New structure of norms on \mathbb{R}^{n} and their relations with the curvature of the plane curves

Amir Veisi*
Ali Delbaznasab ${ }^{\dagger}$

Abstract

Let $f_{1}, f_{2}, \ldots, f_{n}$ be fixed nonzero real-valued functions on \mathbb{R}, the real numbers. Let $\varphi_{n}\left(X_{n}\right)=\left(x_{1}^{2} f_{1}^{2}+x_{2}^{2} f_{2}^{2}+\ldots+x_{n}^{2} f_{n}^{2}\right)^{\frac{1}{2}}$, where $X_{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. We show that φ_{n} has properties similar to a norm function on the normed linear space. Although φ_{n} is not a norm on \mathbb{R}^{n} in general, it induces a norm on \mathbb{R}^{n}. For the nonzero function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a curvature formula for the implicit curve $G(x, y)=F^{2}(x, y)=c \neq 0$ at any regular point is given. A similar result is presented when F is a nonzero function from \mathbb{R}^{3} to \mathbb{R}. In continued, we concentrate on $F(x, y)=\int_{a}^{b} \varphi_{2}(x, y) d t$. It is shown that the curvature of $F(x, y)=c$, where $c>0$ is a positive multiple of c^{2}. Particularly, we observe that $F(x, y)=\int_{0}^{\frac{\pi}{2}} \sqrt{x^{2} \cos ^{2} t+y^{2} \sin ^{2} t} d t$ is an elliptic integral of the second kind. Keywords: norm; curvature; homogeneous function; elliptic integral. 2010 AMS subject classifications: 53A10. 2010 AMS subject classifications: 53A10. ${ }^{1}$

[^0]Amir Veisi and Ali Delbaznasab

1 Introduction

A normed linear space is a real linear space X such that a number $\|x\|$, the norm of x, is associated with each $x \in X$, satisfying: $\|x\| \geq 0$ and $\|x\|=0$ if and only if $x=0 ;\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$ and $\|x+y\| \leq\|x\|+\|y\|$.
For example, let X be a Tychonoff space, $C^{*}(X)$ the ring of all bounded realvalued continuous functions on X. Then $C^{*}(X)$ is a normed linear space with the norm $\|f\|=\sup \{|f(x)|: x \in X\}$ and pointwise addition and scalar multiplication. This is called the supremum-norm on $C^{*}(X)$. The associated metric is defined by $d(f, g)=\|f-g\|$. A non-empty set $C \subseteq \mathbb{R}^{n}$ is called a convex set if whenever P and Q belong to C, the segment joining P and Q belongs to C. Analytically the definition can be formulated in this way: if P is represented by the vector x, and Q by the vector y, then C is a convex set if with P and Q it contains also every point with a vector of form $\lambda x+(1-\lambda) y$, where $0 \leq \lambda \leq 1$. A point P is an interior point of a set S contained in \mathbb{R}^{n}, if there exists an n-dimensional ball, with center at P, all of whose points lie in S. An open set is a set containing only interior points. A subset $C \subseteq \mathbb{R}^{n}$ is centrally symmetric (or 0 -symmetric) if for every point $Q \in \mathbb{R}^{n}$ contained in $C,-Q \in C$, where $-Q$ is the reflection of Q through the origin, that is $C=-C$.

Definition 1.1. ([Siegel, 1989, page 5]) A convex body is a bounded, centrally symmetric convex open set in \mathbb{R}^{n}.

Example 1.1. The interior of an n-dimensional ball, defined by $x_{1}^{2}+x_{2}^{2}+\cdots+$ $x_{n}^{2}<a^{2}$ provides an example of a convex body.

One of the many important ideas introduced by Minkowski into the study of convex bodies was that of gauge function. Roughly, the gauge function is the equation of a convex body. Minkowski showed that the gauge function could be defined in a purely geometric way and that it must have certain properties analogous to those possessed by the distance of a point from the origin. He also showed that conversely given any function possessing these properties, there exists a convex body with the given function as its gauge function.

Definition 1.2. ([Siegel, 1989, page 6]) Given a convex body $\mathcal{B} \subseteq \mathbb{R}^{n}$ containing the origin O, we define a function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ as follows.

$$
f(x)= \begin{cases}1 & \text { if } x \in \partial \mathcal{B}, \\ 0 & \text { if } x=0, \\ \lambda & \text { if } 0 \neq x=\lambda y,\end{cases}
$$

where λ is the unique positive real number such that the ray through O and the point (whose vector is) x intersects the surface $\partial \mathcal{B}$ (the boundary of \mathcal{B}) in a point y. The function f so defined is the gauge function of the convex body \mathcal{B}.

New structure of norms on \mathbb{R}^{n} and their relations with the curvature of the plane

 curvesExample 1.2. Let $f: \mathbb{R} \rightarrow[0, \infty)$ defined by

$$
f(x)=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\},
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Then int \mathcal{B}, the interior of the cubic $\mathcal{B}=$ $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right):\left|x_{i}\right| \leq 1\right\}$ is a convex body and f is a gauge function of it.

It is shown in [Siegel, 1989, Theorems 4-7] that a function $f: \mathbb{R} \rightarrow[0, \infty)$ is a gauge function if and only if the following conditions hold: $f(x) \geq 0$ for $x \neq 0, f(0)=0 ; f(\lambda x)=\lambda f(x)$, for $0 \leq \lambda \in \mathbb{R} ;$ and $f(x+y) \leq f(x)+f(y)$. Moreover, f is continuous and the convex body of f is $\mathcal{B}=\{x: f(x)<1\}$.

A brief outline of this paper is as follows. In section 2 , we introduce a function φ_{n} on \mathbb{R}^{n}, by the formula

$$
\varphi_{n}\left(X_{n}\right)=\sqrt{x_{1}^{2} f_{1}^{2}+x_{2}^{2} f_{2}^{2}+\cdots+x_{n}^{2} f_{n}^{2}}
$$

when n fixed nonzero real-valued functions $f_{1}, f_{2}, \ldots, f_{n}$ on \mathbb{R} are given. We show that the mappings φ_{n} have similar properties such as norm functions within difference the ranges of these functions lie in $\mathbb{R}^{\mathbb{R}}$ while the range of a norm function is in the $[0, \infty)$. This definition allows us to define a norm and hence a gauge function on \mathbb{R}^{n}. So it turns \mathbb{R}^{n} into a metric space. In Section 3, we focus on $n=2, \varphi_{2}$ and the induced norm on \mathbb{R}^{2}. First, we show that if $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a nonzero function, then k, the curvature of the implicit $G(x, y)=F^{2}(x, y)=c \neq$ 0 at every regular point is calculated by this formula:

$$
k=\frac{|\mathbf{H} G|-4 F^{2}|\mathbf{H} F|}{4 F\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}},
$$

where $\mathbf{H} F$ and $\mathbf{H} G$ are the Hessian matrices of F and G respectively. It is also shown if $F(x, y)=\int_{a}^{b} \sqrt{x^{2} f^{2}(t)+y^{2} g^{2}(t)} d t$, then $|\mathbf{H} F|=0$ and the eigenvalues of $\mathbf{H} F$ and $\mathbf{H} G$, where $G=F^{2}$ are nonnegative. Particularly, when $f(t)=\cos t$ and $g(t)=\sin t$, we prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{x^{2} f^{2}(t)+y^{2} g^{2}(t)} d t$ is an elliptical integral of the second type.

2 A norm on \mathbb{R}^{n} made by the real valued functions on \mathbb{R}

We begin with the following notation.
Notation 2.1. Suppose that $f_{1}, f_{2}, \ldots, f_{n}$ are nonzero real-valued functions on \mathbb{R} and define $\varphi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\mathbb{R}}$ with

$$
\begin{equation*}
\varphi_{n}\left(X_{n}\right)=\sqrt{x_{1}^{2} f_{1}^{2}+x_{2}^{2} f_{2}^{2}+\cdots+x_{n}^{2} f_{n}^{2}} \tag{*}
\end{equation*}
$$

Amir Veisi and Ali Delbaznasab

where $X_{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbb{R}^{\mathbb{R}}$ is the set (in fact, ring) of all real-valued functions on \mathbb{R}.

The following statement is a key lemma. However, its proof is straightforward and elementary, it will be used in the proof of the triangle inequality in the next results.

Lemma 2.1. Let a, b, c and d are nonnegative real numbers. Then

$$
\sqrt{a c}+\sqrt{b d} \leq \sqrt{(a+b)(c+d)}
$$

Proposition 2.1. Let $X_{n}, Y_{n} \in \mathbb{R}^{n}, n=1,2$ or 3 . Then $\varphi_{n}\left(X_{n}+Y_{n}\right) \leq \varphi_{n}\left(X_{n}\right)+$ $\varphi_{n}\left(Y_{n}\right)$.

Proof. The inequality clearly holds when $n=1$. Next, we do the proof for $n=2$. Take $X_{2}=\left(x_{1}, y_{1}\right), Y_{2}=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ and suppose that f and g are nonzero elements of $\mathbb{R}^{\mathbb{R}}$. Then

$$
\begin{aligned}
\varphi_{2}\left(X_{2}+Y_{2}\right)= & \sqrt{\left(x_{1}+x_{2}\right)^{2} f^{2}+\left(y_{1}+y_{2}\right)^{2} g^{2}} \\
& \leq \sqrt{x_{1}^{2} f^{2}+y_{1}^{2} g^{2}}+\sqrt{x_{2}^{2} f^{2}+y_{2}^{2} g^{2}} \\
= & \varphi_{2}\left(X_{2}\right)+\varphi_{2}\left(Y_{2}\right)
\end{aligned}
$$

if and only if

$$
\begin{align*}
x_{1} x_{2} f^{2}+y_{1} y_{2} g^{2} & \leq \sqrt{\left[x_{1}^{2} f^{2}+y_{1}^{2} g^{2}\right]\left[x_{2}^{2} f^{2}+y_{2}^{2} g^{2}\right]} \\
& =\varphi_{2}\left(X_{2}\right) \varphi_{2}\left(Y_{2}\right)
\end{align*}
$$

Now, if we let $B:=x_{1} x_{2} f^{2}+y_{1} y_{2} g^{2}$ and suppose that $B \geq 0$, then (\star) holds if and only if

$$
f^{2} g^{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \geq 0
$$

which is always true (note, (\star) trivially holds if $B \leq 0$). Hence, in this case, the proof is complete.
Here, we prove the proposition for $n=3$. Let $X_{3}=\left(x_{1}, y_{1}, z_{1}\right)=\left(X_{2}, z_{1}\right)$ and $Y_{3}=\left(x_{2}, y_{2}, z_{2}\right)=\left(Y_{2}, z_{2}\right)$, where $X_{2}=\left(x_{1}, y_{1}\right), Y_{2}=\left(x_{2}, y_{2}\right)$ and let f, g, h be nonzero elements of $\mathbb{R}^{\mathbb{R}}$. Then

$$
\begin{aligned}
\varphi_{3}\left(X_{3}+Y_{3}\right)= & \sqrt{\left(x_{1}+x_{2}\right)^{2} f^{2}+\left(y_{1}+y_{2}\right)^{2} g^{2}+\left(z_{1}+z_{2}\right)^{2} h^{2}} \\
& \leq \sqrt{x_{1}^{2} f^{2}+y_{1}^{2} g^{2}+z_{1}^{2} h^{2}}+\sqrt{x_{2}^{2} f^{2}+y_{2}^{2} g^{2}+z_{2}^{2} h^{2}} \\
= & \varphi_{3}\left(X_{3}\right)+\varphi_{3}\left(Y_{3}\right)
\end{aligned}
$$

New structure of norms on \mathbb{R}^{n} and their relations with the curvature of the plane curves
if and only if

$$
\begin{aligned}
x_{1} x_{2} f^{2}+y_{1} y_{2} g^{2}+z_{1} z_{2} h^{2} & \leq \sqrt{\left[x_{1}^{2} f^{2}+y_{1}^{2} g^{2}+z_{1}^{2} h^{2}\right]\left[x_{2}^{2} f^{2}+y_{2}^{2} g^{2}+z_{2}^{2} h^{2}\right]} \\
& =\sqrt{\left[\varphi_{2}^{2}\left(X_{2}\right)+z_{1}^{2} h^{2}\right]\left[\varphi_{2}^{2}\left(Y_{2}\right)+z_{2}^{2} h^{2}\right]}
\end{aligned}
$$

Now, if we let $a=\varphi_{2}^{2}\left(X_{2}\right), b=z_{1}^{2} h^{2}, c=\varphi_{2}^{2}\left(Y_{2}\right)$ and $d=z_{2}^{2} h^{2}$, then by $(*)$ in Notation 2.1, we have

$$
x_{1} x_{2} f^{2}+y_{1} y_{2} g^{2} \leq \sqrt{a c} .
$$

Moreover, it is clear that $z_{1} z_{2} h^{2} \leq \sqrt{b d}$. Therefore,

$$
x_{1} x_{2} f^{2}+y_{1} y_{2} g^{2}+z_{1} z_{2} h^{2} \leq \sqrt{a c}+\sqrt{b d}
$$

In view of Lemma 2.1, the proof is now complete.
Next, we state the general case of Proposition 2.1.
Theorem 2.1. Let $X_{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), Y_{n}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ and φ_{n} be as defined in Notation 2.1. Then the following statements hold.
(i) $\varphi_{n}\left(X_{n}\right)=0$ if and only if $X_{n}=0$,
(ii) $\varphi_{n}\left(\lambda X_{n}\right)=|\lambda| \varphi_{n}\left(X_{n}\right)$,
(iii) $\varphi_{n}\left(X_{n}+Y_{n}\right) \leq \varphi_{n}\left(X_{n}\right)+\varphi_{n}\left(Y_{n}\right)$ (triangle inequality).

Proof. (i) and (ii) are evident. (iii). The proof is done by induction on n, see Proposition 2.1. If we set $X_{n-1}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ and $Y_{n-1}=\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$ then X_{n} and Y_{n} can be substituted by $\left(X_{n-1}, x_{n}\right)$ and $\left(Y_{n-1}, y_{n}\right)$ respectively. Therefore,

$$
\varphi_{n}\left(X_{n}+Y_{n}\right) \leq \varphi_{n}\left(X_{n}\right)+\varphi_{n}\left(Y_{n}\right)
$$

if and only if

$$
\begin{aligned}
x_{1} y_{1} f_{1}^{2}+\cdots+x_{n} y_{n} f_{n}^{2} & \leq \varphi_{n}\left(X_{n}\right) \varphi_{n}\left(Y_{n}\right) \\
& =\sqrt{\left[\varphi_{n-1}^{2}\left(X_{n-1}\right)+x_{n}^{2} f_{n}^{2}\right]\left[\varphi_{n-1}^{2}\left(Y_{n-1}\right)+y_{n}^{2} f_{n}^{2}\right]}
\end{aligned}
$$

Now, let $a=\varphi_{n-1}^{2}\left(X_{n-1}\right), b=x_{n}^{2} f_{n}^{2}, c=\varphi_{n-1}^{2}\left(Y_{n-1}\right)$ and $d=y_{n}^{2} f_{n}^{2}$ plus the assumption of induction, we have

$$
x_{1} y_{1} f_{1}^{2}+\cdots+x_{n-1} y_{n-1} f_{n-1}^{2} \leq \sqrt{a c}
$$

Moreover, it is obvious that $x_{n} y_{n} f_{n}^{2} \leq \sqrt{b d}$. Thus, $x_{1} y_{1} f_{1}^{2}+\cdots+x_{n} y_{n} f_{n}^{2} \leq$ $\sqrt{a c}+\sqrt{b d}$. Lemma 2.1 now yields the result.

Amir Veisi and Ali Delbaznasab

Corollary 2.1. If $f_{1}, f_{2}, \ldots, f_{n}$ are nonzero constant functions, then φ_{n} is a norm (and hence a gauge function) on \mathbb{R}^{n}.

By Theorem 2.1, we obtain the following result.
Proposition 2.2. Let a, b be real numbers, f_{1}, f_{2}, \ldots, and f_{n} the restrictions of some non-zero elements of $\mathbb{R}^{\mathbb{R}}$ on $[a, b]$ such that each of them is nonzero on this set, and let φ_{n} be as defined in the previous parts (Notation 2.1). Then the mapping $\psi_{n}: \mathbb{R}^{n} \rightarrow[0, \infty)$ defined by

$$
\psi_{n}\left(X_{n}\right)=\int_{a}^{b} \varphi_{n}\left(X_{n}\right) d t
$$

is a norm on \mathbb{R}^{n}, and hence $d\left(X_{n}, Y_{n}\right)=\psi\left(X_{n}-Y_{n}\right)$ turns \mathbb{R}^{n} into a metric space.

Corollary 2.2. The mapping ψ_{n} is a gauge function on \mathbb{R}^{n} with the convex body $C_{n}=\left\{X_{n} \in \mathbb{R}^{n}: \psi_{n}\left(X_{n}\right)<1\right\}$.

$3 \quad F(x, y)=\int_{a}^{b} \varphi_{2}(x, y) d t$ as a norm on \mathbb{R}^{2} and the curvature in the plane

Proposition 3.1. ([Goldman, 2005, Proposition 3.1]) For a curve defined by the implicit equation $F(x, y)=0$, the curvature of F (denoted by κ) at a regular point $\left(x_{0}, y_{0}\right)$ (i.e., the first partial derivatives F_{x} and F_{y} at this point are not both equal to 0) is given by the formula

$$
\kappa=\frac{\left|F_{y}^{2} F_{x x}-2 F_{x} F_{y} F_{x y}+F_{x}^{2} F_{y y}\right|}{\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}}
$$

where F_{x} denotes the first partial derivative with respect to $x, F_{y}, F_{x x}$ denotes the second partial derivative with respect to $x, F_{y y}$, and $F_{x y}$ denotes the mixed second partial derivative (for readability of the above formulas, the argument $\left(x_{0}, y_{0}\right)$ has been omitted).

We recall that the Hessian matrix of $z=F(x, y)$ and $w=F(x, y, z)$ are defined to be $\mathbf{H} z=\left[\begin{array}{ll}F_{x x} & F_{x y} \\ F_{y x} & F_{y y}\end{array}\right]$ and $\mathbf{H} w=\left[\begin{array}{lll}F_{x x} & F_{x y} & F_{x z} \\ F_{y x} & F_{y y} & F_{y z} \\ F_{z x} & F_{z y} & F_{z z}\end{array}\right]$ at any point at which all the second partial derivatives of F exist.

New structure of norms on \mathbb{R}^{n} and their relations with the curvature of the plane curves

Theorem 3.1. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a nonzero function and $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ a regular point. Suppose that the second partial derivatives of F at $\left(x_{0}, y_{0}\right)$ exist and further $F_{x y}=F_{y x}$ at this point. Let $\mathbf{H} F$ and $\mathbf{H} G$ be the Hessian matrices of F and F^{2} respectively (we assume that $G=F^{2}$) and let k be the curvature of $G(x, y)=F^{2}(x, y)=c \neq 0$ at $\left(x_{0}, y_{0}\right)$. Then we have

$$
k=\frac{|\mathbf{H} G|-4 F^{2}|\mathbf{H} F|}{4 F\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}} .
$$

Proof. For simplicity, we do the proof without $\left(x_{0}, y_{0}\right)$. The partial derivatives of $G=F^{2}$ are as follows:

$$
\begin{array}{ll}
G_{x}=2 F F_{x}, & G_{x x}=2\left(F_{x}{ }^{2}+F F_{x x}\right), \\
G_{y}=2 F F_{y}, & G_{y y}=2\left(F_{y}^{2}+F F_{y y}\right), \text { and } G_{x y}^{2}=4\left(F_{x} F_{y}+F F_{x y}\right)^{2} .
\end{array}
$$

Therefore,

$$
\begin{aligned}
|\mathbf{H} G|= & G_{x x} G_{y y}-G_{x y}^{2}=4\left(F_{x}^{2}+F F_{x x}\right)\left(F_{y}^{2}+F F_{y y}\right)-4\left(F_{x} F_{y}+F F_{x y}\right)^{2} \\
= & 4\left[F_{x}^{2} F_{y}^{2}+F F_{x}^{2} F_{y y}+F F_{y}^{2} F_{x x}+F^{2} F_{x x} F_{y y}-F_{x}^{2} F_{y}^{2}-2 F F_{x} F_{y} F_{x y}\right. \\
& \left.-F^{2} F_{x y}^{2}\right] \\
= & 4\left[F^{2}\left(F_{x x} F_{y y}-F_{x y}^{2}\right)+F\left(F_{x}^{2} F_{y y}-2 F_{x} F_{y} F_{x y}+F^{2} y F_{x x}\right)\right] \\
= & 4\left[F^{2}|\mathbf{H} F|+F\left(F_{x}^{2} F_{y y}-2 F_{x} F_{y} F_{x y}+F^{2} y F_{x x}\right)\right] .
\end{aligned}
$$

In view of Proposition 3.1, we have

$$
\begin{aligned}
|\mathbf{H} G| & =4\left[F^{2}|\mathbf{H} F|+F\left(F_{x}^{2} F_{y y}-2 F_{x} F_{y} F_{x y}+F^{2} y F_{x x}\right)\right] \\
& =4\left[F^{2}|\mathbf{H} F|+F k\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}\right]
\end{aligned}
$$

Therefore,

$$
k=\frac{|\mathbf{H} G|-4 F^{2}|\mathbf{H} F|}{4 F\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}},
$$

and we are done.
The next result is a similar consequence for the implicit surface.
Theorem 3.2. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a nonzero function and $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ a regular point. Suppose that the second partial derivatives of F at $\left(x_{0}, y_{0}, z_{0}\right)$ exist

Amir Veisi and Ali Delbaznasab

and further the mixed partial derivatives at this point are equivalent. If k is the curvature of $G(x, y, z)=F^{2}(x, y, z)=c \neq 0$ at $\left(x_{0}, y_{0}, z_{0}\right)$, then we have

$$
k=\frac{|\mathbf{H} G|-8 F^{3}|\mathbf{H} F|}{8 F^{2}\left(F_{x}^{2}+F_{y}^{2}+F_{z}^{2}\right)^{\frac{3}{2}}},
$$

where $\mathbf{H} F$ and $\mathbf{H} G$ are the Hessian matrices of F and F^{2} respectively (we assume that $G=F^{2}$).

Proof. As we did in the previous theorem, the proof is done without $\left(x_{0}, y_{0}, z_{0}\right)$. Let $K=\left[\begin{array}{cccc}F_{x x} & F_{x y} & F_{x z} & F_{x} \\ F_{x y} & F_{y y} & F_{y z} & F_{y} \\ F_{x z} & F_{y z} & F_{z z} & F_{z} \\ F_{x} & F_{y} & F_{z} & 0\end{array}\right]$. It is known that the curvature k of the implicit surface $F(x, y, z)=0$ is $k=|K|$ at every regular point in which the second partial derivatives of F exist. We first calculate the partial derivatives of G and in continued we obtain determinant of $\mathbf{H} G$.

$$
\begin{array}{lll}
G_{x}=2 F F_{x}, & G_{x x}=2\left(F_{x}^{2}+F F_{x x}\right), & G_{x y}^{2}=4\left(F_{x} F_{y}+F F_{x y}\right)^{2} \\
G_{y}=2 F F_{y}, & G_{y y}=2\left(F_{y}^{2}+F F_{y y}\right), & G_{x z}^{2}=4\left(F_{x} F_{z}+F F_{x z}\right)^{2} \\
G_{z}=2 F F_{z}, & G_{z z}=2\left(F_{z}^{2}+F F_{z z}\right), & G_{y z}^{2}=4\left(F_{y} F_{z}+F F_{y z}\right)^{2} .
\end{array}
$$

Recall that the Hessian matrices of F and G are

$$
\mathbf{H} F=\left[\begin{array}{lll}
F_{x x} & F_{x y} & F_{x z} \\
F_{x y} & F_{y y} & F_{y z} \\
F_{x z} & F_{y z} & F_{z z}
\end{array}\right] \text {, and } \mathbf{H} G=\left[\begin{array}{lll}
G_{x x} & G_{x y} & G_{x z} \\
G_{x y} & G_{y y} & G_{y z} \\
G_{x z} & G_{y z} & G_{z z}
\end{array}\right] \text {. }
$$

Here, we compute the determinant of $\mathbf{H} G$.

$$
\begin{aligned}
1 / 8|\mathbf{H} G| & =F_{x x}\left(F_{y y} F_{z z}-F_{y z}^{2}\right)-F_{x y}\left(F_{x y} F_{z z}-F_{x z} F_{y z}\right) \\
& +F_{x z}\left(F_{x y} F_{y z}-F_{x z} F_{y y}\right) \\
& =F_{x x} F_{y y} F_{z z}-F_{x x} F_{y z}^{2}-F_{y y} F_{x z}^{2}-F_{z z} F_{x y}^{2}+2 F_{x y} F_{y z} F_{x z} \\
& =\left(F_{x}^{2}+F F_{x x}\right)\left(F_{y}^{2}+F F_{y y}\right)\left(F_{z}^{2}+F F_{z z}\right) \\
& -\left(F_{x}^{2}+F F_{x x}\right)\left(F_{y} F_{z}+F F_{y z}\right)^{2} \\
& -\left(F_{y}^{2}+F F_{y y}\right)\left(F_{x} F_{z}+F F_{x z}\right)^{2}-\left(F_{z}^{2}+F F_{z z}\right)\left(F_{x} F_{y}+F F_{x y}\right)^{2} \\
& +\left(F_{x} F_{z}+F F_{x z}\right)\left(F_{y} F_{z}+F F_{y z}\right)\left(F_{x} F_{y}+F F_{x y}\right) \\
& =F^{3}\left[F_{x x} F_{y y} F_{z z}-F_{x x} F_{y z}^{2}-F_{y y} F_{x z}^{2}-F_{x x} F_{x y}^{2}+2 F_{x y} F_{y z} F_{x z}\right] \\
& +F^{2}\left[F_{x x} F_{y y} F_{z}^{2}+F_{x x} F_{z z} F_{y}^{2}+F_{y y} F_{z z} F_{x}^{2}-2 F_{x y} F_{x z} F_{y} F_{z}\right. \\
& \left.-2 F_{x y} F_{y z} F_{x} F_{z}-2 F_{x z} F_{y z} F_{x} F_{y}+F_{x y}^{2} F_{z}^{2}+F_{x z}^{2} F_{y}^{2}+F_{y z}^{2} F_{x}^{2}\right]+F[0] .
\end{aligned}
$$

New structure of norms on \mathbb{R}^{n} and their relations with the curvature of the plane curves

Therefore, we have $1 / 8|\mathbf{H} G|=F^{3}|\mathbf{H} F|+F^{2} k\left(F_{x}^{2}+F_{y}^{2}+F_{z}^{2}\right)^{\frac{3}{2}}$. So the result is obtained, i.e.,

$$
k=\frac{|\mathbf{H} G|-8 F^{3}|\mathbf{H} F|}{8 F^{2}\left(F_{x}^{2}+F_{y}^{2}+F_{z}^{2}\right)^{\frac{3}{2}}} .
$$

Theorem 3.3. Let f, g be nonzero real-valued functions on $\mathbb{R}, a, b \in \mathbb{R}$ and F : $\mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $F(x, y)=\int_{a}^{b} \sqrt{x^{2} f^{2}(t)+y^{2} g^{2}(t)} d(t)$. Then
(i) The curvature of $F(x, y)=c$, where $c>0$ at any point of the curve is positive multiple of c^{2}.
(ii) $\operatorname{tr}(\mathbf{H} F)=F_{x x}+F_{y y} \geq 0$.

Proof. (i). First, we note that $F \geq 0$. The surface F meets the plane $z=0$ at the origin only. But the intersection of F with the plane $z=c$ (where $c>0$) is the curve $F(x, y)=c$. Here the partial derivatives of F are calculated (see [Rudin, 1976, Theorem 9.42]).

$$
\begin{array}{cc}
F_{x}=\int_{a}^{b} \frac{x f^{2}(t)}{\sqrt{x^{2} f^{2}(t)+y^{2} g^{2}(t)}} d(t), & F_{y}=\int_{a}^{b} \frac{y g^{2}(t)}{\sqrt{x^{2} f^{2}(t)+y^{2} g^{2}(t)}} d(t), \\
F_{x x}=\int_{a}^{b} \frac{y^{2} f^{2}(t) g^{2}(t)}{\left(x^{2} f^{2}(t)+y^{2} g^{2}(t)\right)^{\frac{3}{2}}} d(t), & F_{y y}=\int_{a}^{b} \frac{x^{2} f^{2}(t) g^{2}(t)}{\left(x^{2} f^{2}(t)+y^{2} g^{2}(t)\right)^{\frac{3}{2}}} d(t),
\end{array}
$$

and

$$
F_{x y}=-\int_{a}^{b} \frac{x y f^{2}(t) g^{2}(t)}{\left(x^{2} f^{2}(t)+y^{2} g^{2}(t)\right)^{\frac{3}{2}}} d(t)=F_{y x}
$$

Let us put $\varphi:=\sqrt{x^{2} f^{2}(t)+y^{2} g^{2}(t)}$. For the simplicity, we set

$$
F_{x}=\int \frac{x f^{2}}{\varphi}, \quad F_{y}=\int \frac{y g^{2}}{\varphi}, \text { and so on } \ldots
$$

Amir Veisi and Ali Delbaznasab

By formula of the curvature k in Proposition 3.1, we obtain

$$
\begin{aligned}
k= & \frac{1}{\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}}\left[\left(y^{2} \int \frac{f^{2} g^{2}}{\varphi^{3}}\right)\left(y \int \frac{g^{2}}{\varphi}\right)^{2}+2 \int \frac{x y f^{2} g^{2}}{\varphi^{3}} \int \frac{x f^{2}}{\varphi} \int \frac{y g^{2}}{\varphi}\right. \\
& \left.+\left(x^{2} \int \frac{f^{2} g^{2}}{\varphi^{3}}\right)\left(x \int \frac{f^{2}}{\varphi}\right)^{2}\right] \\
= & \frac{\int \frac{f^{2} g^{2}}{\varphi^{3}}}{\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}}\left[y^{4}\left(\int \frac{g^{2}}{\varphi}\right)^{2}+2 x^{2} y^{2} \int \frac{f^{2}}{\varphi} \int \frac{g^{2}}{\varphi}+x^{4}\left(\int \frac{f^{2}}{\varphi}\right)^{2}\right] \\
= & \frac{\int \frac{f^{2} g^{2}}{\varphi^{3}}}{\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}}\left[\int \frac{x^{2} f^{2}}{\varphi}+\int \frac{y^{2} g^{2}}{\varphi}\right]^{2} \\
= & \frac{\int \frac{f^{2} g^{2}}{\varphi^{3}}}{\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}}\left[\int \frac{x^{2} f^{2}+y^{2} g^{2}}{\varphi}\right]^{2} \\
= & \frac{\int \frac{f^{2} g^{2}}{\varphi^{3}}}{\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}}\left[\int \varphi\right]^{2} \\
= & \frac{\int \frac{f^{2} g^{2}}{\varphi^{3}}}{\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}}} F^{2}(x, y) .
\end{aligned}
$$

Hence, we observe that the curvature of $F(x, y)=c$ at $\left(x_{0}, y_{0}\right)$ is a positive multiple of $F^{2}\left(x_{0}, y_{0}\right)=c^{2}$, and we are done.
(ii). Since

$$
\frac{f^{2} g^{2}\left(x^{2}+y^{2}\right)}{\varphi^{3}} \geq 0
$$

it is clear that $F_{x x}+F_{y y} \geq 0$. So the result holds.
Lemma 3.1. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a homogeneous function of degree one. Suppose that the second derivatives of F at $(a, b) \in \mathbb{R}^{2}$ exist. Moreover, $F_{x y}=F_{y x}$ at this point. Then
(i) $|\mathbf{H} F|_{(a, b)}=0$.
(ii) The eigenvalues of $\mathbf{H} F$ are 0 and $\operatorname{tr}(\mathbf{H} F)$ at (a, b).

Proof. (i). First, we note that $F(\lambda x, \lambda y)=\lambda F(x, y)$, for all $(x, y) \in \mathbb{R}^{2}$ and $\lambda \in \mathbb{R}$. Also, we remind the reader of the following fact, which is known as Euler's property,

$$
x F_{x}+y F_{y}=F(x, y) .
$$

New structure of norms on \mathbb{R}^{n} and their relations with the curvature of the plane curves

Therefore,

$$
x F_{x x}+F_{x}+y F_{x y}=F_{x}, \text { and } x F_{x y}+F_{y}+y F_{y y}=F_{y} .
$$

Consequently, $x F_{x x}=-y F_{x y}$ and $x F_{x y}=-y F_{y y}$. Now, consider the Hessian matrix $\mathbf{H} F=\left[\begin{array}{cc}F x x & F_{x y} \\ F_{x y} & F_{y y}\end{array}\right]$ of F. For the point $(0, b)$, where $b \neq 0$, we have $F_{y y}(0, b)=0=F_{x y}(0, b)$. This implies that $|\mathbf{H} F|=0$. Also, considering the point $(a, 0)$, where $a \neq 0$ gives $F_{x y}(a, 0)=0=F_{x x}(a, 0)$, this again yields $|\mathbf{H} F|=0$. Now, let (a, b) such that $a \neq 0$ and $b \neq 0$. Then $F_{x x}(a, b)=\frac{-b}{a} F_{x y}(a, b)$ and $F_{y y}(a, b)=\frac{-a}{b} F_{x y}(a, b)$. Hence, $|\mathbf{H} F|=0$. So we always have $|\mathbf{H} F|=0$. The proof of (i) is now complete. (ii). Recall that the characteristic equation of $\mathbf{H} F$ is

$$
\lambda^{2}-\left(\operatorname{tr}(\mathbf{H} F)=F_{x x}+F_{y y}\right) \lambda+\left(|\mathbf{H} F|=F_{x x} F_{y y}-F_{x y}^{2}\right)=0 .
$$

So $\lambda^{2}-\left(F_{x x}+F_{y y}\right) \lambda=0$. Therefore, $\lambda=0$ or $\lambda=\operatorname{tr}(\mathbf{H} F)$, and we are done.
Proposition 3.2. Let f, g be nonzero real-valued functions on \mathbb{R} and $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $F(x, y)=\int_{a}^{b} \sqrt{x^{2} f^{2}(t)+y^{2} g^{2}(t)} d t$ and let $G(x, y)=F^{2}(x, y)$. Then the eigenvalues of $\mathbf{H} F$ and $\mathbf{H} G$ at any point except the origin are nonnegative. (In fact, the eigenvalues of $\mathbf{H} F$ are zero and $\operatorname{tr}(\mathbf{H} F)$ at that point).

Proof. We observe that F is a homogeneous function of degree one. So Lemma 3.1 and Theorem 3.3 (ii) yield the result. For the matrix $\mathbf{H} G$, we look to the Theorem 3.1. Since, $F^{2}|\mathbf{H} F|=0$, we have

$$
|\mathbf{H} G|=4 F k\left(F_{x}^{2}+F_{y}^{2}\right)^{\frac{3}{2}} .
$$

We notice that $F, k \geq 0$ gives $|\mathbf{H} G| \geq 0$. On the other hand, $\operatorname{tr}(\mathbf{H} G)=G_{x x}+$ $G_{y y} \geq 0$. Therefore, the roots of $\lambda^{2}-\operatorname{tr}(\mathbf{H} G) \lambda+|\mathbf{H} G|=0$, which are the eigenvalues of $\mathbf{H} G$, are nonnegative. The proof is finished.

In the following result, we present a norm on \mathbb{R}^{2} which is an elliptic integral of the second kind.

Corollary 3.1. Let $f(t)=\cos t, g(t)=\sin t$ and let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by

$$
F(x, y)=\int_{0}^{\frac{\pi}{2}} \sqrt{x^{2} \cos ^{2} t+y^{2} \sin ^{2} t} d t
$$

Then the following statements hold.
(i) The eigenvalues of $\mathbf{H} F$ and $\mathbf{H} G$, where $G=F^{2}$ at every point except the origin are nonnegative.

Amir Veisi and Ali Delbaznasab

(ii) $F(x, y)$ is an elliptic integral of the second kind.

Proof. (i). It follows from Proposition 3.2. (ii). Notice that

$$
F(x, y)=\int_{0}^{\frac{\pi}{2}} \sqrt{x^{2}\left(1-\sin ^{2} \theta\right)+y^{2} \sin ^{2} \theta} d \theta=|x| \int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta
$$

where $k=\frac{\sqrt{x^{2}-y^{2}}}{|x|}$ and $|x| \geq|y|$. So this gives $F(x, y)$ is an elliptic integral of the second kind and we are done.
Corollary 3.2. There are ordered pairs (x, y) with rational coordinates (other than the origin) which satisfy the inequality $\int_{0}^{\frac{\pi}{2}} \sqrt{x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta} d \theta \leq r$, when $0<r \in \mathbb{Q}$. Also, if $r \notin \mathbb{Q}$ then (x, y) has irrational coordinates.
Proof. It is sufficient to take the pairs $(r, 0),(0, r),(-r, 0)$ and $(0,-r)$.
We end this article with the next results.
Proposition 3.3. Let $0 \leq x, y \in \mathbb{R}$. Then

$$
\int_{0}^{\frac{\pi}{2}} \sqrt{x^{2} \cos ^{2} t+y^{2} \sin ^{2} t} d t \leq x+y
$$

Proof. First, note that

$$
x^{2} \cos ^{2} t+y^{2} \sin ^{2} t=(x \cos t+y \sin t)^{2}-2 x y \sin t \cos t
$$

and take $0 \leq \phi \leq \frac{\pi}{2}$ such that $\tan \phi=\frac{y}{x}$ (if $x>0$). Now,

$$
\begin{aligned}
(x \cos t+y \sin t)^{2} & =x^{2}\left(\cos t+\frac{y}{x} \sin t\right)^{2}=x^{2}\left(\cos t+\frac{\sin \phi}{\cos \phi} \sin t\right)^{2} \\
& =\frac{x^{2}(\cos t \cos \phi+\sin t \sin \phi)^{2}}{\cos ^{2} \phi}=\frac{x^{2} \cos ^{2}(t-\phi)}{\cos ^{2} \phi} \\
& =\left(x^{2}+y^{2}\right) \cos ^{2}(t-\phi)\left(\text { note, } \cos ^{2} \phi=\frac{x^{2}}{x^{2}+y^{2}}\right)
\end{aligned}
$$

Hence, $x^{2} \cos ^{2} t+y^{2} \sin ^{2} t \leq\left(x^{2}+y^{2}\right) \cos ^{2}(t-\phi)$. Therefore,

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sqrt{x^{2} \cos ^{2} t+y^{2} \sin ^{2} t} d t & \leq \int_{0}^{\frac{\pi}{2}} \sqrt{\left(x^{2}+y^{2}\right) \cos ^{2}(t-\phi)} d t \\
& =\sqrt{x^{2}+y^{2}} \int_{0}^{\frac{\pi}{2}}|\cos (t-\phi)| d t \\
& =\sqrt{x^{2}+y^{2}} \int_{-\phi}^{\frac{\pi}{2}-\phi} \cos T d t \quad(T=t-\phi) \\
& =x+y
\end{aligned}
$$

New structure of norms on \mathbb{R}^{n} and their relations with the curvature of the plane curves

Remark 3.1. We find $4 \int_{0}^{\frac{\pi}{2}} \sqrt{x^{2} \cos ^{2} t+y^{2} \sin ^{2} t} d t \leq 2(2 x+2 y)$. The left phrase is the length of the ellipse $x^{\prime}=x \cos t$ and $y^{\prime}=y \sin t$, while $2 x$ and $2 y$ are the major axis and minor axis of this ellipse.

References

R. Goldman. Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design, 22(7):632-658, 2005.
C. G. Lekkerkerker. Geometry of numbers North-Holland Publishing Company, Amsterdam, 1969.
W. Rudin. Principles of Mathematical Analysis, McGraw-Hill, International Book Company, Ltd, 1976.
C. L. Siegel. Lecturcs on the geometry of numbers Springer-Verlag Berlin Heidelberg, 1989.
S. Willard. General Topology, Addison-Wesley, 1970.

[^0]: *Faculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran; aveisi@yu.ac.ir
 ${ }^{\dagger}$ Farhangian University, Kohgiluyeh and Boyer-Ahmad Province, Yasouj, Iran; delbaznasab@gmail.com
 ${ }^{1}$ Received on October 31st, 2020. Accepted on December 17th, 2020. Published on December 31st, 2020. doi: 10.23755/rm.v39i0.552. ISSN: 1592-7415. eISSN: 2282-8214. ©Amir Veisi et al. This paper is published under the CC-BY licence agreement.

