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1 Introduction, Definitions and Results
Let f be a non-constant meromorphic function defined in the open complex

plane C and a = a(z) be a polynomial. We denote by E(a; f) the set of zeros of
f −a, counted with multiplicities and by E(a; f) the set of distinct zeros of f −a.

If for two non-constant meromorphic functions f and g, we have E(a; f) =
E(a; g), we say that f and g share a CM and if E(a; f) = E(a; g), we say that f
and g share a IM.

We denote by S(r, f) any function satisfying S(r, f) = o{T (r, f)}, as r →
∞, possibly outside of a set with finite measure.

For an entire function f , we define deg(f) in the following way:
deg(f) =∞, if f is a transcendental entire function and deg(f) is the degree

of the polynomial, if f is a polynomial.
The investigation of uniqueness of an entire function sharing two values intro-

duced by L. A. Rubel and C. C. Yang [Rubel and Yang, 1977] in 1977. Following
is their result.

Theorem A. [Rubel and Yang, 1977] Let f be a non-constant entire function. If
E(a; f) = E(a; f (1)) and E(b; f) = E(b; f (1)), for distinct finite complex num-
bers a and b, then f ≡ f (1).

In 1979 E. Mues and N. Steinmetz [Mues and Steinmetz, 1979] tried to im-
prove TheoremA by considering IM sharing of values. They proved the following
theorem.

Theorem B. [Mues and Steinmetz, 1979]. Let f be a non-constant entire func-
tion and a, b be two distinct finite complex values. If E(a; f) = E(a; f (1)) and
E(b; f) = E(b; f (1)), then f ≡ f (1).

In 1986 G. Jank, E. Mues and L. Volkmann [Jank et al., 1986] considered an
entire function sharing a nonzero value with its derivatives and they proved the
following result.

Theorem C. [Jank et al., 1986] Let f be a non-constant entire function and a be
a non-zero finite value. If E(a; f) = E(a; f (1)) ⊂ E(a; f (2)), then f ≡ f (1).

H. Zhong [Zhong, 1995] tried to improve Theorem C by taking higher order
derivatives. By the following example he concluded that in Theorem C the second
derivative cannot be straight way replaced by any higher order derivatives.

Example 1.1. [Zhong, 1995] Let k(≥ 3) be a positive integer and ω( 6= 1) be a
(k − 1)th root of unity. If f = eωz + ω − 1, then f , f (1), and f (k) share the value
ω CM, but f 6≡ f (1).
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Considering two consecutive higher order derivatives H. Zhong [Zhong, 1995]
improved Theorem C in another direction. The following is the improved result.

Theorem D. [Zhong, 1995] Let f be a non-constant entire function and a be
a non-zero finite value. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (n)) ∩
E(a; f (n+1)) for n(≥ 1), then f ≡ f (n).

For further discussion we need the following notation. Let f be a non-constant
meromorphic function, a = a(z) be a polynomial and A be a set of complex num-
bers. We denote by nA(t, a; f), the number of zeros of f−a, counted according to
their multiplicities which lie in A∩{z : |z|≤r}. The integrated counting function
NA(r, a; f) of the zeros of f − a which lie in A ∩ {z : |z|≤r} is defined as

NA(r, a; f) =

∫ r

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r,

where nA(0, a; f) denotes the multiplicity of zeros of f−a at origin. NA(r, a; f)
be the reduced counting function of zeros of f − a in A ∩ {z : |z|≤r}. Clearly if
A = C then NA(r, a; f) = N(r, a; f) and NA(r, a; f) = N(r, a; f).

For standard definitions and notations of the value distribution theory we refer
the reader to [Hayman, 1964] and [Yang and Yi, 2003].

Recently I. Lahiri and I. Kaish [Lahiri and Kaish, 2017] improved Theorem D
by considering a shared polynomial. They proved the following result.

Theorem E. [Lahiri and Kaish, 2017] Let f be a non-constant entire function
and a = a(z)(6≡ 0) be a polynomial with deg(a) 6= deg(f). Suppose that A =
E(a; f)∆E(a; f (1)) and B = E(a, f (1))\{E(a, f (n)) ∩ E(a, f (n+1))}, where 4
denotes the symmetric difference of sets and n(≥ 1) is an integer. If

(i) NA(r, a; f) +NA(r, a; f (1)) = O{logT (r, f)},

(ii) NB(r, a; f (1)) = S(r, f) and

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

then f = λez, where λ( 6= 0) is a constant.

Throughout the paper we denote by L = L(f) a nonconstant linear differential
polynomial generated by f of the form

L = L(f) = a1f
(1) + a2f

(2) + .........+ anf
(n), (1)

where a1, a2, ......., an(6= 0) are constants.
Considering Linear differential polynomial P.Li [Li, 1999] improved Theorem

D in the following way.
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Theorem F. [Li, 1999]. Let f be a non-constant entire function and L be defined
in (1) and a be a non-zero finite complex number. If E(a; f) = E(a; f (1)) ⊂
E(a;L) ∩ E(a;L(1)) then f = f (1) = L.

In this paper we extend Theorem D and Theorem F in the following way

Theorem 1.1. Let f be a non-constant entire function, L be defined in (1) and
a = a(z)(6≡ 0) be a polynomial with deg(a) 6= deg(f). Suppose that A =
E(a; f)∆E(a; f (1)) and B = E(a, f (1))\{E(a, L(p))∩E(a, L(q))} where p, q are
integers satisfying q > p ≥ deg(a).

If

(i) NA(r, a; f) +NA(r, a; f (1)) = O{log T (r, f)},

(ii) NB(r, a; f (1)) = S(r, f) and

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

then f = L = λez, where λ( 6= 0) is a constant.

Putting A = B = ∅ we get the following corollary.

Corolary 1.1. Let f be a non-constant entire function, L be defined in (1) and
a = a(z)(6≡ 0) be a polynomial with deg(a) 6= deg(f). If E(a; f) = E(a; f (1))
and E(a, f (1)) ⊂ E(a, L(p)) ∩ E(a, L(q)) where p, q are integers satisfying q >
p ≥ deg(a), then f = L = λez, where λ( 6= 0) is a constant.

Remark 1.1. If in Corollary 1.1, a is a non-zero constant and p = deg(a) =
0, q = p+ 1 then it is a particular form of Theorem F.

Remark 1.2. If in (1), a1 = a2 = .......an−1 = 0 and an = 1 then L = f (n)

and if in Corollary 1.1, a is a non-zero constant and p = deg(a), q = p + 1, then
Corollary 1.1 is the Theorem D.

Remark 1.3. It is an open problem whether the Theorem 1.1 is valid or not if we
omit the condition p ≥ deg(a).

2 Lemmas
In this section we present some necessary lemmas.

Lemma 2.1. [Lahiri and Kaish, 2017]. Let f be a transcendental entire function
of finite order and a = a(z)(6≡ 0) be a polynomial and A = E(a; f)∆E(a; f (1)).

If
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(i) NA(r, a; f) +NA(r, a; f (1)) = O{log T (r, f)},

(ii) each common zero of f − a and f (1) − a has the same multiplicity,

then m(r, a; f) = S(r, f).

Lemma 2.2. [Lain, 1993]. Suppose f be an entire function, a0, a1, .....an are
polynomials and a0, an are not identically zero. Then each solution of the linear
differential equation anf (n) + an−1f

(n−1) + ......+ a0f = 0 is of finite order.

Lemma 2.3. [Hayman, 1964]. Let f be a non-constant meromorphic function and
a1, a2, a3 be three distinct meromorphic functions satisfying T (r, aν) = S(r, f)
for ν = 1, 2, 3 then

T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

Lemma 2.4. Let f be a transcendental entire function and a = a(z)(6≡ 0) be a
polynomial. Also let L(f), L(a) be the linear differential polynomials generated
by f and a respectively. Suppose

h =
(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p)(a))(f (1) − a(1))

f − a
,

A = E(a; f)\E(a; f (1)) and B = E(a, f (1))\{E(a, L(p)) ∩ E(a, L(q))}, where
p, q are integers satisfying 0 ≤ p < q.

If

(i) NA(r, a; f) +NB(r, a; f (1)) = S(r, f),

(ii) each common zero of f − a and f (1) − a has the same multiplicity,

(iii) h is a transcendental entire or meromorphic,

then m(r, a, f (1)) = S(r, f).

Proof. Since a−a(1) = (f (1)−a(1))− (f (1)−a), if z0 be a common zero of f −a
and f (1)−a with multiplicity r(≥ 2), then z0 is a zero of a−a(1) with multiplicity
r − 1. So

N(2(r, a; f) ≤ 2N(r, 0; a− a(1)) +NA(r, a; f) = S(r, f), (2)

where N(2(r, a; f) be the counting function of multiple zeros of f − a.
Using (2) and from the hypothesis we get

N(r, h) ≤ NA(r, a; f) +NB(r, a; f (1)) +N(2(r, a; f) + S(r, f)

= S(r, f)
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Since m(r, h) = S(r, f), we have T (r, h) = S(r, f)

From h =
(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p)(a))(f (1) − a(1))

f − a
, we get

f = a+
1

h
{(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p)(a))(f (1) − a(1))}

= a+
1

h
{(a− a(1))(L(p)(f)− a)− (a− L(p)(a))(f (1) − a)}. (3)

Case 1. Let p > 0 . Differentiating (3) we get

f (1) = a(1) + (
1

h
)(1){(a− a(1))(L(p)(f)− a)− (a− L(p)(a))(f (1) − a)}+

1

h
{(a(1) − a(2))(L(p)(f)− a) + (a− a(1))(L(p+1) − a(1))} −

1

h
{(a(1) − L(p+1)(a))(f (1) − a) + (a− L(p)(a))(f (2) − a(1))}.

This implies
(f (1) − a){1 + ( 1

h
)(1)(a− L(p)(a)) + 1

h
(a(1) − L(p+1)(a))}

= a(1)− a+ ( 1
h
)(1)(a− a(1))(L(p)(f)− a) + 1

h
(a(1)− a(2))(L(p)(f)− a) + 1

h
(a−

a(1))(L(p+1)(f)− a(1))− 1
h
(a− L(p)(a))(f (2) − a(1))

= a(1) − a + (a−a
(1)

h
)(1)(L(p)(f) − L(p−1)(a)) + (a−a

(1)

h
)(1)(L(p−1)(a) − a) +

a−a(1)
h

(L(p+1)(f)−L(p)(a)) + a−a(1)
h

(L(p)(a)−a(1))− 1
h
(a−L(p)(a))(f (2)−a(1)),

or,
(f (1) − a){1 + (a−L

(p)(a)
h

))(1)} = (a(1) − a) + {(a−a(1)
h

)(L(p−1)(a)− a)}(1) +

(a−a
(1)

h
)(1)(L(p)(f)−L(p−1)(a))+a−a(1)

h
(L(p+1)(f)−L(p)(a))− 1

h
(a−L(p)(a))(f (2)−

a(1)),
or

1

f (1) − a
=

h1
h2
− 1

h2
(
a− a(1)

h
)(1)(

L(p)(f)− L(p−1)(a)

f (1) − a
)

+(
a− a(1)

hh2
)(
L(p+1)(f)− L(p)(a)

f (1) − a
)

− 1

hh2
(a− L(p)(a))(

f (2) − a(1)

f (1) − a
), (4)

where h1 = 1 + (a−L
(p)(a)
h

)(1),
h2 = a(1) − a+ {(a−a(1)

h
)(L(p−1)(a)− a)}(1).

We now verify that h1 6≡ 0, h2 6≡ 0.
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If h1 ≡ 0, then 1 + (a−L
(p)(a)
h

)(1) ≡ 0. Integrating we get 1
h

= c1−z
a−L(p)(a)

, where
c1 is a constant. This is a contradiction, because h is transcendental.

If h2 ≡ 0, then a(1) − a + {(a−a(1)
h

)(L(p−1)(a)− a)}(1) ≡ 0. Integrating

we get h = (a−a(1))(L(p−1)(a)−a)
P (z)

, where P (z) is a polynomial. This is again a
contradiction. Therefore h1 6≡ 0, h2 6≡ 0. Again T (r, h1) + T (r, h1) = S(r, f),
since T (r, h) = S(r, f).

Now from (4) and using Lemma of logarithmic derivative we getm(r, a; f (1)) =
m(r, 1

f (1)−a) = S(r, f).
Case 2. Let p = 0. Then L(p)(f) = L(f).
Suppose L(f) = a1f

(1) + a2f
(2) + .........+ anf

(n)

and L(a) = a1a
(1) + a2a

(2) + ......... + ana
(n), where a1, a2, ......., an( 6= 0) are

constant, n(≥ 1) be an integer.
From the definition of h we get
f = a+ 1

h
{(a− a(1))(L(f)− a)− (a− L(a))(f (1) − a)}

Differentiating we get

f (1) = a(1) + (
1

h
)(1){(a− a(1))(L(f)− a)− (a− L(a))(f (1) − a)}

+
1

h
{(a(1) − a(2))(L(f)− a) + (a− a(1))(L(1)(f)− a(1))}

−1

h
{(a(1) − L(1)(a))(f (1) − a)− (a− L(a))(f (2) − a(1))}.

This implies
(f (1)−a){1 + (a−L(a)

h
)(1)} = (a(1)−a)+(a−a

(1)

h
)(1)(L(f)−a)+a−a(1)

h
(L(1)(f)−

a(1))−a−L(a)
h

(f (2)−a(1)) = (a(1)−a)+(a−a
(1)

h
)(1)(L(f)−L1(a))+(a−a

(1)

h
)(1)(L1(a)−

a)+(a−a
(1)

h
)(L(1)(f)−L(a))+(a−a

(1)

h
)(L(a)−a(1))− a−L(a)

h
(f (2)−a(1)) = (a(1)−

a) + {(a−a(1)
h

)(L1(a)− a)}(1) + (a−a
(1)

h
)(1)(L(f) − L1(a)) + (a−a

(1)

h
)(L(1)(f) −

L(a))− a−L(a)
h

(f (2) − a(1))
Or,

1

f (1) − a
=

h3
h4
− 1

h4
(
a− a(1)

h
)(1)(

L(f)− L1(a)

f (1) − a
)

+(
a− a(1)

hh4
)(
L(1)(f)− L(a)

f (1) − a
)− (

a− L(a)

hh4
)(
f (2) − a(1)

f (1) − a
), (5)

where
L1(a) = a1a+ a2a

(1) + .....+ ana
(n−1),

h3 = 1 + (a−L(a)
h

)(1) and
h4 = a(1) − a+ {(a−a(1)

h
)(L1(a)− a)}(1)
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Similarly as in Case 1, h3 6≡ 0, h4 6≡ 0. Also T (r, h3) + T (r, h4) = S(r, f).
Therefore from (5) and using Lemma of logarithmic derivative we get

m(r, a; f (1)) = m(r, 1
f (1)−a) = S(r, f).

This completes the proof of the lemma.

Lemma 2.5. Let f be a transcendental entire function, a = a(z)(6≡ 0) be a
polynomial and L = L(f) be define in (1). Suppose

(i) NA(r, a; f) +NA(r, a; f (1)) = S(r, f), where A = E(a; f)∆E(a; f (1))

(ii) NB(r, a; f (1))) = S(r, f), where B = E(a, f (1))\{E(a, L(p)) ∩ E(a, L(q))}
p, q are integers satisfying q > p ≥ deg(a),

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

(iv) m(r, a; f) = S(r, f), then f = L = λez, where λ(6= 0) is a constant.

Proof. Let

α =
f (1) − a
f − a

, (6)

From the hypothesis we get,

N(r, α) ≤ NA(r, a; f) + S(r, f) = S(r, f)

and

m(r, α) = m(r,
f (1) − a
f − a

)

= m(r,
f (1) − a(1) + a(1) − a

f − a
)

≤ m(r, a; f) + S(r, f)

= S(r, f).

Therefore T (r, α) = S(r, f).
From (6) we get

f (1) = αf + a(1− α)

= α1f + β1,

where α1 = α and β1 = a(1− α)
Differentiating we get,

f (2) = α2f + β2,
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where α2 = α
(1)
1 + α1α1 and β2 = β

(1)
1 + α1β1.

Similarly,
f (k) = αkf + βk,

where αk+1 = α
(1)
k + α1αk and βk+1 = β

(1)
k + αkβ1.

Clearly T (r, αk) + T (r, βk) = S(r, f), because T (r, α) = S(r, f).
Now

L(p) =
n∑
k=1

akf
(p+k)

= (
n∑
k=1

akαp+k)f + (
n∑
k=1

akβp+k)

= µ1f + ν1, (7)

where µ1 =
n∑
k=1

akαp+k, ν1 =
n∑
k=1

akβp+k

L(q) =
n∑
k=1

akf
(q+k)

= (
n∑
k=1

akαq+k)f + (
n∑
k=1

akβq+k)

= µ2f + ν2, (8)

where µ2 =
n∑
k=1

akαq+k, ν2 =
n∑
k=1

akβq+k.

Clearly T (r, µi) + T (r, νi) = S(r, f), i = 1, 2.
Let D = E(a; f) ∩ E(a; f (1)) ∩ E(a;L(p)) ∩ E(a;L(q)).
Note that D 6= ∅, because otherwise, N(r, a; f) = S(r, f). Then from the

hypothesis T (r, f) = S(r, f), a contradiction.
Let z1 ∈ D then f(z1) = f (1)(z1) = L(p)(z1) = L(q)(z1) = a(z1).
Now from (7) and (8) we get a(z1) = µ1(z1)a(z1) + ν1(z1) and a(z1) =

µ2(z1)a(z1) + ν2(z1)
If µ1a+ ν1 − a 6≡ 0, then

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f (1)) +ND(r, a; f) + S(r, f)

≤ NA(r, 0;µ1a+ ν1 − a) + S(r, f)

= S(r, f),

a contradiction. Therefore

µ1a+ ν1 − a ≡ 0. (9)
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Similarly

µ2a+ ν2 − a ≡ 0. (10)

From (9) and (10) we get µ1 ≡ µ2 ≡ 1 and ν1 ≡ 0 ≡ ν2.
Then from (7)

L(p) ≡ f. (11)

Also µ1 ≡ 1 implies

n∑
k=1

akαp+k ≡ 1. (12)

From (12) we see that α has no pole. Because if α has a pole of order d(≥ 1)
then the left hand side of (12) has a pole of order (p+ k)d but the right hand side
is a constant.

Again by simple calculation from (12) we get

anα
n+p + P [α] ≡ 0. (13)

where P [α] is a differential polynomial in α with degree not exceeding (n +
p− 1).

If α is transcendental entire, then by Clunie’s Lemma we have m(r, α) =
S(r, α), a contradiction.

If α is a nonconstant polynomial then left hand side of (13) is also a noncon-
stant polynomial, which is again a contradiction.

Therefore α is a constant.
Now from f (1)−a

f−a = α, we get f (1) − αf = a(1− α).
Integrating we get

e−αzf = (1− α)

∫
ae−αzdz

= (1− α)P (z)e−αz + λ,

where λ(6= 0) is a constant and P (z) is a polynomial of degree atmost deg(a),
or, f = (1− α)P (z) + λeαz.
Now f (r+1) = λαr+1eαz, if r = deg(a)
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Therefore

L(p) =
n∑
k=1

akf
(p+k)

= (
n∑
k=1

akα
p+k)λeαz

= λeαz

=
f (1)

α
− 1− α

α
p(1)(z), (14)

Suppose α 6= 1.
Since D = E(a; f) ∩ E(a; f (1)) ∩ E(a;L(p)) ∩ E(a;L(q)) 6= ∅,
we have f(z2) = f (1)(z2) = L(p)(z2) = L(q)(z2) = a(z2), for some z2 ∈ D.
From (14) we get

a(z2) =
a(z2)

α
− 1− α

α
P (1)(z2)

or,

a(z2)(1−
1

α
) +

1− α
α

P (1)(z2) = 0

or,

(α− 1){a(z2)− P (1)(z2)} = 0

or,

a(z2)− P (1)(z2) = 0.

Clearly a(z)− P (1)(z) 6≡ 0, because deg(P (1)(z)) is less than deg(a).

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f (1)) +ND(r, a; f) + S(r, f)

≤ N(r, 0; a− P (1)) + S(r, f)

= S(r, f).

Then from the hypothesis T (r, f) = S(r, f), a contradiction.
Therefore α = 1, so f = λez.
Again

L =
n∑
k=1

akf
(k)

= (
n∑
k=1

akα
k)λeαz

= λez.

223



I. Kaish and N. Gazi

Therefore f = L = λez.
This completes the lemma.

3 Proof of the Main Theorem
Proof. First we claim that f is a transcendental entire function.

If f is a polynomial, then
T (r, f) = O(log r) and NA(r, a; f) +NA(r, a; f (1)) = O(log r).
Then from the hypothesis we get O(log r) = O(log T (r, f)) = S(r, f), which

implies T (r, f) = S(r, f), a contradiction. Therefore A = ∅.
Similarly NB(r, a; f (1)) = S(r, f) implies B = ∅.
Therefore E(a; f) = E(a; f (1)) and E(a; f (1)) ⊂ E(a;L(p)) ∩ E(a;L(q)).
Let deg(f) = m and deg(a) = r . If m ≥ r + 1 then deg(f − a) = m and

deg(f (1) − a) ≤ m− 1 which contradicts that E(a, f) = E(a, f (1)).
If m ≤ r − 1 , then deg(f − a) = deg(f (1) − a) = r. Since E(a, f) =

E(a, f (1)), (f − a) = t(f (1) − a), where t(6= 0) is a constant.
If t = 1, then f = f (1), which is a contradiction because f is a polynomial.
If t 6= 1 then tf (1)−f ≡ (t−1)a, which is impossible because deg((t−1)a) =

r and deg(tf (1) − f) = m and m < r. Therefore our claim ” f is transcendental
entire function ” is established. Now we prove the result into two cases.

Case 1. Let f ≡ L(p). Then

m(r, a; f) = m(r,
a

f − a
1

a
)

≤ m(r,
a

f − a
) + S(r, f)

= m(r,
a

f − a
+ 1− 1) + S(r, f)

≤ m(r,
a

f − a
+ 1) + S(r, f)

≤ m(r,
f

f − a
) + S(r, f)

= m(r,
L(p)

f − a
) + S(r, f), (15)

since p ≥ deg(a), by Lemma of logarithmic derivative, m(r, L
(p)

f−a) = S(r, f). So
from (15) m(r, a; f) = S(r, f). Therefore by Lemma 5, f = L = λez, λ(6= 0) is
a constant.

Case 2. Let f 6≡ L(p). This case can be divided into two subcases.
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Subcase 2.1. Let f (1) 6≡ L(p).
Since a−a(1) = (f (1)−a(1))−(f (1)−a), a common zero of f−a and f (1)−a

of multiplicity s(≥ 2) is a zero of a− a(1) with multiplicity s− 1(≥ 1).
Therefore N(2(r, a; f (1) | f = a) ≤ 2N(r, 0; a− a(1)) = S(r, f),

where N(2(r, a; f (1) | f = a) denotes the counting function (counted with
multiplicities) of those multiple zeros of f (1) − a which are also zeros of f − a.

Now

N(2(r, a; f (1)) ≤ NA(r, a; f (1)) +NB(r, a; f (1)) +N(2(r, a; f (1) | f = a) + S(r, f)

= S(r, f). (16)

Using (16) and from the hypothesis we get

N(r, a; f (1)) ≤ NB(r, a; f (1)) +N(r,
a− L(p)(a)

a− a(1)
;
L(p)(f)− L(p)(a)

f (1) − a(1)
) + S(r, f)

≤ T (r,
a− L(p)(a)

a− a(1)
;
L(p)(f)− L(p)(a)

f (1) − a(1)
) + S(r, f)

= N(r,
L(p)(f)− L(p)(a)

f (1) − a(1)
) + S(r, f)

≤ N(r, a(1); f (1)) + S(r, f). (17)

Again

m(r, a; f) = m(r,
f (1) − a(1)

f − a
1

f (1) − a(1)
)

≤ m(r, a(1); f (1)) + S(r, f)

= T (r, f (1))−N(r, a(1); f (1)) + S(r, f)

= m(r, f (1))−N(r, a(1); f (1)) + S(r, f)

≤ m(r, f)−N(r, a(1); f (1)) + S(r, f)

= T (r, f)−N(r, a(1); f (1)) + S(r, f),

i.e

N(r, a(1); f (1)) ≤ N(r, a; f) + S(r, f).

So from (17) we get

N(r, a; f (1)) ≤ N(r, a; f) + S(r, f). (18)

Also

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f | f (1) = a)

≤ N(r, a; f (1)) + S(r, f). (19)
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From (18) and (19) we get

N(r, a; f (1)) = N(r, a; f) + S(r, f). (20)

Let

h =
(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p)(a))(f (1) − a(1))

f − a
, which is de-

fined in Lemma 2.4.

Clearly T (r, h) = S(r, h).

Now

T (r, f) = m(r, f)

= m(r, a+
1

h
{(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p))(f (1) − a(1))}

≤ m(r, (a− a(1))L(p)(f)− (a− L(p))f (1)) + S(r, f)

≤ m(r, f (1)) + S(r, f)

= T (r, f (1)) + S(r, f)

= m(r, f (1)) + S(r, f)

≤ m(r, f) + S(r, f)

= T (r, f) + S(r, f).

Therefore

T (r, f (1)) = T (r, f) + S(r, f). (21)

If h is transcendental, then by Lemma 2.4, m(r, a; f (1)) = S(r, f) and from
(20) and (21) m(r, a; f) = S(r, f). So from Lemma 2.5, f = L = λez, λ( 6= 0),
is a constant.

If h is rational, then by Lemma 2.2 we see that f is of finite order. So by
Lemma 2.1 we get m(r, a; f) = S(r, f).

Therefore from Lemma 2.5, f = L = λez, λ(6= 0) is a constant.

226



Uniqueness of an entire function sharing a polynomial with its linear differential
polynomial

Subcase 2.2. Let f (1) ≡ L(p). Now

m(r, a; f) = m(r,
a(1)

f − a
1

a(1)
)

≤ m(r,
a(1)

f − a
) + S(r, f)

= m(r,
f (1) − (f (1) − a(1))

f − a
+ S(r, f)

≤ m(r,
f (1)

f − a
) + S(r, f)

= m(r,
L(p)

f − a
) + S(r, f). (22)

Since p ≥ deg(a), by Lemma of logarithmic derivative, m(r, L
(p)

f−a) = S(r, f),
so from (22) m(r, a; f) = S(r, f).

Therefore from Lemma 2.5, we get f = L = λez, λ(6= 0), is a constant.
This completes the proof of the Main Theorem.

4 Conclusions
Finally we arrive at the conclusion that a non-constant entire function sharing

a polynomial with its linear differential polynomial with some conditions defined
in Theorem (1.1) belongs to the class of functions F = {λez : λ ∈ C \ {0}}.
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