3.9 and 3.11, we obtain the following theorem.

Theorem 4.1. (*i*) Every contra b^* -continuous set is δ -almost continuous. (*ii*)Every contra b^* -continuous set is δ -semicontinuous

On δ -preregular e^{*}-open sets in topological spaces

(iii)Every contra b*-continuous set is $\delta p e^*$ -continuous. (iv) Every δ -semicontinuous set is δ^* -continuous. (v)Every contra δ -semicontinuous is δ^* -continuous.

where c.cont.=completely continuity, s.cont.=super continuity, a.cont.=a-continuity, $\delta s.cont.=\delta$ -semicontinuity, $\delta^*.cont.=\delta^*$ -continuity, $cb^*.cont.=contra b^*$ -continuity, $\delta pe^*.cont.=\delta$ -preregular e^* -continuity, $\delta p.cont.=\delta$ -precontinuity, e.cont.=e-continuity, $e^*.cont.=e^*$ -continuity

Theorem 4.2. For a function $f:(U,\tau) \rightarrow (V,\eta)$, the following are equivalent: (i) f is completely continuous; (ii) f is δpe^* -continuous and super continuous; (iii) f is δpe^* -continuous and a-continuous; (iv) f is contra e^* -continuous and a-continuous; (v) f is δpe^* -continuous and δ -semicontinuous; (vi) f is δpe^* -continuous and contra δ -semicontinuous; (vii) f is δpe^* -continuous and δ^* -continuous; (vii) f is δpe^* -continuous and δ^* -continuous; (viii) f is contra b^* -continuous.

Remark 4.2. (i) $\delta p e^*$ -continuity and super-continuity(hence a-continuity, δ^{**} -continuity) are independent notions. (ii) $\delta p e^*$ -continuity and contra δ -semicontinuity are independent notions.

Example 4.1. Let (U,τ) be a space as in Example 3.1 and let $\eta = \{U, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$

(i) Define $f:(U,\tau) \to (U,\eta)$ by f(a) = f(c) = a, f(b) = b and f(d) = d. Clearly f is super-continuous but for $\{a,b\} \in O(V)$, $f^{-1}(\{a,b\}) = \{a,b,c\} \notin \delta PE^*O(U)$. Therefore f is not δpe^* -continuous.

Define $g:(U,\tau) \to (U,\eta)$ by g(a) = b, g(b) = g(c) = g(d) = a. Then g is δpe^* -continuous but for $\{a\} \in O(V)$, $g^{-1}(\{a\}) = \{b,c,d\} \notin q^*O(U)$. Therefore g is not q^* -continuous.

(ii)Define $f:(U,\tau) \to (U,\eta)$ by f(a) = f(c) = f(d) = b and f(b) = a. Clearly f is δ -semiregular-continuous but for $\{b\} \in O(V)$, $f^{-1}(\{b\}) = \{a,c,d\} \notin \delta PE^*PO(U)$. Therefore f is not δpe^* -continuous.

Define $g:(U,\tau) \to (U,\eta)$ by g(a) = g(b) = g(d) = a, g(c) = b. Then g is δpe^* -continuous

but for $\{a\} \in O(V)$, $g^{-1}(\{a\}) = \{a,b,d\} \notin \delta SC(U)$. Therefore g is not contra δ -semicontinuous.

5 Decompositions of perfectly continuity

In this section, the decompositions of perfectly continuity are obtained.

Theorem 5.1. For a function $f:(U,\tau) \to (U,\eta)$, the following are equivalent: (i) f is perfectly continuous; (ii) f is super continuous and contra super continuous; (iii) f is completely continuous and RC-continuous; (iv) f is δpe^* -continuous and contra super continuous. **Proof:** It is a direct consequence of Theorem 3.14

Remark 5.1. As shown by the following examples, δpe^* -continuity and contra super continuity are independent of each other.

Example 5.1. Consider (U,τ) as in Example 3.1 and (U,η) as in Example 4.1. Define $f: (U,\tau) \to (U,\eta)$ by f(a) = f(c) = f(d) = a and f(b) = c. Then f is contra super continuous but it is not δpe^* -continuous since $\{a\} \in O(V), f^{-1}(\{a\}) = \{a,c,d\} \notin \delta PE^*O(U)$. Define $g: (U,\tau) \to (U,\eta)$ by g(a) = b, g(b) = g(c) = g(d) = a. Then g is δpe^* -continuous but it is not contra super continuous since $\{a\} \in O(V), g^{-1}(\{a\}) = \{b,c,d\} \notin \delta C(U)$.

6 Conclusions:

The notions of sets and functions in topological spaces and fuzzy topological spaces are extensively developed and used in many engineering problems, information systems, particle physics, computational topology and mathematical sciences. By researching generalizations of closed sets, some new continuity have been founded and they turn out to be useful in the study of digital topology. Therefore, $\delta p e^*$ -continuous functions defined by $\delta p e^*$ -open sets will have many possibilities of applications in digital topology and computer graphics.

References

Shashi Prabha Arya and Ranjana Gupta. On strongly continuous mappings. *Kyungpook Mathematical Journal*, 14(2):131–143, 1974.

- SS Benchalli, PG Patil, JB Toranagatti, and SR Vighneshi. Contra deltagbcontinuous functions in topological spaces. *European Journal of Pure and Applied Mathematics*, 10(2):312–322, 2017.
- Miguel Caldas and Saeid Jafari. Weak forms of continuity and openness. *Proyecciones (Antofagasta)*, 35(3):289–300, 2016.
- J Dontchev. Contra-continuous functions and strongly s-closed spaces. *International Journal of Mathematics and Mathematical Sciences*, 19(2):303–310, 1996.
- Julian Dontchev and Takashi Noiri. Contra-semicontinuous functions. arXiv preprint math/9810079, 1998.
- E Ekici. On e*-open sets and (d, s)*-sets and decompositions of continuous functions. *Mathematica Moravica*, 13:29–36, 2009.
- Erdal Ekici. Almost contra-precontinuous functions. *Bulletin of the Malaysian Mathematical Sciences Society*, 27(1), 2004.
- Erdal Ekici. New forms of contra-continuity. *Carpathian Journal of Mathematics*, pages 37–45, 2008a.
- Erdal Ekici. A note on a-open sets and e*-open sets. Filomat, 22(1):89-96, 2008b.
- Erdal Ekici. On e-open sets, dp*-sets and dp epsilon*-sets and decompositions of continuity. *Arabian J. Sci. Eng.*, 33:269–282, 2008c.
- Erdal Ekici. On a-open sets, a-sets and decompositions of continuity and supercontinuity. In *Annales Univ. Sci. Budapest*, volume 51, pages 39–51, 2008d.
- SAEID Jafari and TAKASHI Noiri. Contra-super-continuous functions. In Annales Universitatis Scientiarum Budapestinensis, volume 42, pages 27–34, 1999.
- JK Kohli and D Singh. δ -perfectly continuous functions. *Demonstratio Mathematica*, 42(1):221–232, 2009.
- BM Munshi and DS Bassan. Super continuous functions. *Indian J. Pure Appl. Math*, 13(2):229–236, 1982.
- Takashi Noiri. Supercontinuity and some strong forms of continuity. *Indian J. pure appl. Math.*, 15(3):241–250, 1984.
- Takashi Noiri. Remarks on δ -semiopen and δ -preopen sets. *Demonstr. Math.*, 34: 1007–1019, 2003.

Jagadeesh B.Toranagatti

- Jin Han Park, Bu Young Lee, and MJ Son. On δ -semiopen sets in topological space. J. Indian Acad. Math, 19(1):59–67, 1997.
- S. Raychaudhuri and M. N. Mukherjee. On δ -almost continuity and δ -preopen sets. *Bull. Inst. Math. Acad. Sinica*, 21:357–366, 1993.
- Marshall Harvey Stone. Applications of the theory of boolean rings to general topology. *Transactions of the American Mathematical Society*, 41(3):375–481, 1937.
- N. V. Velicko. H-closed topological spaces. *Amer. Math. Soc.Transl.*, 78:103–118, 1968.