Mixed and Non-mixed Normal Subgroups of Dihedral Groups Using Conjugacy classes

Vinod S*
Biju G. S †

Abstract

In this paper, we characterize and compute the mixed and non-mixed basis of Dihedral groups. Also, by computing the conjugacy classes, we describe all the mixed and non-mixed normal subgroups of Dihedral Groups. Keywords: group; Dihedral group; mixed and non-mixed basis; normal subgroups; conjugacy classes; 2010 AMS subject classifications: 08A05. ${ }^{1}$

[^0]Vinod S, Biju G.S

1 Introduction

There are many interesting functions from the family of Dihedral groups to set of natural numbers. For the Dihedral group D_{n} of order 2n, Cavior [1975] proved that the number of subgroups is $d(n)+\sigma(n)$ where $\sigma(n)$ is the sum of positive divisors of n and $d(n)$ denote number of positive divisors of n. For elementary facts about dihedral groups see Conrad [Retrieveda]. Conrad [Retrievedb] describes the subgroups of D_{n}, including the normal subgroups. using characterization of dihedral groups in terms of generators and relations. Calugareanu [2004] presents a formula for the total number of subgroups of a finite abelian group. In Tărnăuceanu [2010] an arithmetic method is developed to count the number of some types of subgroups of finite abelian groups.

Subgroups of groups of smaller sizes are widely studied because their group properties can be easily verified and larger groups are usually studied in terms of their subgroups (see Miller [1940]). In this paper we characterize and compute the different basis of Dihedral groups. Also we describe all mixed and non-mixed normal subgroups of Dihedral groups via conjugacy classes.

2 Notations and Basic Results

Most of the notations, definitions and results we mentioned here are standard and can be found in Gallian [1994] and Dummit and Foote [2003]. For any given natural number n denote:

$$
\begin{aligned}
& d(n)=\text { the number of positive divisors of } n \\
& \sigma(n)=\text { the sum of positive divisors of } n . \\
& \varphi(n)=\text { the number of non- negative integers less than } n \text { and relatively } \\
& \quad \text { prime to } n .
\end{aligned}
$$

Also, the greatest common divisor of m and n is denoted by (m, n). Let G be a group and $a_{1}, a_{2}, \ldots, a_{p} \in G$. Then the subgroup generated by $a_{1}, a_{2}, \ldots, a_{p}$ is denoted by $<a_{1}, a_{2}, \ldots, a_{p}>$.

Definition 2.1. A group generated by two elements r and s with orders n and 2 such that srs ${ }^{-1}=r^{-1}$ is said to be the $n^{\text {th }}$ dihedral group and is denoted by D_{n}.

Theorem 2.1. For each divisor d of n, the group \mathbb{Z}_{n} has a unique subgroup of order d, namely $\left\langle\frac{n}{d}\right\rangle$.

Theorem 2.2. For each divisor d of n, the group \mathbb{Z}_{n} has exactly $\varphi(d)$ elements of order d, namely $\left\{k \frac{n}{d}: 0 \leq k \leq d-1,(k, d)=1\right\}$.

Mixed and Non-mixed Normal Subgroups of Dihedral Groups Using Conjugacy classes

Theorem 2.3. The number of subgroups of \mathbb{Z}_{n} is $d(n)$, namely $\left\langle\frac{n}{d}\right\rangle$ where d is a divisor of n.

Theorem 2.4. Let G be a group generated by a and b such that $a^{n}=e, b^{2}=e$ and $b a b^{-1}=a^{-1}$. If the size of G is $2 n$ then G is isomorphic to D_{n}.

By theorem 2.4, we make an abstract definition for dihedral groups.
Definition 2.2. For $n \geq 3$, let $R_{n}=\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$ and $S_{n}=\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$. Define a binary operation on $G_{n}=R_{n} \cup S_{n}$ by the following relations:

$$
\begin{array}{ll}
r_{i} \cdot r_{j}=r_{i+j \bmod (n)} & r_{i} \cdot s_{j}=s_{i+j \bmod (n)} \\
s_{i} \cdot s_{j}=r_{i-j \bmod (n)} & s_{i} \cdot r_{j}=s_{i-j \bmod (n)} \quad \text { for all } \quad 0 \leq i, j \leq n-1 .
\end{array}
$$

Then $\left(G_{n}, \cdot\right)$ is a group of order $2 n$.
Note that in the group $\left(G_{n}, \cdot\right)$, the identity element is $r_{0}, r_{i}=r_{j}$ if and only if $i=j \bmod (n), s_{i}=s_{j}$ if and only if $i=j \bmod (n)$, the inverse of r_{i} is r_{n-i} and the inverse of s_{i} is s_{i} for all $0 \leq i, j \leq n-1$. It is also clear that $r_{1}^{i}=r_{i}$ and $r_{j} \cdot s_{0}=s_{j}$ for all $0 \leq i, j \leq n-1$. Since G_{n} is a group of order $2 n$ and can be generated by r_{1} and s_{0} such that:

$$
r_{1}^{n}=r_{n}=r_{0}, s_{0}^{2}=r_{0} \text { and } s_{0} r_{1} s_{0}^{-1}=s_{0} r_{1} s_{0}=s_{-1} s_{0}=r_{-1}=r_{n-1}=r_{1}^{-1} .
$$

Therefore the group G_{n} is isomorphic to $D_{n}=<r_{1}, s_{0}>$. The elements of R_{n} are called rotations and that of S_{n} are called reflections. A subgroup of D_{n} which contain both rotations and reflections is called a mixed subgroup and subgroups contain rotations only is called non-mixed subgroup. From the group D_{n}, we have the following.

Theorem 2.5. R_{n} is a subgroup of D_{n} and is isomorphic to \mathbb{Z}_{n}.
Theorem 2.6. If n is even, the number of elements of order 2 in D_{n} is $n+1$, namely $\left\{r_{n / 2}, s_{j}: 0 \leq j \leq n-1\right\}$.

Theorem 2.7. If n is odd, the number of elements of order 2 in D_{n} is n, namely $\left\{s_{j}: 0 \leq j \leq n-1\right\}$.

Theorem 2.8. If d divide n and $d \neq 2$, the number of elements of order d in D_{n} is $\varphi(d)$ namely $\left\{r_{k n / d}: 0 \leq k \leq d-1,(k, d)=1\right\}$.

Theorem 2.9. If a and b are two elements in D_{n}, then $\langle a, b\rangle=\left\{a^{k} b^{m}: 0 \leq\right.$ $k, m \leq n-1\}$

Definition 2.3. Let G be a finite group. An element $y \in G$ is said to be a conjugate of $x \in G$ iff $y=g x g^{-1}$, for some g in G.

Vinod S, Biju G.S

This relation conjugacy in a group G is an equivalence relation on G. The equivalence class determined by the element x is denoted by $\operatorname{cl}(x)$. Thus $\operatorname{cl}(x)=$ $\left\{g x g^{-1}: g \in G\right\}$. The summation, $\sum_{x \in G}|c l(x)|$, where summation runs over one element from each conjugacy class of x is called the class equation of G.

Definition 2.4. A subgroup H of the group G is said to be a normal subgroup if ghg ${ }^{-1} \in H$ for all $g \in G$ and $h \in H$.

A normal subgroup which contain rotations alone is called a non- mixed normal subgroup and normal subgroups which contains both reflections and rotations is called mixed normal subgroup.

Theorem 2.10. Every normal subgroup is a union of conjugacy classes.
Theorem 2.11. Every subgroup of a cyclic normal subgroup of the group G is also normal in G.

3 Subgroups of D_{n}

Theorem 3.1. The number of non-mixed subgroups of D_{n} is $d(n)$, namely $\left\{\left\langle r_{n / d}\right\rangle\right.$: d is a divisor of $\left.n\right\}$.

Proof. The non-mixed subgroups of D_{n} are subgroups of R_{n}. Since R_{n} is isomorphic to \mathbb{Z}_{n}, for each divisor d of n, the group R_{n} has a unique subgroup of order d, namely $\left\langle r_{n / d}\right\rangle$. Hence the number of non-mixed subgroups of D_{n} is $d(n)$, namely $\left\{\left\langle r_{n / d}\right\rangle: d\right.$ is a divisor of $\left.n\right\}$.

Theorem 3.2. Every mixed subgroup of D_{n} has even order of which half of them are rotation and half of them are reflection.

Proof. Let H be a mixed subgroup of D_{n} containing a reflection s. Let A denote the set of rotations of H and B denote the set of all reflections of H. Define a map $\psi: A \rightarrow B$ by $\psi(r)=r \cdot s$ for all $r \in A$. If s_{j} is an element in B then $s_{j} \cdot s$ is an element of A and $\psi\left(s_{j} \cdot s\right)=s_{j} s s=s_{j}$. Hence ψ is onto. Also $\psi(r)=\psi\left(r^{\prime}\right) \Longrightarrow r s=r^{\prime} s \Longrightarrow r=r^{\prime}$ and hence ψ is one-one.

Theorem 3.3. Every mixed subgroup of D_{n} is Dihedral.
Proof. Let H be a mixed subgroup of D_{n}. By theorem $3.2,|H|=2 d$ for some d and $H \cap R_{n}=<r_{n / d}>$. Since order of H is $2 d$ and $<r_{n / d}>$ is its subgroup of order d, we have $H=<r_{n / d}>\cup<r_{n / d}>s=<r_{n / d}, s>$, for some s in H. Since $\left(r_{n / d}\right)^{d}=r_{o}, s^{2}=r_{0}$ and $s r_{n / d} s^{-1}=\left(r_{n / d}\right)^{-1}$, we have $H \equiv D_{d}$ and hence the proof.

Mixed and Non-mixed Normal Subgroups of Dihedral Groups Using Conjugacy classes

Corolary 3.1. If H is a mixed subgroup of D_{n} then,

1. $|H|=2 d$, for some d which divides n.
2. $H \equiv D_{n}=<r_{n / d}, s>$ for some $s \in H$.

Here we have a usual question: If d divides n, does there exist a subgroup of order $2 d$? If it exists, how many?

Theorem 3.4. If divides n, the number of mixed subgroups of order $2 d$ is $\frac{n}{d}$.
Proof. By the corollary 3.1, it is clear that the mixed subgroups D_{n} of order $2 d$ are $\left\{\left\langle r_{n / d}, s_{j}\right\rangle: 0 \leq j \leq n-1\right\}$, all of them need not be distinct. Suppose $<r_{n / d}, s_{i}>=<r_{n / d}, s_{j}>$ for some $0 \leq i, j \leq n-1$.

$$
\begin{aligned}
< & r_{n / d}, s_{i}>=<r_{n / d}, s_{j}> \\
\Longleftrightarrow<r_{n / d}>\cup & <r_{n / d}>s_{i}=<r_{n / d}>\cup<r_{n / d}>s_{j} \\
\Longleftrightarrow & <r_{n / d}>s_{i}=<r_{n / d}>s_{j} \\
& \Longleftrightarrow s_{i} s_{j}^{-1} \in<r_{n / d}> \\
& \Longleftrightarrow s_{i} s_{j}^{-1}=r_{k n / d} \text { for some } 0 \leq k \leq d-1 \\
& \Longleftrightarrow s_{i} s_{j}=r_{k n / d} \\
& \Longleftrightarrow r_{i-j}=r_{k n / d} \\
& \Longleftrightarrow i-j \equiv \frac{k n}{d} \bmod (n) \text { for some } 0 \leq k \leq d-1 \\
& \Longleftrightarrow d(i-j) \equiv 0 \bmod (n) \\
& \Longleftrightarrow i-j \equiv 0 \bmod \left(\frac{n}{d}\right) \\
& \Longleftrightarrow i \equiv j \bmod \left(\frac{n}{d}\right)
\end{aligned}
$$

Hence the number of distinct mixed subgroups of order $2 d$ in D_{n} is $\frac{n}{d}$, namely $\left\{<r_{n / d}, s_{i}>: 0 \leq i<\frac{n}{d}\right\}$.

Theorem 3.5. The number of mixed subgroups of D_{n} is $\sigma(n)$.
Proof. By theorem 3.4, the mixed subgroups of D_{n} is $\sum_{d / n} \frac{n}{d}=\sum_{d / n} d=\sigma(n)$. They are $\cup_{d / n}\left\{<r_{n / d}, s_{i}>: 0 \leq i \leq \frac{n}{d}-1\right\}$.

From theorem 3.1 and theorem 3.5 we have,
Theorem 3.6. The number of subgroups of D_{n} is $\sigma(n)+d(n)$.

Vinod S, Biju G.S

Theorem 3.7. The number of abelian subgroups of D_{n} is $d(n)+n$ if n is odd and $d(n)+n+\frac{n}{2}$ if n is even.

Proof. All non-mixed subgroups of D_{n} are cyclic and hence abelian. So by theorem 3.1, there are $d(n)$ non- mixed abelian subgroups for D_{n}. If n is odd, by theorem 3.3 and corollary 3.1 , the mixed abelian subgroups of D_{n} are of order 2 and hence there are n such subgroups. Thus if n is odd, the number of abelian subgroups of D_{n} is $d(n)+n$. If n is even, by theorem 3.3 and corollary 3.1, the mixed abelian subgroups of D_{n} are of order 2 and 4 , and hence there are $n+\frac{n}{2}$ such subgroups. Thus if n is even, the number of abelian subgroups of D_{n} is $d(n)+n+\frac{n}{2}$.
Theorem 3.8. The number of cyclic subgroups of D_{n} is $d(n)+n$.
Proof. By theorem 3.1, the number of non-mixed cyclic subgroups of D_{n} is $d(n)$. Also by theorem 3.3 and corollary 3.1,the mixed cyclic subgroups of D_{n} is n. Hence the number of cyclic subgroups of D_{n} is $d(n)+n$.

4 Basis of D_{n}

A basis of D_{n} which contain both rotation and reflection is called a mixed basis and other basis is called non-mixed basis. By the definition 2.2, it is obvious that two rotations cannot generate D_{n}. Hence non-mixed basis of D_{n} are basis consisting of two reflections.

Theorem 4.1. For $n \geq 3$, the number of mixed basis of D_{n} is $n \varphi(n)$.
Proof. Let $s_{j}(0 \leq j \leq n-1)$ be a reflection in D_{n}. Then for any $0 \leq i \leq$ $n-1$,

$$
\begin{aligned}
<r_{i}, s_{j}> & =\left\{r_{i}^{m} s_{j}^{t}: 0 \leq m, t \leq n-1\right\} \quad ; \text { by theorem } 2.9 \\
& =\left\{r_{i}^{m} s_{j}, r_{i}^{m} r_{0}: 0 \leq m \leq n-1\right\} \quad ; \text { since } s_{j}^{t}=s_{j} \text { or } r_{0} \\
& =\left\{r_{i}^{m} s_{j}, r_{i}^{m}: 0 \leq m \leq n-1\right\} \\
& =\left\{r_{i}^{m} s_{j}: 0 \leq m \leq n-1\right\} \cup\left\{r_{i}^{m}: 0 \leq m \leq n-1\right\} \\
& =<r_{i}>s_{j} \cup<r_{i}>=D_{n} \text { if and only if }(i, n)=1
\end{aligned}
$$

Hence corresponding to each reflection $s_{j}(0 \leq j \leq n-1)$ there are $\varphi(n)$ mixed bases, namely $\left\{\left\{s_{j}, r_{i}\right\}: 0 \leq i \leq n-1\right.$ and $\left.(i, n)=1\right\}$. So the number of mixed basis for $D_{n}(n \geq 3)$ is $n \varphi(n)$.
Theorem 4.2. For $n \geq 3$, the number of non-mixed basis of D_{n} is $\frac{n \varphi(n)}{2}$.

Proof. Since the dimension of D_{n} is 2 , any basis of D_{n} contain exactly two elements. The subgroup generated by two rotations always lies in R_{n} and hence cannot form a basis. Therefore any non- mixed basis of D_{n} contain exactly two reflections. : Let $s_{j}(0 \leq j \leq n-1)$ be a reflection in D_{n}. Then for any $0 \leq i \leq n-1$,

$$
\begin{aligned}
<s_{i}, s_{j}> & =<r_{i-j} s_{j}, s_{j}>=<r_{i-j}, s_{j}> \\
& \cong D_{n} \text { if and only if } i-j \equiv k \bmod (n) \text { and }(k, n)=1
\end{aligned}
$$

Hence corresponding to each reflection $s_{j}(0 \leq j \leq n-1)$ there are $\varphi(n)$ nonmixed basis for D_{n} namely $\left\{\left\{s_{i+j}, s_{j}\right\}: 0 \leq i \leq n-1\right.$ and $\left.(i, n)=1\right\}$. If $\left\{s_{i}, s_{j}\right\}$ is a mixed basis corresponding to the reflection s_{i}, then it is also a basis corresponding to the reflection s_{j}. Hence the number of non-mixed basis for $D_{n}(n \geq 3)$ is $\frac{n \varphi(n)}{2}$.

Theorem 4.3. For $n \geq 3$, the number of different basis for D_{n} is $\frac{3 n}{2} \varphi(n)$.
Proof. The collection of all different bases of $D_{n}(n \geq 3)$ is the union of all mixed and non-mixed bases. Hence the different bases of $D_{n}(n \geq 3)$ is $\frac{n \varphi(n)}{2}+n \varphi(n)=\frac{3 n}{2} \varphi(n)$.

5 Congugacy classes of D_{n}

In this section we will compute all conjugacy classes and class equation of Dihedral groups.

Theorem 5.1. If n is odd, the number of conjugacy classes in D_{n} is $\frac{n+3}{2}$.
Proof. Let $r_{i}(0 \leq i \leq n-1)$ be a rotation in D_{n}. Then

$$
\begin{aligned}
c l\left(r_{i}\right) & =\left\{r_{j} r_{i} r_{j}^{-1}, s_{j} r_{i} s_{j}^{-1}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{j} r_{i} r_{-j}, s_{j} r_{i} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{i}, s_{j} r_{i} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{i}, s_{j-i} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{i}, r_{-i}\right\}
\end{aligned}
$$

Since n is odd, $r_{i}=r_{-i}$ if and only if $i=0$. Therefore

$$
\operatorname{cl}\left(r_{0}\right)=\left\{r_{0}\right\} \text { and } \operatorname{cl}\left(r_{i}\right)=\left\{r_{i}, r_{-i}\right\}, \text { a two element set, for all } 1 \leq i \leq n-1 .
$$

Vinod S, Biju G.S

Also,

$$
\begin{aligned}
c l\left(s_{0}\right) & =\left\{r_{j} s_{0} r_{j}^{-1}, s_{j} s_{0} s_{j}^{-1}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{j} s_{0} r_{j}^{-1}, s_{j} s_{0} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{j} s_{0} r_{-j}, s_{j} s_{0} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{s_{2 j}: 0 \leq j \leq n-1\right\} \\
& =\left\{s_{j}: 0 \leq j \leq n-1\right\}, \text { since } n \text { odd. }
\end{aligned}
$$

Hence, if n is odd, $\left\{\left\{s_{j}: 0 \leq j \leq n-1\right\},\left\{r_{0}\right\},\left\{r_{i}, r_{-i}\right\}: 1 \leq i \leq(n-1) / 2\right\}$ are the conjugacy classes of D_{n}. Thus if n is odd, the number of conjugacy class of D_{n} is $\frac{(n-1)}{2}+2=\frac{(n+3)}{2}$.

Corolary 5.1. The class equation of $D_{n}(n$ odd $)$ is $1+2+2+\ldots+2+n=2 n$, the summation runs over $(n-1) / 2$ times.

Theorem 5.2. If n is even, the number of conjugacy classes in D_{n} is $\frac{n+6}{2}$.
Proof. Let $r_{i}(0 \leq i \leq n-1)$ be a rotation in D_{n}. Then

$$
\begin{aligned}
c l\left(r_{i}\right) & =\left\{r_{j} r_{i} r_{j}^{-1}, s_{j} r_{i} s_{j}^{-1}: 0 \leq j \leq n-1\right\}=\left\{r_{j} r_{i} r_{-j}, s_{j} r_{i} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{i}, s_{j} r_{i} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{i}, s_{j-i} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{i}, r_{-i}\right\}
\end{aligned}
$$

Since n is even $r_{i}=r_{-i}$ if and only if $i=0$ or $\frac{n}{2}$. Therefore
$\operatorname{cl}\left(r_{0}\right)=\left\{r_{0}\right\}, \operatorname{cl}\left(r_{n / 2}\right)=\left\{r_{n / 2}\right\}$ and $\operatorname{cl}\left(r_{i}\right)=\left\{r_{i}, r_{-i}\right\}$, a two element set, for all $1 \leq i \leq n-1$ and $i \neq \frac{n}{2}$.

Also,

$$
\begin{aligned}
c l\left(s_{0}\right) & =\left\{r_{j} s_{0} r_{j}^{-1}, s_{j} s_{0} s_{j}^{-1}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{j} s_{0} r_{j}^{-1}, s_{j} s_{0} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{j} s_{0} r_{-j}, s_{j} s_{0} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{s_{2 j}: 0 \leq j \leq n / 2-1\right\}
\end{aligned}
$$

Mixed and Non-mixed Normal Subgroups of Dihedral Groups Using Conjugacy classes

Again,

$$
\begin{aligned}
c l\left(s_{1}\right) & =\left\{r_{j} s_{1} r_{j}^{-1}, s_{j} s_{1} s_{j}^{-1}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{j} s_{1} r_{j}^{-1}, s_{j} s_{1} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{r_{j} s_{1} r_{-j}, s_{j} s_{1} s_{j}: 0 \leq j \leq n-1\right\} \\
& =\left\{s_{2 j+1}: 0 \leq j \leq n-1\right\} \\
& =\left\{s_{2 j+1}: 0 \leq j \leq n / 2-1\right\}
\end{aligned}
$$

Hence, if n is even,

$$
\begin{array}{r}
\left\{\left\{s_{2 j}: 0 \leq j<n / 2\right\},\left\{s_{2 j+1}: 0 \leq j<n / 2\right\},\left\{r_{0}\right\},\left\{r_{n / 2}\right\},\right. \\
\left.\left\{r_{i}, r_{-i}\right\}: 1 \leq i \leq(n-2) / 2\right\}
\end{array}
$$

are the conjugacy classes of D_{n}. Thus if n is even, the number of conjugacy class of D_{n} is $\frac{(n-2)}{2}+4=\frac{(n+6)}{2}$.

Corolary 5.2. The class equation of D_{n} (n even) is $1+1+2+2+\ldots+2+$ $n / 2+n / 2=2 n$, the summation runs over $(n-2) / 2$ times.

Corolary 5.3. Each conjugacy class of D_{n} contains either rotations alone or reflections alone.

Corolary 5.4. The number of conjugacy classes of D_{n} which contain rotations alone is $\frac{(n+1)}{2}$ if n is odd and $\frac{(n+2)}{2}$ if n is even.

Corolary 5.5. The number of conjugacy classes of D_{n} which contain reflections alone is 1 , namely D_{n}, if n is odd and is 2 , namely $\begin{cases}\left\{s_{2 j}: 0 \leq j<\right.\end{cases}$ $\left.n / 2\},\left\{s_{2 j+1}: 0 \leq j<n / 2\right\}\right\}$, if n is even.

6 Normal subgroups of D_{n}

In this section we will describe all mixed and non-mixed normal subgroups of D_{n}.

Theorem 6.1. The number of non-mixed normal subgroups of D_{n} is $d(n)$.
Proof. Since R_{n} is a cyclic normal subgroup of D_{n}, by theorem 2.11, the non-mixed subgroups and non-mixed normal subgroup of D_{n} are same. Hence the number of non-mixed normal subgroups of D_{n} is $d(n)$.

Vinod S, Biju G.S

Theorem 6.2. The number of mixed normal subgroups of D_{n} is 1 if n odd and 3 if n even.

Proof. Since normal subgroups are union of conjugacy classes, a mixed normal subgroup contain at least one conjugacy class having reflection. If n is odd, there is only one conjugacy class having reflection, namely $\left\{s_{j}: 0 \leq j \leq n-1\right\}$. Therefore D_{n} is the only mixed normal subgroup of D_{n} if n is odd. If n even, $\left\{s_{2 j}: 0 \leq j<n / 2\right\}$ and $\left\{s_{2 j+1}: 0 \leq j<n / 2\right\}$ are the only conjugacy classes having reflection. Therefore $\left\{s_{2 j}, r_{2 j}: 0 \leq j<n / 2\right\},\left\{s_{2 j+1}, r_{2 j}\right.$: $0 \leq j<n / 2\}$ and D_{n} are the only mixed normal subgroups of D_{n} if n is even. Therefore the number of mixed normal subgroups of D_{n} is 3 if n is even.

Corolary 6.1. The number of normal subgroups of D_{n} is $d(n)+1$ if n odd and $d(n)+3$ if n even.

7 Conclusion

In this paper, it is proved that the number of mixed basis and non-mixed basis for $D_{n}(n \geq 3)$ are $n \varphi(n)$ and $\frac{n \varphi(n)}{2}$ respectively, where $\varphi(n)$ is the number of non- negative integers less than n and relatively prime to n. Also it is shown that the number of different bases for $D_{n}(n \geq 3)$ is $\frac{3 n}{2} \varphi(n)$. If n is odd, the number of conjugacy classes in D_{n} is $\frac{n+3}{2}$ and if n is even, the number of conjugacy classes in D_{n} is $\frac{n+6}{2}$. Finally we have shown that the number of non-mixed normal subgroups of D_{n} is $d(n)$ and the number of mixed normal subgroups of D_{n} is 1 if n odd and 3 if n even.

References

Grigore Calugareanu. The total number of subgroups of a finite abelian group. Scientiae Mathematicae Japonicae, 60(1):157-168, 2004.

Stephan R Cavior. The subgroups of the dihedral group. Mathematics Magazine, 48(2):107-107, 1975.

Keith Conrad. Dihedral groups. Spletni vir: http://www. math. uconn. edu/~ kconrad/blurbs/grouptheory/dihedral. pdf, Retrieveda.

Mixed and Non-mixed Normal Subgroups of Dihedral Groups Using Conjugacy classes

Keith Conrad. Dihedral groups ii. http://www.math.uconn.edu/ kconrad/blurbs/grouptheory/dihedral2.pdf, Retrievedb.

David Steven Dummit and Richard M Foote. Abstract algebra. Wiley Hoboken, 2003.

Joseph A Gallian. Contemporary Abstract Algebra. D.C.Heath and Company, 1994.

GA Miller. Subgroups of the groups whose orders are below thirty. Proceedings of the National Academy of Sciences of the United States of America, 26(8): 500-502, 1940.

Marius Tărnăuceanu. An arithmetic method of counting the subgroups of a finite abelian group. Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, pages 373-386, 2010.

[^0]: *Department of Mathematics, Government College for Women, Thiruvananthapuram, Kerala, India; wenod76@gmail.com.
 ${ }^{\dagger}$ Department of Mathematics, College of Engineering, Thiruvananthapuram-695016, Kerala, India; gsbiju@cet.ac.in.
 ${ }^{1}$ Received on February 09th, 2021. Accepted on April 28th, 2021. Published on June 30th, 2021. doi: 10.23755/rm.v40i1.604. ISSN: 1592-7415. eISSN: 2282-8214. ©CVinod et al. This paper is published under the CC-BY licence agreement.

