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Abstract  

In this paper we prove that if n, k and t be positive integer numbers such that t < 

k < n and G is a non abelian p-group of order pnk  with derived subgroup of 

order pkt  and nilpotency class c, then the minimal number of generators of G is 

at most p1 2 ((nt+kt−2)(2c−1)(nt−kt−1)+n. In particular, |M(G)| _ p1 2 

(n(k+1)−2)(n(k−1)−1)+n, and the equality holds in this last bound if and only if 

n = 1 and G = H ×Z, where H is extra special p-group of order p3n and exponent 

p, and Z is an elementary abelian p-group. 
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1. Introduction 

Let G be a finite group and G = FR a presentation for G as a factor group of the 

free group F. Then Schur in [11], show that M(G) = (F0\R) [F,R] . 

(1.1) Recall that, for two finite groups A and B, AB _= ( AA0 )( BB0 ). 
Michael R. Jones in years 1973 and 1974 for the finite group G, get some 

inequalities for d(M(G)) and e(M(G)), which d(M(G)) and e(M(G)) the minimal 

number of generators and exponent of finite group G, respectively. now in 

current paper we generalized and compute the value d(M(G)) and e(M(G)) for 

non-abelian pgroups of order q = pnk and nilpotency c. 

Notation: The notation used in this paper is as follows: 

(i) If G is a finite group then E(G) denotes exponent of G and D(G) denotes 

the minimal number of generators of G. 

(ii) The the lower central series of a group G is denoted by G = g1(G) _ g2(G) = 
G0 _ g3(G) _ ..., where for j _ 1, gi+1(G) = [gi(G),G]. 
And the upper central series of a group G is denoted by 1 = Z0(G) _ Z1(G) = 
G0 _ Z2(G) _ ..., where for i _ 0, Zi+1Zi_ Z( GZi(G) ). 
The main theorem of this paper as follows. 

 

Main Theorem: Let n, k and t be positive integer numbers such that t < k < n 

and G is a non abelian p-group of order pnk with derived subgroup of order pkt 

and nilpotency class c, then the minimal number of generators of G, (D|M(G)|) 

is p12 ((2c−1)n2−k(k−1)−3n+4. 

 

2. Some definition, lemma and theorems 

The results of this section are several lemma and theorems, where the proofs of 

their in references [6], [7] and [8], and so we will be omitted. 

2.1. Lemma: Let G be a finite group and B a normal subgroup. Set A = GB 

. Let G = F R be a presentation for G as a factor group of the free group F and 

suppose B = SR so that A = FS . Then [F,S] [F,R][F,S,F]S0 is isomorphic with a factor 

group of AB. 

Proof. See to ([6], Lemma 2.1). 

2.2. Corollary. Further to the notation and assumptions of Lemma 2.1, let B 

2 be a central subgroup of G. Then [F,R] [F,R]S0 is an epimorphic image of AB. 

Proof. See to ([6]). 

2.3. Definition. Let G be a finite group. We say that G has (special) rank r(G) if 
every subgroup of G may be generated by r(G) elements and there is at least one 

subgroup that cannot be generated by fewer than r(G) elements. 

Let G = F R be a presentation for the finite p-group G as a factor group of a free 

group F. Let i+1 = gi+1(F) for all i. Since G0 = F0R R we have by (1.1), that 
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M( G G0 ) _= (F0\F0R) [F,F0R] = F0 [F,F0R] . 

With this notation we have: 

 

2.4. Theorem: Let G be a finite p-group of nilpotency class c and Qi = G 

gi(G) for 2 _ i _ c. Then (i) |G0||M(G)| _ |M( G G0 )c−1 i=1 |Qi+1gi+1(G)|, 

(ii)D(M(G)) _ D(M( G G0 ))+c−1 i=1 D(Qi+1gi+1(G)), 

(iii) E(M(G)) _ E(M( G G0 ))c−1 i=1 E(Qi+1gi+1(G)). 
(i) In the above notation, |G0||M(G)| = | F0 [F,R] | = |M( G G0 )| |[F,F0R] 

[F,R]| = |M( G G0 )| |[F,Fi+2R] [F,R]| I k=1 | [F,k+1R| [F,k+2R, for all i _ 1. Now, 1 = 

gc+1(G) = c+1R R so that c+1 _ R and [F,Fc+1R] = [F,R]. 

Next, gi(G) = iR R for all i _ 2. Thus [F,R](iR)0[F,iR,F] = [F,R]i+2 = [F,i+1R] 
and (i) follows by Lemma 2.1. (ii) We have, 

r( F0[F,R] ) _ r(M( G G0 ))+r([F,2R] [F,R] so that D(M(G)) _ D(M( G G0 ))+c−1 

i=1 r([F,i+1R] [F,i+2R] ), and (ii) again follows by Lemma 2.1. 

(iii) This follows as for (i) and (ii). 

 

3. The proof of main Theorem 

In this section we show that, Let n, k and t be positive integer numbers such that 

t < k < n and G is a non abelian p-group of order pnk with derived subgroup of 

order pkt and nilpotency class c, then the minimal number of generators of G, 

(D|M(G)|) is p1 2 ((2c−1)n2−k(k−1)−3n+4. For proof of this work we action as follows: 

Proof. Let n, k and t be positive integer numbers such that t < k < n and G is 

a non abelian p-group of order pnk with derived subgroup of order pkt and 

nilpotency class c. Then by using of Theorem 2.4(ii),we have 

D(M(G)) _ D(M( G G0 ))+c−1 i=1 D(Qi+1gi+1(G)). 
If D(M(G)) = n then the above relation will coming as follows: 

D(M(G)) _ 12 ((n+k−2)(n−k−1)+1)+n(c−1 i=1 gi+1(G)). 
= 12((n+k−2)(n−k−1)+1)+n2(c−1). Which the result now follows. 

In 1904, Schur [11,12] prove that for every finite groups H and K, then M(H × 
K) = M(H)×M(K)× H H0  K K0 . 

In 1957, Green [5] show that if G be a p-group of order pn, then |M(G)| _ 
p1 2 n(n−1). 

In 1967, Gaschatz el al [4] prove that if G be a d-generator p-group of order pn, 

G0 has order pc and G Z(G) is a d- generator group, then |M(G)|_ p12 

d(2n−2c−d−1)+2(d−1)c. 

In 1973, Jones [4-6] show that if G be a p-group of order pn and |G0| = pk, then 

|M(G)| _ p1 2 n(n−1)−k. 

In 1982, Byel and Tappe [2] shown that if G be a Extra especial p-group of order 

p2m+1, then 
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(i) If m _ n, than |M(G)| = p2m2−m−1. 

(ii) If m = 1, then the order of Schur multiplier of D8,Q8,E1 and E2 are equal 2, 

1, p2 and 1, respectively. 

In 1991, Berkovich [1] show that if G be a p-group of order pn, then t(G) = 0 if 

and only if G _= Z(n) p , and also t(G) = 1 if and only if G _= Z(2) or G _= E1. 

In 1994, Zhou [14]prove that if G be a p-group of order pn, then t(G) = 2 if and 

only if G _= Z×Zp2 or G _= D8, G _= E1×Zp. 

In 1999, Ellis [3]show that if G be a p-group of order pn, then t(G)=3 if and only 

if G _= Zp3 , G _= Z(2) p ×Zp2 or G _= Q8, G _= E2, G _= D8×Z2 or G _= E1×Z(2) p . 

In 2009, P.Niroomand [10] show that if G be a non-abelian finite p-group of 

order pn and |G0| = pk, then |M(G)| is p1 2 ((n+k−2)(n−k−1)+1. In particular, |M(G)| 
_ p1 2 (n−2)(n−1)+1, and the equality holds in this last bound if and only if G = E1×Z, 

where Z is an elementary abelian p-group. 

The Schur multiplier of abelian groups may be calculated easily by a result [12] 

which was obtained by Schur. So in this paper, we focus on non-abelianp-

groups. 

This paper is devoted to the derivation of certain upper bound for the Schur 

multiplier of non-abelian p-groups of order pnk with derived subgroup of order 

pk. We prove that |M(G)| _ p12 (nk+nt−2)(nk−nt−1)+n . In particular, if |M(G)| = p1 2 

(n(k+1)−2)(n(k−1)−1)+n, we characterize the structure of the group G. If G is a 

p-group of order pn, Jones [4] proved that |M(G)||G0| _ p1 2 n(n−1) which shows 

that |M(G)| _ p1 2 n(n−1)+1 when G is a non-abelian p-group of order pn. So, the 

general bound given above is better than Joness bound unless |G| = p3, in which 

case the two bounds are the same.The principal result of this paper is presented 

in the following theorem. 

 

Main Theorem. Let G be a non-abelian finite p-group of order pnk. If |G0| = 
pnt , then we have M(G) _ p1 2 (nk+nt−2)(nk−nt−1)+n. In particular M(G) _ p12 

(n(k+1)−2)(n(k−1)−1)+n, 

and the equality holds in this last bound if and only if n−1 and G = H×Z, where 

H is an extra special p-group of order p3n and exponent p, and Z is an elementary 

abelian p-group. 

 

Preliminaries and Elementary Theorems. 

In this section, we want to several Theorems and Lemmas whose proved in 

references 

[1-14]. At first we list the following theorems, which are used in our proofs. 

Our method for the proof is similar to P. Niroomand (2009) and Berkovich, 

Ya.G. 

(1991), which we compute for groups of order pnk. 
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Theorem 2.1.(See [7,theorem 3.1 and Theorem 4.1].) Let G be a finite p- group 

and let N be a central subgroup of G. Then |M(G N | _ |M(G)||G0 \N| _ |M(G N 

||M(N)||G N N| . 
 

Theorem 2.2.(See[9, Theorem 3.3.6].) Let G be an extra special p-group of 

order p2m+1. Then: 

(i) If m _ 2, then M(G) = p2m2−m−1. 

(ii) If m=1, then M(G) _ p2, and the equality holds if and only if G is of exponent 

p. 

Theorem 2.3.(See [9, Theorem 2.2.10].) For every finite groups H and K, we 

Have M(H ×K _= M(H)×M(K)× H H0  K K0 . 

Corollary 2.4. If G _= Cm1 ×Cm2 ×...×Cmk , where mi+1 divides mi for all i, 

1 _ i _ k, then M(G) _=Cm2 ×C(2) m3 ×...×C(k−1) mk . 

Proof of the Main Theorem 

In this section we want to prove our result. The following technical lemmas 

shorten the proof of our main Theorem. 

Lemma 3.1. Let G be a finite p-group of order pn such that G G0 is elementary 6 

of order pn−1, then G is a central product of an extra special p-group H and Z(G) 
such that H \Z(G) = G0. 

Proof. Let H G0 be the complement of Z(G) G0 in G G0 . Then G = HZ(G), so G0 = 
H0 and Z(H) = Z(G) \H. On the other hand, 1 6= Z(G) \H _ G0, and the result 

follows. 

Lemma 3.2. Let G be an abelian p-group of order pn which is elementary 

abelian. Then M(G) _ p1 2 (n−1)(n−2). 

Proof. the result is obtained obviously if G is cyclic. So, let G _=Cpm1×Cpm2× 

...×Cpmk such that k i=1mi = n and m1 _ m2 _ ... _ mk. We know that m1 _ 2, 

and then, by using Corollary2.4, |M(G)| = pm2+2m3+...+(k−1)mk 

_ p(m2+m3+...+mk)+(m3+...+mk)+...+mk _ p1 2 (n−1)(n−2). 
 
Lemma 3.3. Let G be a non- abelian p-group of order pnk with derived subgroup 

of order p such that G G0 is not elementary abelian, then M(G) < p12 

(nk−1)(nk−2)+1. 

Proof. by using Theorem 2.1 and Lemma 3.2, 

M(G) _ p−1|M( G G0 )|| G G0 G0| _ p−1p1 2 (nk−2)(nk−3)p(nk−1)  < p1 2 (nk−1)(nk−2)+1. 

which completes the proof. 

Lemma 3.4. let G be a non- abelian p-group of order pnk, such that G 

G0 is elementary abelian of order pnk−1, then M(G) _ p1 2 (nk−1)(nk−2)+1 and the 

equality holds if and only if G = H×Z, where H is extra special p- group of order 

p3n and exponent p, and Z is elementary abelian p-group. 

Proof. By Lemma 3.1, G is central product of H and Z(G), and Theorem 2.2, 

7 we may assume that |Z(G)| _ p2. Let |H| = p2m+1, so |Z(G)| = pn−2m. 



Behnam Razzaghmaneshi 

258 

 

Suppose first that m _ 2. If Z(G) is elementary abelian, let T be a group such 

that Z(G) _= G0×T. By using Theorems 2.2 and 2.3, we have 

|M(G)| = |M(H ×T)| = |M(H)||M(T)|| H H0 T| = p2m2−m−1p (n−2m−1)(n−2m−2) 2  

2m(n−2m−1) = p1 2 (n2−3m) < p12 (n−1)(n−2)+1. 

Now assume that Z(G) is not elementary abelian. Theorems 2.1 and 2.3 imply 

That |M(G)| _ p|M(H ×Z(G)| = p|M(H)||M(Z(G))|| H H0 Z(G)|. 

Hence by using Theorem 2.2 and Lemma 3.2, we have 

|M(G)| _ pp2m2−m−1p12 (n−2m−1)(n−2m−2)p2m(n−2m−1) < p1 2 (n−1)(n−2)+1. 

If H is extra special of order p3n and Z(G) is not elementary abelian, then 

Theorem 2.1 implies that |M(G)| _ p−1|M( G Z(G) ||M(Z(G))|| G Z(G) Z(G)| _ p12 

nk(nk−3)+1 < p1  2 (nk−1)(nk−2)+1. 

By Theorem 2.2, it is easy to see that if Z(G) is elementary abelian, then |M(G)|= 
p1 2 (nk−1)(nk−2)+1 if H is extra special of order p3n and exponent p; and in other 

cases |M(G)| < p1 2 (nk−1)(nk−2)+1. 

 

Proof of the Main Theorem we prove the theorem by induction on t. if t = 1 

the result is obtained by Lemma 3.2 and 3.4. Let G be a non-abelian p-group of 

order pnk with derived subgroup of order pnt(t _ 2). Choose K in G0 \Z(G) of 

order p−1. By using induction hypothesis, we have |M(GK )| _ p12  

nk+nt−4)(nk−nt−1)+n. 

On the other hand, By using Theorem 2.1, implies that |M(G)| _ p−1|M(Gk 

||M(K)||( G G0 K)| _ p−1p12 (nk+nt−4)(nk−nt−1)pn−1p(nk−nt) _ p12 

(nk+nt−4)(nk−nt−1)pn−1p(nk−nt) p12 (nk+nt−2)(nk−nt−1)+n. 

Now let G be a p-group of order pnk such that |M(G)| = p1 2 (nk−1)(nk−2)+n. If 

|G0| _ p2k, then |M(G)| _ p1 2 (n(k−1)−1)(n(k+1)−2), which is a contradiction. 

Since |G0| = pk, Lemma 3.3 implies that G /G0 is elementary abelian. Hence 

Lemma 3.4 shows that G = H ×Z, where H is an extra special p- group of order 

p3n and exponent p, and Z is an elementary abelian p-group, so the result follows. 

 

 

 

 

 

 



Determine the value d(M(G)) for non-abelian p-groups of order q = pnk of Nilpotency c 

259 

 

References 

[1] Berkovich, Ya.G., On the order of the commutator subgroups and the Schur 

multiplier of a finite p-group,, J. Algebra, 144. (1991) 269272. 

[2] Beyl, F.R., and J. Tappe, Group Extensions, Representations and the Schur 

Multiplicator,, Vol. 958, SpringerVerlag, Berlin/Heidelberg/New 

York, 1972. 

[3] Ellis, G., On the Schur multiplier of p-group,, Comm. Algebra. 27(9), 

(1999), 4173-4177. 

 [4] Gaschutz, W., Neubu¨ser, J. and Yen. T., U¨ ber den Multiplikator von p- 

Gruppen, Math. Z. 100 (1967), 93-96. 

[5] Green, J.A., On the number of automorphisms of a finite group,, Proc. Roy. 

Soc. A 237 (1956) 574581. 

[6] Jones, M.R., Multiplicators of p-groups,, Math. Z. 127 (1972) 165166. 

[7] Jones, M.R., Some inequalities for the multiplicator of a finite group, , Proc. 

Amer. Math. Soc. 39 (1973) 450456. 

[8] Jones, M.R., Some inequalities for the multiplicator of a finite group II,, 

Proc. Amer. Math. Soc. 45 (1974) 167172. 

[9] Karpilovsky, G.,The Schur multiplier, London Math. Soc. Monogr. (N.S.)  

(1987). 

[10] Niroomand. P., On the order of Schur multiplier of non-abelian p-groups, 

J. Algebra 322 (2009), 4479 4482. 

[11] Schur, I., ber die Darstellung der endlichen Gruppen durch gebrochene 

lineare Substitutionen, , J. Reine Angew. Math. 127 (1904) 2050. 

[12] Schur, I., Untersuchungen ber die Darstellung der endlichen Gruppen 

durchgebrochene lineare Substitutionen,, J. Reine Angew. Math. 132 (1907) 

85137. 

[13] Wiegold, J., The Schur multiplier of p-groups with large derived subgroup 

groups,, Arch. Math. 95 (2010), 101-103. 

[14] Zhou, X., On the order of Schur multipliers of finite p-groups, Comm. 

Algebra. 22(1), (1994), 1-8. 


