Amir Veisi* Ali Delbaznasab[†]

Abstract

Let f_1, f_2, \ldots, f_n be fixed nonzero real-valued functions on \mathbb{R} , the real numbers. Let $\varphi_n(X_n) = (x_1^2 f_1^2 + x_2^2 f_2^2 + \ldots + x_n^2 f_n^2)^{\frac{1}{2}}$, where $X_n = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. We show that φ_n has properties similar to a norm function on the normed linear space. Although φ_n is not a norm on \mathbb{R}^n in general, it induces a norm on \mathbb{R}^n . For the nonzero function $F : \mathbb{R}^2 \to \mathbb{R}$, a curvature formula for the implicit curve $G(x, y) = F^2(x, y) = c \neq 0$ at any regular point is given. A similar result is presented when F is a nonzero function from \mathbb{R}^3 to \mathbb{R} . In continued, we concentrate on $F(x, y) = \int_a^b \varphi_2(x, y) dt$. It is shown that the curvature of F(x, y) = c, where c > 0 is a positive multiple of c^2 . Particularly, we observe that $F(x, y) = \int_0^{\frac{\pi}{2}} \sqrt{x^2 \cos^2 t + y^2 \sin^2 t} dt$ is an elliptic integral of the second kind.

Keywords: norm; curvature; homogeneous function; elliptic integral. **2010 AMS subject classifications**: 53A10. **2010 AMS subject classifications**: 53A10. ¹

^{*}Faculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran; aveisi@yu.ac.ir

[†]Farhangian University, Kohgiluyeh and Boyer-Ahmad Province, Yasouj, Iran; delbaznasab@gmail.com

¹Received on October 31st, 2020. Accepted on December 17th, 2020. Published on December 31st, 2020. doi: 10.23755/rm.v39i0.552. ISSN: 1592-7415. eISSN: 2282-8214. ©Amir Veisi et al. This paper is published under the CC-BY licence agreement.

1 Introduction

A normed linear space is a real linear space X such that a number ||x||, the *norm* of x, is associated with each $x \in X$, satisfying: $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0; $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{R}$ and $\|x + y\| \le \|x\| + \|y\|$. For example, let X be a Tychonoff space, $C^*(X)$ the ring of all bounded realvalued continuous functions on X. Then $C^*(X)$ is a normed linear space with the norm $||f|| = \sup\{|f(x)| : x \in X\}$ and pointwise addition and scalar multiplication. This is called the *supremum-norm* on $C^*(X)$. The associated metric is defined by d(f,g) = ||f - g||. A non-empty set $C \subseteq \mathbb{R}^n$ is called a *convex* set if whenever P and Q belong to C, the segment joining P and Q belongs to C. Analytically the definition can be formulated in this way: if P is represented by the vector x, and Q by the vector y, then C is a convex set if with P and Q it contains also every point with a vector of form $\lambda x + (1 - \lambda)y$, where $0 \le \lambda \le 1$. A point P is an *interior point* of a set S contained in \mathbb{R}^n , if there exists an n-dimensional ball, with center at P, all of whose points lie in S. An open set is a set containing only interior points. A subset $C \subseteq \mathbb{R}^n$ is *centrally symmetric* (or 0-symmetric) if for every point $Q \in \mathbb{R}^n$ contained in $C, -Q \in C$, where -Q is the reflection of Q through the origin, that is C = -C.

Definition 1.1. ([Siegel, 1989, page 5]) A convex body is a bounded, centrally symmetric convex open set in \mathbb{R}^n .

Example 1.1. The interior of an *n*-dimensional ball, defined by $x_1^2 + x_2^2 + \cdots + x_n^2 < a^2$ provides an example of a convex body.

One of the many important ideas introduced by Minkowski into the study of convex bodies was that of gauge function. Roughly, the gauge function is the equation of a convex body. Minkowski showed that the gauge function could be defined in a purely geometric way and that it must have certain properties analogous to those possessed by the distance of a point from the origin. He also showed that conversely given any function possessing these properties, there exists a convex body with the given function as its gauge function.

Definition 1.2. ([Siegel, 1989, page 6]) Given a convex body $\mathcal{B} \subseteq \mathbb{R}^n$ containing the origin O, we define a function $f : \mathbb{R}^n \to [0, \infty)$ as follows.

$$f(x) = \begin{cases} 1 & \text{if } x \in \partial \mathcal{B}, \\ 0 & \text{if } x = 0, \\ \lambda & \text{if } 0 \neq x = \lambda y, \end{cases}$$

where λ is the unique positive real number such that the ray through O and the point (whose vector is) x intersects the surface $\partial \mathcal{B}$ (the boundary of \mathcal{B}) in a point y. The function f so defined is the gauge function of the convex body \mathcal{B} .

Example 1.2. Let $f : \mathbb{R} \to [0, \infty)$ defined by

$$f(x) = \max\{|x_1|, |x_2|, \dots, |x_n|\},\$$

where $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Then int \mathcal{B} , the interior of the cubic $\mathcal{B} = \{(x_1, x_2, ..., x_n) : |x_i| \leq 1\}$ is a convex body and f is a gauge function of it.

It is shown in [Siegel, 1989, Theorems 4-7] that a function $f : \mathbb{R} \to [0, \infty)$ is a gauge function if and only if the following conditions hold: $f(x) \ge 0$ for $x \ne 0$, f(0) = 0; $f(\lambda x) = \lambda f(x)$, for $0 \le \lambda \in \mathbb{R}$; and $f(x + y) \le f(x) + f(y)$. Moreover, f is continuous and the convex body of f is $\mathcal{B} = \{x : f(x) < 1\}$.

A brief outline of this paper is as follows. In section 2, we introduce a function φ_n on \mathbb{R}^n , by the formula

$$\varphi_n(X_n) = \sqrt{x_1^2 f_1^2 + x_2^2 f_2^2 + \dots + x_n^2 f_n^2},$$

when n fixed nonzero real-valued functions f_1, f_2, \ldots, f_n on \mathbb{R} are given. We show that the mappings φ_n have similar properties such as norm functions within difference the ranges of these functions lie in $\mathbb{R}^{\mathbb{R}}$ while the range of a norm function is in the $[0, \infty)$. This definition allows us to define a norm and hence a gauge function on \mathbb{R}^n . So it turns \mathbb{R}^n into a metric space. In Section 3, we focus on $n = 2, \varphi_2$ and the induced norm on \mathbb{R}^2 . First, we show that if $F : \mathbb{R}^2 \to \mathbb{R}$ is a nonzero function, then k, the curvature of the implicit $G(x, y) = F^2(x, y) = c \neq 0$ at every regular point is calculated by this formula:

$$k = \frac{|\mathbf{H}G| - 4F^2 |\mathbf{H}F|}{4F(F_x^2 + F_y^2)^{\frac{3}{2}}},$$

where $\mathbf{H}F$ and $\mathbf{H}G$ are the Hessian matrices of F and G respectively. It is also shown if $F(x, y) = \int_a^b \sqrt{x^2 f^2(t) + y^2 g^2(t)} dt$, then $|\mathbf{H}F| = 0$ and the eigenvalues of $\mathbf{H}F$ and $\mathbf{H}G$, where $G = F^2$ are nonnegative. Particularly, when $f(t) = \cos t$ and $g(t) = \sin t$, we prove that $\int_0^{\frac{\pi}{2}} \sqrt{x^2 f^2(t) + y^2 g^2(t)} dt$ is an elliptical integral of the second type.

2 A norm on \mathbb{R}^n made by the real valued functions on \mathbb{R}

We begin with the following notation.

Notation 2.1. Suppose that f_1, f_2, \ldots, f_n are nonzero real-valued functions on \mathbb{R} and define $\varphi_n : \mathbb{R}^n \to \mathbb{R}^{\mathbb{R}}$ with

$$\varphi_n(X_n) = \sqrt{x_1^2 f_1^2 + x_2^2 f_2^2 + \dots + x_n^2 f_n^2}, \qquad (*)$$

where $X_n = (x_1, x_2, ..., x_n)$ and $\mathbb{R}^{\mathbb{R}}$ is the set (in fact, ring) of all real-valued functions on \mathbb{R} .

The following statement is a key lemma. However, its proof is straightforward and elementary, it will be used in the proof of the triangle inequality in the next results.

Lemma 2.1. Let a, b, c and d are nonnegative real numbers. Then

$$\sqrt{ac} + \sqrt{bd} \le \sqrt{(a+b)(c+d)}.$$

Proposition 2.1. Let $X_n, Y_n \in \mathbb{R}^n$, n = 1, 2 or 3. Then $\varphi_n(X_n + Y_n) \leq \varphi_n(X_n) + \varphi_n(Y_n)$.

Proof. The inequality clearly holds when n = 1. Next, we do the proof for n = 2. Take $X_2 = (x_1, y_1), Y_2 = (x_2, y_2) \in \mathbb{R}^2$ and suppose that f and g are nonzero elements of $\mathbb{R}^{\mathbb{R}}$. Then

$$\varphi_2(X_2 + Y_2) = \sqrt{(x_1 + x_2)^2 f^2 + (y_1 + y_2)^2 g^2}$$

$$\leq \sqrt{x_1^2 f^2 + y_1^2 g^2} + \sqrt{x_2^2 f^2 + y_2^2 g^2}$$

$$= \varphi_2(X_2) + \varphi_2(Y_2)$$

if and only if

$$x_1 x_2 f^2 + y_1 y_2 g^2 \le \sqrt{\left[x_1^2 f^2 + y_1^2 g^2\right] \left[x_2^2 f^2 + y_2^2 g^2\right]} = \varphi_2(X_2) \varphi_2(Y_2). \qquad (\star)$$

Now, if we let $B := x_1 x_2 f^2 + y_1 y_2 g^2$ and suppose that $B \ge 0$, then (\star) holds if and only if

$$f^2g^2(x_1y_2 - x_2y_1)^2 \ge 0,$$

which is always true (note, (\star) trivially holds if $B \leq 0$). Hence, in this case, the proof is complete.

Here, we prove the proposition for n = 3. Let $X_3 = (x_1, y_1, z_1) = (X_2, z_1)$ and $Y_3 = (x_2, y_2, z_2) = (Y_2, z_2)$, where $X_2 = (x_1, y_1)$, $Y_2 = (x_2, y_2)$ and let f, g, h be nonzero elements of $\mathbb{R}^{\mathbb{R}}$. Then

$$\varphi_3(X_3 + Y_3) = \sqrt{(x_1 + x_2)^2 f^2 + (y_1 + y_2)^2 g^2 + (z_1 + z_2)^2 h^2}$$

$$\leq \sqrt{x_1^2 f^2 + y_1^2 g^2 + z_1^2 h^2} + \sqrt{x_2^2 f^2 + y_2^2 g^2 + z_2^2 h^2}$$

$$= \varphi_3(X_3) + \varphi_3(Y_3)$$

if and only if

$$x_1 x_2 f^2 + y_1 y_2 g^2 + z_1 z_2 h^2 \le \sqrt{[x_1^2 f^2 + y_1^2 g^2 + z_1^2 h^2] [x_2^2 f^2 + y_2^2 g^2 + z_2^2 h^2]}$$
$$= \sqrt{[\varphi_2^2(X_2) + z_1^2 h^2] [\varphi_2^2(Y_2) + z_2^2 h^2]}$$

Now, if we let $a = \varphi_2^2(X_2)$, $b = z_1^2 h^2$, $c = \varphi_2^2(Y_2)$ and $d = z_2^2 h^2$, then by (*) in Notation 2.1, we have

$$x_1 x_2 f^2 + y_1 y_2 g^2 \le \sqrt{ac}.$$

Moreover, it is clear that $z_1 z_2 h^2 \leq \sqrt{bd}$. Therefore,

$$x_1 x_2 f^2 + y_1 y_2 g^2 + z_1 z_2 h^2 \le \sqrt{ac} + \sqrt{bd}.$$

In view of Lemma 2.1, the proof is now complete.

Next, we state the general case of Proposition 2.1.

Theorem 2.1. Let $X_n = (x_1, x_2, ..., x_n), Y_n = (y_1, y_2, ..., y_n) \in \mathbb{R}^n, \lambda \in \mathbb{R}$ and φ_n be as defined in Notation 2.1. Then the following statements hold.

- (i) $\varphi_n(X_n) = 0$ if and only if $X_n = 0$,
- (*ii*) $\varphi_n(\lambda X_n) = |\lambda|\varphi_n(X_n),$
- (iii) $\varphi_n(X_n + Y_n) \leq \varphi_n(X_n) + \varphi_n(Y_n)$ (triangle inequality).

Proof. (i) and (ii) are evident. (iii). The proof is done by induction on n, see Proposition 2.1. If we set $X_{n-1} = (x_1, x_2, \ldots, x_{n-1})$ and $Y_{n-1} = (y_1, y_2, \ldots, y_{n-1})$ then X_n and Y_n can be substituted by (X_{n-1}, x_n) and (Y_{n-1}, y_n) respectively. Therefore,

$$\varphi_n(X_n + Y_n) \le \varphi_n(X_n) + \varphi_n(Y_n)$$

if and only if

$$x_1 y_1 f_1^2 + \dots + x_n y_n f_n^2 \le \varphi_n(X_n) \varphi_n(Y_n)$$

= $\sqrt{\left[\varphi_{n-1}^2(X_{n-1}) + x_n^2 f_n^2\right] \left[\varphi_{n-1}^2(Y_{n-1}) + y_n^2 f_n^2\right]}.$

Now, let $a = \varphi_{n-1}^2(X_{n-1}), b = x_n^2 f_n^2, c = \varphi_{n-1}^2(Y_{n-1})$ and $d = y_n^2 f_n^2$ plus the assumption of induction, we have

$$x_1y_1f_1^2 + \dots + x_{n-1}y_{n-1}f_{n-1}^2 \le \sqrt{ac}.$$

Moreover, it is obvious that $x_n y_n f_n^2 \leq \sqrt{bd}$. Thus, $x_1 y_1 f_1^2 + \cdots + x_n y_n f_n^2 \leq \sqrt{ac} + \sqrt{bd}$. Lemma 2.1 now yields the result.

Corollary 2.1. If f_1, f_2, \ldots, f_n are nonzero constant functions, then φ_n is a norm (and hence a gauge function) on \mathbb{R}^n .

By Theorem 2.1, we obtain the following result.

Proposition 2.2. Let a, b be real numbers, f_1, f_2, \ldots , and f_n the restrictions of some non-zero elements of $\mathbb{R}^{\mathbb{R}}$ on [a, b] such that each of them is nonzero on this set, and let φ_n be as defined in the previous parts (Notation 2.1). Then the mapping $\psi_n : \mathbb{R}^n \to [0, \infty)$ defined by

$$\psi_n(X_n) = \int_a^b \varphi_n(X_n) dt$$

is a norm on \mathbb{R}^n , and hence $d(X_n, Y_n) = \psi(X_n - Y_n)$ turns \mathbb{R}^n into a metric space.

Corollary 2.2. The mapping ψ_n is a gauge function on \mathbb{R}^n with the convex body $C_n = \{X_n \in \mathbb{R}^n : \psi_n(X_n) < 1\}.$

3 $F(x,y) = \int_a^b \varphi_2(x,y) dt$ as a norm on \mathbb{R}^2 and the curvature in the plane

Proposition 3.1. ([Goldman, 2005, Proposition 3.1]) For a curve defined by the implicit equation F(x, y) = 0, the curvature of F (denoted by κ) at a regular point (x_0, y_0) (i.e., the first partial derivatives F_x and F_y at this point are not both equal to 0) is given by the formula

$$\kappa = \frac{|F_y^2 F_{xx} - 2F_x F_y F_{xy} + F_x^2 F_{yy}|}{(F_x^2 + F_y^2)^{\frac{3}{2}}}.$$

where F_x denotes the first partial derivative with respect to x, F_y , F_{xx} denotes the second partial derivative with respect to x, F_{yy} , and F_{xy} denotes the mixed second partial derivative (for readability of the above formulas, the argument (x_0, y_0) has been omitted).

We recall that the *Hessian matrix* of z = F(x, y) and w = F(x, y, z) are defined to be $\mathbf{H}z = \begin{bmatrix} F_{xx} & F_{xy} \\ F_{yx} & F_{yy} \end{bmatrix}$ and $\mathbf{H}w = \begin{bmatrix} F_{xx} & F_{xy} & F_{xz} \\ F_{yx} & F_{yy} & F_{yz} \\ F_{zx} & F_{zy} & F_{zz} \end{bmatrix}$ at any point at which all the second partial derivatives of F exist.

Theorem 3.1. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a nonzero function and $(x_0, y_0) \in \mathbb{R}^2$ a regular point. Suppose that the second partial derivatives of F at (x_0, y_0) exist and further $F_{xy} = F_{yx}$ at this point. Let **H**F and **H**G be the Hessian matrices of F and F^2 respectively (we assume that $G = F^2$) and let k be the curvature of $G(x, y) = F^2(x, y) = c \neq 0$ at (x_0, y_0) . Then we have

$$k = \frac{|\mathbf{H}G| - 4F^2 |\mathbf{H}F|}{4F (F_x^2 + F_y^2)^{\frac{3}{2}}}$$

Proof. For simplicity, we do the proof without (x_0, y_0) . The partial derivatives of $G = F^2$ are as follows:

$$\begin{split} G_x &= 2FF_x, \qquad G_{xx} = 2(F_x{}^2 + FF_{xx}), \\ G_y &= 2FF_y, \qquad G_{yy} = 2(F_y{}^2 + FF_{yy}), \text{ and } G_{xy}^2 = 4(F_xF_y + FF_{xy})^2. \end{split}$$

Therefore,

$$\begin{aligned} |\mathbf{H}G| &= G_{xx}G_{yy} - G_{xy}^2 = 4(F_x^2 + FF_{xx})(F_y^2 + FF_{yy}) - 4(F_xF_y + FF_{xy})^2 \\ &= 4\left[F_x^2F_y^2 + FF_x^2F_{yy} + FF_y^2F_{xx} + F^2F_{xx}F_{yy} - F_x^2F_y^2 - 2FF_xF_yF_{xy} \right. \\ &- F^2F_{xy}^2\right] \\ &= 4\left[F^2(F_{xx}F_{yy} - F_{xy}^2) + F(F_x^2F_{yy} - 2F_xF_yF_{xy} + F^2yF_{xx})\right] \\ &= 4\left[F^2|\mathbf{H}F| + F(F_x^2F_{yy} - 2F_xF_yF_{xy} + F^2yF_{xx})\right]. \end{aligned}$$

In view of Proposition 3.1, we have

$$|\mathbf{H}G| = 4 \Big[F^2 |\mathbf{H}F| + F \big(F_x^2 F_{yy} - 2F_x F_y F_{xy} + F^2 y F_{xx} \big) \Big]$$
$$= 4 \Big[F^2 |\mathbf{H}F| + F k \big(F_x^2 + F_y^2 \big)^{\frac{3}{2}} \Big]$$

Therefore,

$$k = \frac{|\mathbf{H}G| - 4F^2 |\mathbf{H}F|}{4F (F_x^2 + F_y^2)^{\frac{3}{2}}},$$

and we are done.

The next result is a similar consequence for the implicit surface.

Theorem 3.2. Let $F : \mathbb{R}^3 \to \mathbb{R}$ be a nonzero function and $(x_0, y_0, z_0) \in \mathbb{R}^3$ a regular point. Suppose that the second partial derivatives of F at (x_0, y_0, z_0) exist

and further the mixed partial derivatives at this point are equivalent. If k is the curvature of $G(x, y, z) = F^2(x, y, z) = c \neq 0$ at (x_0, y_0, z_0) , then we have

$$k = \frac{|\mathbf{H}G| - 8F^3 |\mathbf{H}F|}{8F^2 \left(F_x^2 + F_y^2 + F_z^2\right)^{\frac{3}{2}}},$$

where $\mathbf{H}F$ and $\mathbf{H}G$ are the Hessian matrices of F and F^2 respectively (we assume that $G = F^2$).

Proof. As we did in the previous theorem, the proof is done without (x_0, y_0, z_0) .

Let $K = \begin{bmatrix} F_{xx} & F_{xy} & F_{xz} & F_x \\ F_{xy} & F_{yy} & F_{yz} & F_y \\ F_{xz} & F_{yz} & F_{zz} & F_z \\ F_x & F_y & F_z & 0 \end{bmatrix}$. It is known that the curvature k of the implicit surface F(x, y, z) = 0 is k = |K| at every regular point in which the second

partial derivatives of F exist. We first calculate the partial derivatives of G and in continued we obtain determinant of HG.

$$G_x = 2FF_x, \qquad G_{xx} = 2(F_x^2 + FF_{xx}), \qquad G_{xy}^2 = 4(F_xF_y + FF_{xy})^2$$

$$G_y = 2FF_y, \qquad G_{yy} = 2(F_y^2 + FF_{yy}), \qquad G_{xz}^2 = 4(F_xF_z + FF_{xz})^2$$

$$G_z = 2FF_z, \qquad G_{zz} = 2(F_z^2 + FF_{zz}), \qquad G_{yz}^2 = 4(F_yF_z + FF_{yz})^2.$$

Recall that the Hessian matrices of F and G are

$$\mathbf{H}F = \begin{bmatrix} F_{xx} & F_{xy} & F_{xz} \\ F_{xy} & F_{yy} & F_{yz} \\ F_{xz} & F_{yz} & F_{zz} \end{bmatrix}, \text{ and } \mathbf{H}G = \begin{bmatrix} G_{xx} & G_{xy} & G_{xz} \\ G_{xy} & G_{yy} & G_{yz} \\ G_{xz} & G_{yz} & G_{zz} \end{bmatrix}.$$

Here, we compute the determinant of HG.

$$\begin{aligned} 1/8|\mathbf{H}G| &= F_{xx} \left(F_{yy}F_{zz} - F_{yz}^{2} \right) - F_{xy} \left(F_{xy}F_{zz} - F_{xz}F_{yz} \right) \\ &+ F_{xz} \left(F_{xy}F_{yz} - F_{xz}F_{yy} \right) \\ &= F_{xx}F_{yy}F_{zz} - F_{xx}F_{yz}^{2} - F_{yy}F_{xz}^{2} - F_{zz}F_{xy}^{2} + 2F_{xy}F_{yz}F_{xz} \\ &= \left(F_{x}^{2} + FF_{xx} \right) \left(F_{y}^{2} + FF_{yy} \right) \left(F_{z}^{2} + FF_{zz} \right) \\ &- \left(F_{x}^{2} + FF_{xx} \right) \left(F_{y}F_{z} + FF_{yz} \right)^{2} \\ &- \left(F_{y}^{2} + FF_{yy} \right) \left(F_{x}F_{z} + FF_{xz} \right)^{2} - \left(F_{z}^{2} + FF_{zz} \right) \left(F_{x}F_{y} + FF_{xy} \right)^{2} \\ &+ \left(F_{x}F_{z} + FF_{xz} \right) \left(F_{y}F_{z} + FF_{yz} \right)^{2} - \left(F_{x}^{2} + FF_{xy} \right) \\ &= F^{3} \Big[F_{xx}F_{yy}F_{zz} - F_{xx}F_{yz}^{2} - F_{yy}F_{xz}^{2} - F_{xx}F_{xy}^{2} + 2F_{xy}F_{yz}F_{xz} \Big] \\ &+ F^{2} \Big[F_{xx}F_{yy}F_{z}^{2} + F_{xx}F_{zz}F_{y}^{2} + F_{yy}F_{zz}F_{x}^{2} - 2F_{xy}F_{xz}F_{y}^{2} + F_{yz}^{2}F_{x}^{2} \Big] + F \Big[0 \Big] \end{aligned}$$

Therefore, we have $1/8|\mathbf{H}G| = F^3|\mathbf{H}F| + F^2k(F_x^2 + F_y^2 + F_z^2)^{\frac{3}{2}}$. So the result is obtained, i.e.,

$$k = \frac{|\mathbf{H}G| - 8F^3 |\mathbf{H}F|}{8F^2 (F_x^2 + F_y^2 + F_z^2)^{\frac{3}{2}}}.$$

Theorem 3.3. Let f, g be nonzero real-valued functions on \mathbb{R} , $a, b \in \mathbb{R}$ and $F : \mathbb{R}^2 \to \mathbb{R}$ defined by $F(x, y) = \int_a^b \sqrt{x^2 f^2(t) + y^2 g^2(t)} d(t)$. Then

- (i) The curvature of F(x, y) = c, where c > 0 at any point of the curve is positive multiple of c^2 .
- (ii) $tr(\mathbf{H}F) = F_{xx} + F_{yy} \ge 0.$

Proof. (i). First, we note that $F \ge 0$. The surface F meets the plane z = 0 at the origin only. But the intersection of F with the plane z = c (where c > 0) is the curve F(x, y) = c. Here the partial derivatives of F are calculated (see [Rudin, 1976, Theorem 9.42]).

$$F_x = \int_a^b \frac{xf^2(t)}{\sqrt{x^2f^2(t) + y^2g^2(t)}} d(t), \qquad F_y = \int_a^b \frac{yg^2(t)}{\sqrt{x^2f^2(t) + y^2g^2(t)}} d(t),$$

$$F_{xx} = \int_{a}^{b} \frac{y^{2} f^{2}(t) g^{2}(t)}{\left(x^{2} f^{2}(t) + y^{2} g^{2}(t)\right)^{\frac{3}{2}}} d(t), \qquad F_{yy} = \int_{a}^{b} \frac{x^{2} f^{2}(t) g^{2}(t)}{\left(x^{2} f^{2}(t) + y^{2} g^{2}(t)\right)^{\frac{3}{2}}} d(t),$$

and

$$F_{xy} = -\int_{a}^{b} \frac{xyf^{2}(t)g^{2}(t)}{\left(x^{2}f^{2}(t) + y^{2}g^{2}(t)\right)^{\frac{3}{2}}} d(t) = F_{yx}.$$

Let us put $\varphi := \sqrt{x^2 f^2(t) + y^2 g^2(t)}$. For the simplicity, we set

$$F_x = \int \frac{xf^2}{\varphi}, \quad F_y = \int \frac{yg^2}{\varphi}, \text{ and so on } \dots$$

By formula of the curvature k in Proposition 3.1, we obtain

$$\begin{split} k &= \frac{1}{\left(F_x^2 + F_y^2\right)^{\frac{3}{2}}} \Big[\Big(y^2 \int \frac{f^2 g^2}{\varphi^3} \Big) \Big(y \int \frac{g^2}{\varphi} \Big)^2 + 2 \int \frac{xy f^2 g^2}{\varphi^3} \int \frac{x f^2}{\varphi} \int \frac{y g^2}{\varphi} \\ &+ \Big(x^2 \int \frac{f^2 g^2}{\varphi^3} \Big) \Big(x \int \frac{f^2}{\varphi} \Big)^2 \Big] \\ &= \frac{\int \frac{f^2 g^2}{\varphi^3}}{\left(F_x^2 + F_y^2\right)^{\frac{3}{2}}} \Big[y^4 \Big(\int \frac{g^2}{\varphi} \Big)^2 + 2x^2 y^2 \int \frac{f^2}{\varphi} \int \frac{g^2}{\varphi} + x^4 \Big(\int \frac{f^2}{\varphi} \Big)^2 \Big] \\ &= \frac{\int \frac{f^2 g^2}{\varphi^3}}{\left(F_x^2 + F_y^2\right)^{\frac{3}{2}}} \Big[\int \frac{x^2 f^2}{\varphi} + \int \frac{y^2 g^2}{\varphi} \Big]^2 \\ &= \frac{\int \frac{f^2 g^2}{\varphi^3}}{\left(F_x^2 + F_y^2\right)^{\frac{3}{2}}} \Big[\int \frac{x^2 f^2 + y^2 g^2}{\varphi} \Big]^2 \\ &= \frac{\int \frac{f^2 g^2}{\varphi^3}}{\left(F_x^2 + F_y^2\right)^{\frac{3}{2}}} \Big[\int \varphi \Big]^2 \\ &= \frac{\int \frac{f^2 g^2}{\varphi^3}}{\left(F_x^2 + F_y^2\right)^{\frac{3}{2}}} F^2(x, y). \end{split}$$

Hence, we observe that the curvature of F(x, y) = c at (x_0, y_0) is a positive multiple of $F^2(x_0, y_0) = c^2$, and we are done. (ii). Since

$$\frac{f^2g^2(x^2+y^2)}{\varphi^3} \ge 0,$$

it is clear that $F_{xx} + F_{yy} \ge 0$. So the result holds.

Lemma 3.1. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a homogeneous function of degree one. Suppose that the second derivatives of F at $(a, b) \in \mathbb{R}^2$ exist. Moreover, $F_{xy} = F_{yx}$ at this point. Then

- (*i*) $|\mathbf{H}F|_{(a,b)} = 0.$
- (ii) The eigenvalues of $\mathbf{H}F$ are 0 and $tr(\mathbf{H}F)$ at (a, b).

Proof. (i). First, we note that $F(\lambda x, \lambda y) = \lambda F(x, y)$, for all $(x, y) \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$. Also, we remind the reader of the following fact, which is known as *Euler's property*,

$$xF_x + yF_y = F(x,y).$$

Therefore,

$$xF_{xx} + F_x + yF_{xy} = F_x$$
, and $xF_{xy} + F_y + yF_{yy} = F_y$.

Consequently, $xF_{xx} = -yF_{xy}$ and $xF_{xy} = -yF_{yy}$. Now, consider the Hessian matrix $\mathbf{H}F = \begin{bmatrix} Fxx & F_{xy} \\ F_{xy} & F_{yy} \end{bmatrix}$ of F. For the point (0,b), where $b \neq 0$, we have $F_{yy}(0,b) = 0 = F_{xy}(0,b)$. This implies that $|\mathbf{H}F| = 0$. Also, considering the point (a,0), where $a \neq 0$ gives $F_{xy}(a,0) = 0 = F_{xx}(a,0)$, this again yields $|\mathbf{H}F| = 0$. Now, let (a,b) such that $a \neq 0$ and $b \neq 0$. Then $F_{xx}(a,b) = \frac{-b}{a}F_{xy}(a,b)$ and $F_{yy}(a,b) = \frac{-a}{b}F_{xy}(a,b)$. Hence, $|\mathbf{H}F| = 0$. So we always have $|\mathbf{H}F| = 0$. The proof of (i) is now complete. (ii). Recall that the characteristic equation of $\mathbf{H}F$ is

$$\lambda^2 - (tr(\mathbf{H}F) = F_{xx} + F_{yy})\lambda + (|\mathbf{H}F| = F_{xx}F_{yy} - F_{xy}^2) = 0.$$

So $\lambda^2 - (F_{xx} + F_{yy})\lambda = 0$. Therefore, $\lambda = 0$ or $\lambda = tr(HF)$, and we are done. \Box

Proposition 3.2. Let f, g be nonzero real-valued functions on \mathbb{R} and $F : \mathbb{R}^2 \to \mathbb{R}$ defined by $F(x, y) = \int_a^b \sqrt{x^2 f^2(t) + y^2 g^2(t)} dt$ and let $G(x, y) = F^2(x, y)$. Then the eigenvalues of **H**F and **H**G at any point except the origin are nonnegative. (In fact, the eigenvalues of **H**F are zero and tr(**H**F) at that point).

Proof. We observe that F is a homogeneous function of degree one. So Lemma 3.1 and Theorem 3.3 (ii) yield the result. For the matrix $\mathbf{H}G$, we look to the Theorem 3.1. Since, $F^2|\mathbf{H}F| = 0$, we have

$$|\mathbf{H}G| = 4Fk \left(F_x^2 + F_y^2\right)^{\frac{3}{2}}.$$

We notice that $F, k \ge 0$ gives $|\mathbf{H}G| \ge 0$. On the other hand, $\operatorname{tr}(\mathbf{H}G) = G_{xx} + G_{yy} \ge 0$. Therefore, the roots of $\lambda^2 - \operatorname{tr}(\mathbf{H}G)\lambda + |\mathbf{H}G| = 0$, which are the eigenvalues of $\mathbf{H}G$, are nonnegative. The proof is finished.

In the following result, we present a norm on \mathbb{R}^2 which is an elliptic integral of the second kind.

Corollary 3.1. Let $f(t) = \cos t$, $g(t) = \sin t$ and let $F : \mathbb{R}^2 \to \mathbb{R}$ is given by

$$F(x,y) = \int_0^{\frac{\pi}{2}} \sqrt{x^2 \cos^2 t + y^2 \sin^2 t} dt.$$

Then the following statements hold.

(i) The eigenvalues of $\mathbf{H}F$ and $\mathbf{H}G$, where $G = F^2$ at every point except the origin are nonnegative.

(ii) F(x, y) is an elliptic integral of the second kind.

Proof. (i). It follows from Proposition 3.2. (ii). Notice that

$$F(x,y) = \int_0^{\frac{\pi}{2}} \sqrt{x^2(1-\sin^2\theta) + y^2\sin^2\theta} d\theta = |x| \int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2\theta} d\theta,$$

where $k = \frac{\sqrt{x^2 - y^2}}{|x|}$ and $|x| \ge |y|$. So this gives F(x, y) is an elliptic integral of the second kind and we are done.

Corollary 3.2. There are ordered pairs (x, y) with rational coordinates (other than the origin) which satisfy the inequality $\int_0^{\frac{\pi}{2}} \sqrt{x^2 \cos^2 \theta + y^2 \sin^2 \theta} d\theta \leq r$, when $0 < r \in \mathbb{Q}$. Also, if $r \notin \mathbb{Q}$ then (x, y) has irrational coordinates.

Proof. It is sufficient to take the pairs (r, 0), (0, r), (-r, 0) and (0, -r).

We end this article with the next results.

Proposition 3.3. Let $0 \le x, y \in \mathbb{R}$. Then

$$\int_{0}^{\frac{\pi}{2}} \sqrt{x^2 \cos^2 t + y^2 \sin^2 t} dt \le x + y.$$

Proof. First, note that

$$x^{2}\cos^{2} t + y^{2}\sin^{2} t = (x\cos t + y\sin t)^{2} - 2xy\sin t\cos t,$$

and take $0 \le \phi \le \frac{\pi}{2}$ such that $\tan \phi = \frac{y}{x}$ (if x > 0). Now,

$$(x\cos t + y\sin t)^{2} = x^{2}(\cos t + \frac{y}{x}\sin t)^{2} = x^{2}(\cos t + \frac{\sin\phi}{\cos\phi}\sin t)^{2}$$
$$= \frac{x^{2}(\cos t\cos\phi + \sin t\sin\phi)^{2}}{\cos^{2}\phi} = \frac{x^{2}\cos^{2}(t-\phi)}{\cos^{2}\phi}$$
$$= (x^{2} + y^{2})\cos^{2}(t-\phi) \text{ (note, } \cos^{2}\phi = \frac{x^{2}}{x^{2} + y^{2}}).$$

Hence, $x^{2} \cos^{2} t + y^{2} \sin^{2} t \le (x^{2} + y^{2}) \cos^{2}(t - \phi)$. Therefore,

$$\int_{0}^{\frac{\pi}{2}} \sqrt{x^{2} \cos^{2} t + y^{2} \sin^{2} t} dt \leq \int_{0}^{\frac{\pi}{2}} \sqrt{(x^{2} + y^{2}) \cos^{2}(t - \phi)} dt$$
$$= \sqrt{x^{2} + y^{2}} \int_{0}^{\frac{\pi}{2}} |\cos(t - \phi)| dt$$
$$= \sqrt{x^{2} + y^{2}} \int_{-\phi}^{\frac{\pi}{2} - \phi} \cos T dt \quad (T = t - \phi)$$
$$= x + y.$$

Remark 3.1. We find $4 \int_0^{\frac{\pi}{2}} \sqrt{x^2 \cos^2 t + y^2 \sin^2 t} dt \le 2(2x+2y)$. The left phrase is the length of the ellipse $x' = x \cos t$ and $y' = y \sin t$, while 2x and 2y are the major axis and minor axis of this ellipse.

References

- R. Goldman. Curvature formulas for implicit curves and surfaces. *Computer Aided Geometric Design*, 22(7):632–658, 2005.
- C. G. Lekkerkerker. *Geometry of numbers* North-Holland Publishing Company, Amsterdam, 1969.
- W. Rudin. *Principles of Mathematical Analysis*, McGraw-Hill, International Book Company, Ltd, 1976.
- C. L. Siegel. *Lecturcs on the geometry of numbers* Springer-Verlag Berlin Heidelberg, 1989.
- S. Willard. General Topology, Addison-Wesley, 1970.