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Abstract

In this paper, a new class of sets called Da-open sets are introduced
and investigated with the help of gδ-open and δ-closed sets. Re-
lationships between this new class and other related classes of sets
are established and as an application Da-continuous and almost Da-
continuous functions have been defined to study its properties in terms
of Da-open sets. Finally, some properties of Da-closed graph and
(D,a)-closed graph are investigated.
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1 Introduction

The concept of generalized open sets introduced by Levine[Levine, 1970]
plays a significant role in General Topology. The study of generalized open
sets and its properties found to be useful in computer science and digital topol-
ogy[Khalimsky et al., 1990, Kovalevsky, 1994, Smyth, 1995]. Since Professor
El- Naschie has recently shown in [El Naschie, 1998, 2000, 2005] that the no-
tion of fuzzy topology may be relevant to quantum particle physics in connection
with string theory and ε∞ theory.So,the fuzzy topological version of the notions
and results introduced in this paper are very important. Recently, Ekici [Ekici,
2008] introduced the notion of a-open sets as a continuation of research done
by Velicko [Velicko, 1968] on the notion of δ-open sets.Dontchev et al., intro-
duced gδ-closed sets and gδ-continuity.In this paper,new generalizations of a-open
sets by using gδ-open and δ-closed sets called Da-open sets are presented. Also
Da-continuous functions,almost Da-continuous functions,Da-closed graphs and
(D,a)-closed graphs have been defined to study its properties in terms of Da-open
sets.

2 Prerequisites, Definitions and Theorems

In what follows,spaces always mean topological spaces on which no sepa-
ration axioms are assumed unless explicitly stated and f:(X,τ )→ (Y,η) or simply
f:X→Y denotes a function f of a space (X,τ ) into a space (Y,η). The δ-closure of
a subset A of X is the intersection of all δ-closed sets containing A and is denoted
by Clδ(A).

Definition 2.1. In (X,τ ),let N ⊂ X.Then N is called:
(i)regular closed[Stone, 1937] (resp.,a-closed[Ekici, 2008], δ-preclosed[Raychaudhuri
and Mukherjee, 1993], e∗-closed[Ekici, 2009], δ-semiclosed[Park et al., 1997],
β-closed[Abd El-Monsef, 1983], semiclosed[Levine, 1963], preclosed[Mashhour,
1982]) if N = Cl(Int(N)) (resp., Cl(Int(Clδ(N)))⊂N, Cl(Intδ(N))⊂N, Int(Cl(Intδ(N))
⊂ N, Int(Clδ(N)) ⊂ N, Int(Cl(Int(N)) ⊂ N, Int(Cl(N)) ⊂ N, Cl(Int(N)) ⊂ N).
(ii) δ-closed [Velicko, 1968] if N = Clδ(N)
where Clδ(N) = {p∈X:Int(Cl(O))∩N6=φ,O∈τ and p∈O}.
(iii)generalized δ-closed (briefly,gδ-closed)[Dontchev et al., 2000] if Cl(N)) ⊂ G
whenever N ⊂ G and G is δ-open in X.
(iv)generalized closed (briefly,g-closed)[Levine, 1970] if Cl(N)) ⊂ G whenever N
⊂ G and G is open in X.
The complements of the above mentioned closed sets are their respective open
sets.
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The set of all regular open (resp.,δ-open, β-open, δ-preopen, preopen, semiopen,
δ-semiopen,e∗-open,gδ-open and a-open) sets of (X,τ ) is denoted by RO(X) (resp.δO(X),
βO(X), δPO(X), PO(X), SO(X), δSO(X), e∗O(X), GδO(X) and aO(X)).

The a-closure[Ekici, 2008](resp, gδ-closure,δ-closure) of a set N is the inter-
section of all a-closed(resp, gδ-closed,δ-closed) sets containing N and is denoted
by a-Cl(N) (resp., Clgδ(N),Clδ(N)). The a-interior[Ekici, 2008](resp,gδ-interior,δ-
interior) of a set N is the union of all a-open(resp, gδ-open,δ-open) sets contained
in M and is denoted by a-Int(M)(resp, Intgδ(M),Intδ(M))

Definition 2.2. [Ekici, 2005] A topological space (X,τ ) is said to be:
(1) r-T1 if for each pair of distinct points x and y of X, there exist regular open sets
U and V such that x ∈ U, y /∈U and x /∈ V, y ∈ V.
(2) r-T2 if for each pair of distinct points x and y of X, there exist regular open sets
U and V such that x ∈ U, y ∈ V and U∩V =φ .

Theorem 2.1. Let C and D be subsets of a topological space (X,τ ).Then
(i)If C is gδ-closed,then Clgδ(C) = C.
(ii) If C⊂D,then Clgδ(C)⊂ Clgδ(D).
(iv) x ∈Clgδ(C) if and only if for each gδ-open set O containing x,O ∩ C6=φ,
(v)Clgδ(C)∪Clgδ(D)⊂ Clgδ(A∪D).
(vi)Clgδ(C∩D)⊆Clgδ(C)∩Clgδ(D).

3 Da-Open Sets.
Definition 3.1. A subset M of a topological space (X,τ ) is said to be:
(1) Da-open if M ⊂ Intgδ(Clδ(Intgδ(M)),
(2) Da-closed if Clgδ(Intδ(Clgδ(M))⊂M.
The collection of all Da-open(resp,Da-closed) sets in (X,τ ) is denoted by DaO(X)
(resp,DaC(X)).

Theorem 3.1. Let (X,τ ) be a space.Then for any N⊂X,
(i) N∈δO(X) implies N∈aO(X)[Ekici, 2008].
(ii) N∈δO(X) implies N ∈GδO(X)[Dontchev et al., 2000].
(iii)N∈GO(X) implies N ∈GδO(X)[Dontchev et al., 2000].
(iv) N ∈aO(X) implies N∈DaO(X).
(v) N∈GδO(X) implies N∈DaO(X).
Proof: (iv) Since δO(X)⊂GδO(X), Intδ(N) ⊂ Intgδ(N).
Now,let N∈aO(X), then N ⊂ Int(Cl(Intδ(N)). Therefore,
N ⊂ Int(Cl(Intδ(N))=Intδ(Cl(Intδ(N))⊂Intgδ(Clδ(Intgδ(N)). Hence N ∈DaO(X).
(v) Suppose N is gδ-open. Then Intgδ(N)=N.
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Therefore, Intgδ(N)⊂ Clδ(Intgδ(N).Then
N=Intgδ(N)=Intgδ(Intgδ(N)) ⊂ Intgδ(Clδ(Intgδ(N)). Hence N ∈DaO(X).

Remark 3.1. The following diagram holds for any subset of a space (X,τ ).

open set ←− δ-open set −→ a-open set
↙

↓ ↓ Da-open set
↗

g-open set −→ gδ-open set

None of these implications is reversible

Example 3.1. Let X={p,q,r,s} and τ={X,φ,{p},{q},{p,q},{p,r}.{p,q,r}},then
aO(X)={X,φ,{q},{p,r},{p,q,r}}
GδO(X)={X, φ,{p},{q},{r},{p,q},{p,r}{q,r},{p,q,r}}.
DaO(X)={X, φ,{p},{q},{r},{p,q},{p,r},{q,r}{p,q,r}{p,q,s},{q,r,s}}.
Therefore, {q,r,s}∈DaO(X) but {q,r,s}/∈aO(X) and {q,r,s}/∈ gδO(X).

Lemma 3.1. If there exists a M ∈ GδO(X) such that M ⊂ N ⊂Intgδ(Clδ(M)),then
N is Da-open.
Proof: Since M is gδ-open, Intδg(M)=M. Therefore,
Intgδ(Clδ(Intgδ(N)) ⊃Intgδ(Clδ(Intgδ(M)) = Intgδ(Clδ(M)) ⊃ N.
Hence N is Da-open.

Converse of the Lemma 3.1 is not true as shown in Example 3.1.

Example 3.2. In Example 3.1, {p,q,r}∈DaO(X) and {p,r}∈GδO(X) but {p,r} ⊆
{p,q,r} 6⊆ Intgδ(Clδ({p,r}))={p,r} .

Lemma 3.2. For a family { Bλ:λ∈∧} of subsets of a space (X,τ ),the following
hold:
(1) Clgδ(

⋂
{Bλ:λ∈∧}) ⊂

⋂
{Clgδ(Bλ):λ∈∧}.

(2) Clgδ(
⋃
{Vλ:λ∈∧}) ⊃

⋃
{Clgδ(Bλ):λ∈∧}.

(3) Clδ(
⋂
{Bλ:λ∈∧}) ⊂

⋂
{Clδ(Bλ):λ∈∧}.

(4) Clδ(
⋃
{Bλ:λ∈∧}) ⊃

⋃
{Clδ(Bλ):λ∈∧}

Theorem 3.2. If {Gα:λ∈∧} is a collection of Da-open sets in a space (X,τ ),then⋃
α∈∧

Gα is a Da-open set in (X,τ ) :

Proof: Since each Gαis Da-open, Gα ⊂ Intgδ(Clδ(Intgδ(Gα)) for each α∈∧ and
hence

⋃
α∈∧

Gα ⊂
⋃
α∈∧

Intgδ(Clδ(Intgδ(Gα))⊂Intgδ(Clδ(Intgδ(
⋃
α∈∧

Gα)). Thus
⋃
α∈∧

Gα is

Da-open.
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Corolary 3.1. If {Fα:α∈∧} is a collection of Da-closed sets in a space (X,τ ),then⋂
α∈∧

Fα is a Da-closed set in (X,τ )

Remark 3.2. M and N ∈ DaO(X) 6⇒M ∩ N ∈ DaO(X) as seen from Example 3.1,
where both M = {q,r,s} and N = {p,q,s} ∈ DaO(X) but
M ∩ N = {q,s} /∈ DaO(X).

Corolary 3.2. If M∈ DaO(X) and B∈aO(X),then M∪B∈ DaO(X).
Proof:Follows from Theorem 3.1(iv) and Theorem 3.2

Corolary 3.3. If M∈ DaO(X) and B∈GδO(X),then M∪B∈ DaO(X).
Proof:Follows from Theorem 3.1(v) and Theorem 3.2

Definition 3.2. In (X,τ ),let M ⊂ X.
(1)The Da-interior of M, denoted by IntDa (M) is defined as
IntDa (M)=

⋃
{G:G⊆M and M∈DaO(X)};

(2)The Da-closure of M, denoted by ClDa (M) is defined as
ClDa (A)=

⋂
{F:M⊆F and F∈DaC(X)}.

Theorem 3.3. In (X,τ ),let M, N,F ⊂ X.Then:
(1)M ⊂ ClDa (M)⊂aCl(M), ClDa (M)⊂Clgδ(M).
(2) ClDa (M) is a Da-closed set.
(3) If F is a Da-closed set, and F ⊃ M,then F ⊃ ClDa (M).
i.e.,ClDa (M) is the smallest Da-closed set containing M.
(4)M is Da-closed set if and only if ClDa (M)=M.
(5) ClDa (ClDa (M)) = ClDa (M).
(6)M ⊆ N implies ClDa (M) ⊆ ClDa (N).
(7)p ∈ClDa (M) if and only if for each Da-open set V containing p,V ∩ M 6=φ.
(8) ClDa (M) ∪ ClDa (N) ⊂ ClDa (M ∪ N).
(9) ClDa (M ∩ N) ⊂ ClDa (M) ∩ ClDa (N).
Proof: (1)It follows from Theorem 3.1(iv) and (v)
(2)It follows from Definition 3.2 and Corollary 3.1
(3)Let F be a Da-closed set,containing M.ClDa (M) is the intersection of Da-closed
sets containing M, and F is one among these;hence F ⊃ ClDa (M).
(4) Let M be Da-closed,then by Definition 3.2(2),ClDa (M)=M.
Conversely,let ClDa (M)=M. Then by (2) above,M is Da-closed.
(5)It follows from (2) and (4).
(6) Obvious.
(7) p /∈ClDa (M)⇔ (∃ G∈DaC(X))(M⊂G)(p /∈G)

⇔ (∃ G∈DaC(X))(M⊂G)(p ∈Gc)
⇔ (∃ Gc∈DaO(X))(M∩Gc=φ)(p ∈Gc)
⇔ (∃ Gc∈DaO(X,p))(M∩Gc=φ)
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i.e.,(∃ U(=Gc)∈ DaO(X,p))(M∩U=φ)
(8) and (9) follows from (6).

Remark 3.3. (1) ClDa (M) ∪ ClDa (N) 6= ClDa (M ∪ N), in general, as seen from Ex-
ample 3.1 where M = {p}, N = {r} and M ∪ N = {p,r}.Then ClDa (M)={p},
ClDa (N)={r},ClDa (M)∪ClDa (N)={p,r} and ClDa (M∪N)={p,r,s};
(2) ClDa (M∩N)6= ClDa (M)∩ClDa (N), in general,as seen from Example 3.1 where,M
= {p,q,r}, N = {s} and M∩N = φ.Then ClDa (M) = X, ClDa (N) = {s}, ClDa (M)∩ClDa (N)
= {s} and ClDa (M∩N)=φ

Lemma 3.3. In (X,τ ),let M ⊂ X.Then
(1) ClDa (X\M) = X\IntDa (M),
(2) IntDa (X\M) = X\ClDa (M).

Theorem 3.4. In (X,τ ),let M,N,G ⊂ X,
(1)aInt(M) ⊆ IntDa (M)⊆M, Intgδ(M)⊆IntDa (M).
(2) IntDa (M) is a Da-open set.
(3) If G is a Da-open set, and G ⊂ M,then G ⊂ IntDa (M).
i.e.,IntDa (M) is the largest Da-open set contained in M.
(4)M is Da-open set if and only if IntDa (M)=M.
(5) IntDa (IntDa (M)) = IntDa (M).
(6)M ⊆ N implies IntDa (M) ⊆ IntDa (N).
(7) p ∈ IntDa (M) if and only if there exists Da-open set N containing p such that N
⊆ M.
(8) IntDa (M ∩ N)⊆ IntDa (M) ∩ IntDa (N).
(9) IntDa (M) ∪ IntDa (N) ⊆IntDa (M ∪ N).
Proof:Similar to the proof of Theorem 3.3

Remark 3.4. (8)IntDa (M ∩ N)6= IntDa (M) ∩ IntDa (N), in general, as seen from Ex-
ample 3.1,where M = {p,q,s}, N = {q,r,s} and M ∩ N = {q,s}.Then IntDa (M) =
{p,q,s}, IntDa (N) = {q,r,s}, IntDa (M) ∩ IntDa (N) = {q,s} and IntDa (M∩N) = {q}.
(9) IntDa (M) ∪ IntDa (N) 6= IntDa (M ∪ N),in general, as seen from Example 3.1,
where M = {p,q,r}, N = {s} and M ∪ N = X.Then IntDa (M) = {p,q,r}, IntDa (N) =
φ, IntDa (M) ∪ IntDa (N) = {p,q,r} and IntDa (M ∪ N) = X.

Lemma 3.4. In (X,τ ),let M ⊂ X. Then
(1)M is Da-open if and only if M = M ∩ Intgδ(Clδ(Intgδ(M)).
(2)M is Da-closed if and only if M = M∪ Clgδ(Intδ(Clgδ(M)).

Proof:(1) Let M be an Da-open. Then,
M⊆Intgδ(Clδ(Intgδ(M)) implies M∩ Intgδ(Clδ(Intgδ(M))=M.
Conversely,let M = M∩ Intgδ(Clδ(Intgδ(M)) implies M ⊂ Intgδ(Clδ(Intgδ(M)).
(2)It follows from (1)
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Lemma 3.5. In (X,τ ),let M ⊂ X. Then
(i)M ∩ Intgδ(Clδ(Intgδ(M)) is Da-open
(ii)M∪ Clgδ(Intδ(Clgδ(M)) is Da-closed.
Proof: (i) Intgδ(Clδ(Intgδ(M∩ Intgδ(Clδ(Intgδ(M)))))) = Intgδ(Clδ(Intgδ(A)∩ Intgδ(Clδ(Intgδ(M)))))
= Intgδ(Clδ(Intgδ(M))). This implies that
M ∩ Intgδ(Clδ(Intgδ(M))) = M ∩ Intgδ(Clδ(Intgδ(M ∩ Intgδ(Clδ(Intgδ(M)))))) ⊆
Intgδ(Clδ(Intgδ(M ∩ Intgδ(Clδ(Intgδ(M)))))) . Therefore M ∩ Intgδ(Clδ(Intgδ(M)))
is Da-open.
(ii) From (i) we have X\(M∪Clgδ(Intδ(Clgδ(M))) = (X\M) ∩ Clgδ(Intδ(Clgδ(X\M)))
is Da-open so that M ∪Clgδ(Intδ(Clgδ(M))) is Da-closed.

Lemma 3.6. In (X,τ ),let M ⊂ X. Then
(i)IntDa (M)=M ∩ Intgδ(Clδ(Intgδ(M)).
(ii)ClDa (M)=M∪ Clgδ(Intδ(Clgδ(M)).
Proof:(i)Let N=IntDa (M),then N⊂M.Since N is Da-open,N⊂Intgδ(Clδ(Intgδ(N))
⊂Intgδ(Clδ(Intgδ(M)).Then N⊂M∩Intgδ(Clδ(Intgδ(M))⊂M.Therefore,by Lemma 3.5,
it follows that M∩Intgδ(Clδ(Intgδ(M)) is a Da-open set contained in M. But IntDa (M)
is the largest Da-open set contained in M it follows that
M∩Intgδ(Clδ(Intgδ(M))⊂ IntDa (M)=N.Then N=M∩Intgδ(Clδ(Intgδ(M)).
Therefore,IntDa (M)=M ∩ Intgδ(Clδ(Intgδ(M)).
(ii)It follows from (i)

4 Da-Continuous functions.
Definition 4.1. A function f:(X,τ )→ (Y,η) is said be a Da-continuous if for each
p∈X and each N∈O(Y,f(p)), there exists M ∈ DaO(X,p) such that f(M)⊂ N.

Theorem 4.1. For a function f:(X,τ )→ (Y,η),the following are equivalent
(1)f is Da-continuous;
(2)For each N∈O(Y),f−1(V)∈DaO(X).
Proof:(1)−→(2)Let N∈O(Y) and p∈ f−1(N). Since f(p) ∈ N,then by(1),there exists
Mp ∈ DaO(X,p) such that f(Mp) ⊂ N.It follows that
f−1(N)=∪{Mp: p∈f−1(N)}∈DaO(X), by Theorem 3.2 .
(2)−→(1) Let p ∈ X and N ∈O(Y,f(p)).Then,by (2),f−1(N)∈DaO(X,p).
Take M = f−1(N), then f(M) ⊂ N.

Corolary 4.1. A function f:(X,τ )→ (Y,η) is Da-continuous if and only if f−1(F)∈DaC(X)
for each F∈C(Y).
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Remark 4.1. The following implications hold for a function f:(X,τ )→ (Y,η):

continuity ←− δ-continuity −→ a-continuity
↙

↓ ↓ Da-continuity
↗

g-continuity −→ gδ-continuity

Example 4.1. Consider (X,τ ) as in Example 3.1 and η={X,φ,{p},{q},{p,q},{p,q,r}}.
Define f:(X,σ)→(X,η) by f(p)=s,f(q)=p,f(r)=q and f(s)=r.Then f is Da-continuous
but neither a-continuous nor gδ-continuous since {p,q,r} is open in (X,η),
f−1({p,q,r}) = {q,r,s}∈DaO(X) but {q,r,s}/∈aO(X) and {q,r,s}/∈ gδO(X).
The other Examples are shown in[3,5,21]

Theorem 4.2. The following conditions are equivalent for a function
f:(X,τ )→ (Y,η):
(1) f is Da-continuous;
(2) For each subset N of Y, Clgδ(Intδ(Clgδ(f−1(N))) ⊂ f−1(Cl(N);
(3)For each subset N of Y, f−1(Int(N)) ⊂ Intgδ(Clδ(Intgδ(f−1(N));
(4)For each subset N of Y,ClDa (f−1(N)) ⊂ f−1(Cl(N));
(5)For each subset M of X,f(ClDa (M)) ⊂ Cl(f(M));
(6)For each subset N of Y, f−1(Int(N)) ⊂ IntDa (f−1(N)).
Proof: (1)→(2) Let N ⊂ Y.Then by (1),f−1(Cl(N)) ∈ DaC(X) implies
f−1(Cl(N)⊃Clgδ(Intδ(Clgδ(f−1(Cl(N)))⊃ Clgδ(Intδ(Clgδ(f−1(N))).
(2)→(3).Replace N by Y\N in (2), we have
Clgδ(Intδ(Clgδ(f−1(Y\N)))⊂f−1(Cl(Y\N), and therefore
f−1(Int(N)) ⊂ Intgδ(Clδ(Intgδ(f−1(N)) for each subset N of Y.
(3)→(1). Clear
(1)→(4). Let N ⊂ Y .Then by (1), f−1(Cl(N))∈DaC(X). Thus
ClDa (f−1(N)) ⊂ ClDa (f−1(Cl(N))=f−1(Cl(N) by Theorem 3.3(4).
(4)→(1). Let N ∈C(Y).Then by (4),
ClDa (f−1(N)) ⊂ f−1(Cl(N)=f−1(N) implies ClDa (f−1(N))=f−1(N).
Then by Theorem 3.3(4), f−1(N) ∈ DaC(X).
(4)→(5).Let M ⊂ X.Then f(M) ⊂ Y.By (4), we have
f−1(Cl(f(M))) ⊃ ClDa (f−1(f(M))) ⊃ ClDa (M).
Therefore, f(ClDa (M)) ⊂ f(f−1(Cl(f(M))) ⊂ Cl(f(M).
(5)→(4).Let N ⊂ Y and M=f−1(N) ⊂ X.Then by (5),
f(ClDa (f−1(N))) ⊂ Cl(f(f−1(N)) ⊂ Cl(N) implies ClDa (f−1(N)) ⊂ f−1(Cl(N)).
(4)→(6).Replace N by Y \N in (4), we get
ClDa (f−1(Y\N)) ⊂ f−1(Cl(Y\N)) implies ClDa (X\f−1(N)) ⊂ f−1(Y\Int(N))
Therefore,f−1(int(N)) ⊂ IntDa (f−1(N)) for each subset N of Y.
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(6)→(1).Let G⊂Y be open.Then f−1(G)=f−1(Int(G)) ⊂ IntDa (f−1(G) implies
IntDa (f−1(G)=f−1(G).So by Theorem 3.4(4),f−1(G)∈DaO(X).

Definition 4.2. Two non-empty subsets A and B of a topological space (X,τ )
are said to be Da-separated if there exist two Da-open sets G and H,such that
A⊂G,B⊂H, A∩H=φ and B∩G=φ.

Definition 4.3. Two non-empty subsets A and B of a topological space (X,τ ) are
said to be strongly Da-separated if there exist two Da-open sets U and V,such that
A⊂U,B⊂V and U∩V=φ.

Definition 4.4. A topological space (X,τ ) is said to be
(1) Da-T2 if any two distinct points are strongly Da-separated in (X,τ )
(2) Da-T1 if every pair of distinct points is Da-separated in (X,τ ).

Remark 4.2. The following implications are hold for a topological space (X,τ )
a-T2 −→Da-T2←− T2

↓ ↓ ↓
a-T1 −→Da-T1←− T1

Theorem 4.3. If an injective function f:(X,τ )→ (Y,η) is Da-continuous and (Y,η)
is T1, then (X,τ ) is Da-T1.
Proof: Let (Y,σ) be T1 and p,q∈X with p 6=q. Then there exist open subsets G, H
in Y such that f(p) ∈ G, f(q) /∈ G, f(p) /∈ H and f(q) ∈ H. Since f is Da-continuous,
f−1(G) and f−1(H) ∈ DaO(X) such that p ∈ f−1(G), q /∈ f−1(G), p /∈ f−1(H) and
q ∈ f−1(H). Hence,(X,σ) is Da-T1 .

Theorem 4.4. If an injective function f: (X,τ )→ (Y,η) is Da-continuous and (Y,η)
is T2, then (X,τ ) is Da-T2.
Proof: Similar to the proof of Theorem 4.3

Recall that for a function f:(X,τ )→ (Y,η), the subset
Gf={(x,f(x)):x ∈X} ⊂ X×Y is said to be graph of f.

Definition 4.5. A graph Gf of a function f:(X,τ )→ (Y,η) is said to be Da-closed
if for each (p,q) /∈ Gf , there exist U∈DaO(X,p) and V∈O(Y,q) such that (U×V)∩
Gf = φ.

As a consequence of Definition 4.5 and the fact that for any subsets C⊂ X and
D ⊂ Y, (C×D)∩ Gf=φ if and only if f(C)∩D = φ,we have the following result.

Lemma 4.1. For a graph Gf of a function f:(X,τ )→ (Y,η), the following properties
are equivalent:
(1)Gf is Da-closed in X×Y;
(2)For each (p,q) /∈Gf , there exist U∈DaO(X,p) and V∈O(Y,q) such that f(U)∩V
= φ.
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Theorem 4.5. If f:(X,τ ) → (Y,η) is Da-continuous and (Y,η) is T2 , then Gf is
Da-closed in X×Y.
Proof: Let (p,q) /∈Gf , f(p) 6=q. Since Y is T2, there exist V,W ∈O(Y) such that
f(p)∈ V, q∈W and V∩W=φ. Since f is Da-continuous, f−1(V)∈DaC(X,p).Set U
=f−1(V), we have f(U)⊂ V. Therefore, f(U)∩W=φ and Gf is Da-closed in X×Y

Theorem 4.6. Let f:(X,τ ) → (Y,η) have a Da-closed graph Gf . If f is injective,
then (X,τ ) is Da-T1.
Proof:Let x1,x2∈X with x1 6=x2.Then f(x1)6=f(x2) as f is injective So that (x1,f(x2))
/∈Gf .Thus there exist U∈DaO(X,x1) and V∈O(Y,f(x2)) such that f(U)∩V = φ.Then
f(x2)/∈f(U) implies x2 /∈U and it follows that X is Da-T1.

Theorem 4.7. Let f:(X,τ )→ (Y,η) have a Da-closed graph Gf . If f is surjective,
then (Y,η) is T1.
Proof:Let y1,y2∈Y with y1 6=y2.Since f is surjective,f(x)=y2 for some x∈X and
(x,y2)/∈Gf .By Lemma 4.1,there exist U∈DaO(X,x) and V∈O(Y,y1) such that f(U)∩V
= φ.It follows that y2 /∈V.Hence Y is T1.

Theorem 4.8. Let f:(X,τ )→ (Y,η) have a Da-closed graph Gf . If f is surjective,
then (Y,η) is Da-T1.
Proof:Similar to the proof of Theorem 4.7

Corolary 4.2. Let f:(X,τ ) → (Y,η) have a Da-closed graph Gf . If f is bijective,
then both (X,τ ) and (Y,η) are Da-T1

Proof:Follows from Theorems 4.6 and 4.8

Definition 4.6. A graph Gf of a function f:(X,τ ) → (Y,η) is said to be (D,a)-
closed if for each (p,q) /∈ Gf , there exist U∈DaO(X,p) and V∈aO(Y,q) such that
(U×aCl(V))∩ Gf = φ.

Lemma 4.2. For a graph Gf of a function f:(X,τ )→ (Y,η), the following proper-
ties are equivalent:
(1)Gf is Da-closed in X×Y;
(2)For each (p,q) /∈Gf , there exist U∈DaO(X,p) and V∈aO(Y,q) such that f(U)∩aCl(V))
= φ.

Theorem 4.9. Let M ⊂ X.Then x∈ a-Cl(M) if and only if G ∩ M 6= Φ, for every
a-open set G containing x.
Proof:Similar to the proof of Theorem 3.3(7)

Theorem 4.10. Let f:(X,τ )→ (Y,η) have a (D,a)-closed graph Gf . If f is surjec-
tive, then (Y,η) is a-T2(resp,a-T1).
Proof:Let y1,y2∈Y with y1 6=y2.Since f surjective, f(x1)=y1 x1∈X and hence (x1,y2)/∈Gf .
By Lemma 4.2,there exist E∈DaO(X,x1) and F∈aO(Y,y2) such that f(E)∩ aCl(F)
= φ. Now, x1∈E implies f(x1)=y1∈f(E) so that y1 /∈aCl(F).By Theorem 4.9,there
exists D∈aO(Y,y1) such that D∩F=φ.Hence Y is a-T2.
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Theorem 4.11. Let f:(X,τ )→ (Y,η) have a (D,a)-closed graph Gf . If f is surjec-
tive, then (Y,η) is Da-T2(resp,Da-T1).
Proof:Similar to the proof of Theorem 4.10

Theorem 4.12. Let f:(X,τ )→ (Y,η) have a (D,a)-closed graph Gf . If f is injective,
then (X,τ ) is Da-T1.
Proof:Similar to the proof of Theorem 4.6

Corolary 4.3. Let f:(X,τ )→ (Y,η) have a (D,a)-closed graph Gf . If f is bijective,
then both (X,τ ) and (Y,η) are Da-T1

Proof:Follows from Theorems 4.11 and 4.12

5 Almost Da-Continuous functions.

Definition 5.1. A function f:(X,τ ) → (Y,η) is said to be almost Da-continuous if
for each point p ∈ X and each open subset V of Y containing f(p), there exists U ∈
DaO(X,p) such that f(U) ⊂ int(Cl(V)).

Theorem 5.1. If f:(X,τ ) → (Y,η) is Da-continuous function , then f is an almost
Da-continuous,but not conversely.
Proof:Obvious

Example 5.1. Consider (X,τ ) and (X,η) as in 4.1. Define f:(X,τ ) → (X,η) by
f(p)=p,f(q)=s,f(r)=q and f(s)=r Then f is almost Da-continuous but not Da-continuous
since {p,q,r} is open in (X,η), f−1({p,q,r})={p,r,s}/∈DaO(X,τ )

Definition 5.2. [Noiri and Popa, 1998] A space X is said to be semi-regular if for
any open set U of X and each point x ∈ U there exists a regular open set V of X
such that x ∈ V ⊂ U.

Theorem 5.2. If f:(X,τ ) → (Y,η) is an almost Da-continuous function and Y is
semi-regular, then f is Da-continuous.
Proof: Let p ∈ X and let V ∈ O(Y,f(p)). By the semi-regularity of Y , there exists
G∈RO(Y,f(p)) such that G ⊂ V . Since f is almost Da-continuous, there exists U ∈
DaO(X, x) such that f(U) ⊂ Int(Cl(G)) = G ⊂ V and hence f is Da-continuous.

Lemma 5.1. Let (X,τ ) be a space and let A be a subset of X. The following state-
ments are true:
(1) A ∈ PO(X) if and only if sCl(A) = Int(Cl(A)) [Janković, 1985].
(2) A ∈ βO(X) if and only if Cl(A) is regular closed [Abd El-Monsef, 1983].
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Theorem 5.3. Let f:(X,τ ) → (Y,η) be a function. Then the following conditions
are equivalent:
(1) f is almost Da-continuous;
(2) For every N∈RO(Y), f−1(N)∈DaO(X);
(3) For every M∈RC(Y), f−1(M)∈DaC(X);
(4) For each subset C of X, f(ClDa (C)) ⊂ Clδ(f(C));
(5)For each subset D of Y, ClDa (f−1(D)) ⊂ f−1(Clδ(D));
(6)For every G∈δC(Y), f−1(G)∈DaC(X);
(7)For every H∈δO(Y), f−1(H)∈DaO(X);
(8) For every N∈O(Y), f−1(Int(Cl(N)∈DaO(X);
(9) For every M∈C(Y), f−1(Cl(Int(M)∈DaC(X);
(10) For every N∈βO(Y), ClDa (f−1(N)) ⊂ f−1(Cl(N));
(11) For every M∈βC(Y), f−1(Int(M)) ⊂ IntDa (f−1(M));
(12) For every M∈SC(Y), f−1(Int(M)) ⊂ IntDa (f−1(M));
(13) For every N∈SO(Y), ClDa (f−1(N)) ⊂ f−1(Cl(N));
(14) For every M∈PO(Y), f−1(M) ⊂ IntDa (f−1(Int(Cl(M));
(15) For each p∈ X and each N∈O(Y,f(p)), there exists M ∈ DaO(X,p) such that
f(M) ⊂ sCl(N);
(16) For each p∈ X and each N∈RO(Y,f(p)), there exists M ∈ DaO(X,p) such that
f(M) ⊂ N;
(17) For each p∈ X and each N∈δO(Y,f(p)), there exists M ∈ DaO(X,p) such that
f(M) ⊂ N.
Proof: (1)−→(2) Similar to the proof of (1)−→(2) of Theorem 4.1.
(2)−→(3) It follows from the fact that f−1(Y\F) = X \f−1(F).
(3)−→(4) Suppose that D∈ δC(Y) such that f(C)⊂ D. Observe that D = Clδ(D)
=
⋂
{F:D⊂F and F∈RC(Y)} and so f−1(D) =

⋂
{f−1(F):D⊂F and F∈RC(Y)}.

By (3) and Corollary 3.1,we have f−1(D)∈DaC(X) and C⊂ f−1(D). Hence ClDa (C)
⊂f−1(D), and it follows that f(ClDa (C) ) ⊂ D. Since this is true for any δ-closed
set D containing f(C), we have f(ClDa (C))⊂ Clδ(f(C)).
(4)−→(5) Let D ⊂ Y, then f−1(D) ⊂ X. By (4),
f(ClDa (f−1(D)))⊂ Clδ(f(f−1(D)))⊂Clδ(D). So that
ClDa (f−1(D)) ⊂ f−1(Clδ(D)).
(5)−→(6) Let G∈δC(Y) Then by (5), ClDa (f−1(G)) ⊂ f−1(Clδ(G))=f−1(G). In
consequence, ClDa (f−1(G))=f−1(G) and hence by Theorem 3.3(4), f−1(G)∈DaC(X).
(6)−→(7):Clear.
(7)−→(1): Let p∈ X and let O∈O(Y,f(p)). Set D = Int(Cl(O)) and C =f−1(D).
Since D∈ δO(Y), then by (7), C = f−1(D) ∈ DaO(X). Now, f(p) ∈ O= Int(O)⊂
Int(Cl(O)) = D it follows that p∈f−1(D)=C and f(C)=f(f−1(D)⊂D=Int(Cl(O).
(2)←→(8): Let N∈O(Y). Since Int(Cl(N))∈RO(Y),by (2), f−1(Int(Cl(N))∈DaO(X).
The converse is similar.
(3)←→(9)It is similar to (8)←→(2).
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(3)−→ (10): Let N∈βO(Y).Then by Lemma 5.1(2),Cl(N)∈ RC(Y).So by(3),f−1(Cl(N))
∈DaC(X) .Since f−1(N)⊂ f−1(Cl(N)) and by Theorem 3.3(4),ClDa (f−1(N))⊂ f−1(Cl(N)).
(10)−→ (11): and (12)−→ (13):Follows from Lemma 3.3
(11)−→ (12):It follows from the fact that SC(Y)⊂βC(Y)
(13)−→ (3):It follows from the fact that RC(Y)⊂SO(Y).
(2)←→ (14): Let N ∈PO(Y). Since Int(Cl(N)) ∈ RO(Y),then by (2),
f−1(Int(Cl(N))) ∈ DaO(X) and hence
f−1(N) ⊂ f−1(int(Cl(N))) = IntDa (f−1(int(Cl(N)))). Conversely,let N∈RO(Y).
Since N∈ PO(Y), f−1(N)⊂ IntDa (f−1(int(Cl(N)))) =IntDa (f−1(N)). In consequence,
IntDa (f−1(N))=f−1(N) and by Theorem 3.4, f−1(N) ∈ DaO(X).
(1)−→ (15): Let p∈X and N∈O(Y,f(p)). By (1), there exists M∈ DaO(X,p) such
that f(M) ⊂ Int(Cl(N)).Since N∈PO(Y),by Lemma 5.1, f(M) ⊂ sCl(N).
(15)−→ (16): Let p∈ X and N∈RO(Y,f(p)). Since N∈O(Y,f(p)) and by (15), there
exists M∈DaO(X,p) such that f(M)⊂ sCl(N). Since N ∈PO(Y), then by Lemma 5.1,
f(M) ⊂Int(Cl(N)) = N.
(16)−→ (17):Let p∈ X and V∈δO(Y,f(p)). Then, there exists G∈O(Y.f(p))such
that G ⊂ Int(Cl(G)) ⊂ N. Since Int(Cl(G))∈RO(Y,f(p)), by (16), there exists M∈
DaO(X,p) such that f(M) ⊂ Int(Cl(G))⊂ N.
(17)−→(1). Let p∈ X and N∈O(Y,f(p)). Then Int(Cl(N))∈ δO(Y,f(p)). By (17),
there exists M∈ DaO(X,p) such that f(M) ⊂ Int(Cl(N)). Therefore,f is almost con-
tinuous

Theorem 5.4. If f:(X,τ ) → (Y,η) is an almost Da-continuous injective function
and (Y,η) is r-T1 , then (X,σ) is Da-T1 .
Proof: It is similar to the proof of Theorem 4.3

Theorem 5.5. If f:(X,τ ) → (Y,σ) is an almost Da-continuous injective function
and (Y,σ) is r-T2 , then (X,τ ) is Da-T2 .
Proof: It is similar to the proof of Theorem 4.4

Lemma 5.2. [Ayhan and Ozkoç, 2016] Let (X,τ ) be a space and let A be a subset
of X. Then:
A ∈e∗O(X) if and only if Clδ(A) is regular closed.

Theorem 5.6. For a function f:(X,τ )→ (Y,η),the following are equivalent:
(a) f is almost Da-continuous;
(b) For every e∗-open set N in Y,f−1(Clδ(N)) is Da-closed in X;
(c) For every δ-semiopen subset N of Y,f−1(Clδ(N)) is Da-closed set in X;
(d) For every δ-preopen subset N of Y,f−1(Int(Clδ(N))) is Da-open set in X;
(e) For every open subset N of Y,f−1(Int(Clδ(N))) is Da-open set in X;
(f) For every closed subset N of Y,f−1(Cl(Intδ(A))) is Da-closed set in X .
Proof: (a)→(b):Let N∈e∗O(Y) Then by Lemma 5.2,Clδ(N)∈RC(Y).
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By (a),f−1(Clδ(N))∈DaC(X).
(b)→(c):Obvious since δSO(Y)⊂ e∗O(Y).
(c)→(d):Let N ∈δPO(Y),then Intδ(Y\N)∈δ-SO(Y).By (c),
f−1(Clδ(Intδ(Y\N))∈DaC(X) which implies f−1(Int(Clδ(N))∈DaO(X).
(d)→(e):Obvious since O(Y)⊂ δPO(Y).
(e)→(f):Clear
(f)→(a):Let N∈RO(Y).Then N=Int(Clδ(N)) and hence Y\N∈C(X). By (f),
f−1(Y\N)=X\f−1(Int(Clδ(N)))=f−1(Cl(Intδ(Y\N))∈DaC(X).
Thus f−1(N)∈DaO(X).

Lemma 5.3. [Ayhan and Ozkoç, 2016] Let (X,τ ) be a space and let A ⊂ X. The
following statements are true:
(a) For each A∈e∗O(X), a-Cl(A)=Clδ(A)
(b)For each A∈δSO(X), δ-pCl(A)=Clδ(A).
(c)For each A∈δPO(X),δ-sCl(A)=Int(Clδ(A)).

As a consequence of Theorem 5.6 and Lemma 5.3, we have the following
result:

Theorem 5.7. The following are equivalent for a function f:(X,τ )→ (Y,η):
(a) f is almost Da-continuous;
(b) For every e∗-open subset G of Y,f−1(a-Cl(G)) is Da-closed set in X;
(c) For every δ-semiopen subset G of Y,f−1(δ-pCl(G)) is Da-closed set in X;
(d) For every δ-preopen subset G of Y,f−1(δ-sCl(G))) is Da-open set in X;
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