Jagadeesh B.Toranagatti*

Abstract

In this paper, a new class of sets called Da-open sets are introduced and investigated with the help of $g\delta$ -open and δ -closed sets. Relationships between this new class and other related classes of sets are established and as an application Da-continuous and almost Dacontinuous functions have been defined to study its properties in terms of Da-open sets. Finally, some properties of Da-closed graph and (D,a)-closed graph are investigated.

Keywords:a-open set, δ -open set, $g\delta$ -open,Da-open set,Da-closed set. **2010 AMS subject classifications**: 54A05, 54A10.¹

^{*}Department of Mathematics, Karnatak University's Karnatak College, Dharwad - 580001, Karnataka, India; jagadeeshbt2000@gmail.com

¹Received on August 30th, 2020. Accepted on December 17th, 2020. Published on December 31st, 2020. doi: 10.23755/rm.v39i0.535. ISSN: 1592-7415. eISSN: 2282-8214. ©Toranagatti. This paper is published under the CC-BY licence agreement.

1 Introduction

The concept of generalized open sets introduced by Levine[Levine, 1970] plays a significant role in General Topology. The study of generalized open sets and its properties found to be useful in computer science and digital topology[Khalimsky et al., 1990, Kovalevsky, 1994, Smyth, 1995]. Since Professor El- Naschie has recently shown in [El Naschie, 1998, 2000, 2005] that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and ϵ^{∞} theory.So,the fuzzy topological version of the notions and results introduced in this paper are very important. Recently, Ekici [Ekici, 2008] introduced the notion of a-open sets as a continuation of research done by Velicko [Velicko, 1968] on the notion of δ -open sets.Dontchev et al., introduced g δ -closed sets and g δ -continuity.In this paper,new generalizations of a-open sets by using $g\delta$ -open and δ -closed sets called Da-open sets are presented. Also Da-continuous functions,almost Da-continuous functions,Da-closed graphs and (D,a)-closed graphs have been defined to study its properties in terms of Da-open sets.

2 Prerequisites, Definitions and Theorems

In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated and $f:(X,\tau) \to (Y,\eta)$ or simply $f:X \to Y$ denotes a function f of a space (X,τ) into a space (Y,η) . The δ -closure of a subset A of X is the intersection of all δ -closed sets containing A and is denoted by $Cl_{\delta}(A)$.

Definition 2.1. *In* (X, τ) *, let* $N \subset X$ *. Then* N *is called:*

(i)regular closed[Stone, 1937] (resp.,a-closed[Ekici, 2008], δ -preclosed[Raychaudhuri and Mukherjee, 1993], e*-closed[Ekici, 2009], δ -semiclosed[Park et al., 1997], β -closed[Abd El-Monsef, 1983], semiclosed[Levine, 1963], preclosed[Mashhour, 1982]) if N = Cl(Int(N)) (resp., Cl(Int(Cl_{\delta}(N))) \subset N, Cl(Int_{\delta}(N)) \subset N, Int(Cl(Int_{\delta}(N))) \subset N, Int(Cl(Int(N)) \subset N, Int(Cl(Int(N)) \subset N, Int(Cl(Int(N)) \subset N, Int(Cl(Int(N)) \subset N, Int(Cl(N)) \subset N). (ii) δ -closed [Velicko, 1968] if N = Cl_{\delta}(N) where Cl_{\delta}(N) = {p \in X:Int(Cl(O)) \cap N \neq \phi, O \in \tau and p \in O}. (iii)generalized δ -closed (briefly,g δ -closed)[Dontchev et al., 2000] if Cl(N)) \subset G whenever N \subset G and G is δ -open in X. (iv)generalized closed (briefly,g-closed)[Levine, 1970] if Cl(N)) \subset G whenever N \subset G and G is open in X. The complements of the above mentioned closed sets are their respective open sets. The set of all regular open (resp., δ -open, β -open, δ -preopen, preopen, semiopen, δ -semiopen, e^* -open, $g\delta$ -open and a-open) sets of (X, τ) is denoted by RO(X) (resp. δ O(X), β O(X), δ PO(X), PO(X), SO(X), δ SO(X), e^* O(X), G δ O(X) and aO(X)).

The a-closure[Ekici, 2008](resp, $g\delta$ -closure, δ -closure) of a set N is the intersection of all a-closed(resp, $g\delta$ -closed, δ -closed) sets containing N and is denoted by a-Cl(N) (resp., $Cl_{g\delta}(N), Cl_{\delta}(N)$). The a-interior[Ekici, 2008](resp, $g\delta$ -interior, δ interior) of a set N is the union of all a-open(resp, $g\delta$ -open, δ -open) sets contained in M and is denoted by a-Int(M)(resp, $Int_{q\delta}(M), Int_{\delta}(M)$)

Definition 2.2. [Ekici, 2005] A topological space (X, τ) is said to be: (1) r- T_1 if for each pair of distinct points x and y of X, there exist regular open sets U and V such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$. (2) r- T_2 if for each pair of distinct points x and y of X, there exist regular open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Theorem 2.1. Let *C* and *D* be subsets of a topological space (X,τ) . Then (*i*)If *C* is $g\delta$ -closed, then $Cl_{g\delta}(C) = C$. (*ii*) If $C \subset D$, then $Cl_{g\delta}(C) \subset Cl_{g\delta}(D)$. (*iv*) $x \in Cl_{g\delta}(C)$ if and only if for each $g\delta$ -open set *O* containing $x, O \cap C \neq \phi$, (*v*) $Cl_{g\delta}(C) \cup Cl_{g\delta}(D) \subset Cl_{g\delta}(A \cup D)$. (*vi*) $Cl_{q\delta}(C \cap D) \subseteq Cl_{q\delta}(C) \cap Cl_{q\delta}(D)$.

3 Da-Open Sets.

Definition 3.1. A subset M of a topological space (X, τ) is said to be: (1) Da-open if $M \subset Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)))$, (2) Da-closed if $Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(M)) \subset M$. The collection of all Da-open(resp,Da-closed) sets in (X, τ) is denoted by DaO(X) (resp,DaC(X)).

Theorem 3.1. Let (X, τ) be a space. Then for any $N \subset X$, (i) $N \in \delta O(X)$ implies $N \in aO(X)[Ekici, 2008]$. (ii) $N \in \delta O(X)$ implies $N \in G \delta O(X)[Dontchev et al., 2000]$. (iii) $N \in GO(X)$ implies $N \in G \delta O(X)[Dontchev et al., 2000]$. (iv) $N \in aO(X)$ implies $N \in DaO(X)$. (v) $N \in G \delta O(X)$ implies $N \in DaO(X)$. **Proof:** (iv) Since $\delta O(X) \subset G \delta O(X)$, $Int_{\delta}(N) \subset Int_{g\delta}(N)$. Now,let $N \in aO(X)$, then $N \subset Int(Cl(Int_{\delta}(N))$. Therefore, $N \subset Int(Cl(Int_{\delta}(N))=Int_{\delta}(Cl(Int_{\delta}(N)) \subset Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(N)))$. Hence $N \in DaO(X)$. (v) Suppose N is $g\delta$ -open. Then $Int_{g\delta}(N)=N$.

Therefore, $Int_{g\delta}(N) \subset Cl_{\delta}(Int_{g\delta}(N)$. Then $N=Int_{g\delta}(N)=Int_{g\delta}(Int_{g\delta}(N)) \subset Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(N))$. Hence $N \in DaO(X)$.

Remark 3.1. The following diagram holds for any subset of a space (X, τ) .

None of these implications is reversible

Example 3.1. Let $X = \{p,q,r,s\}$ and $\tau = \{X,\phi,\{p\},\{q\},\{p,q\},\{p,r\},\{p,q,r\}\}$, then $aO(X) = \{X,\phi,\{q\},\{p,r\},\{p,q,r\}\}$ $G\delta O(X) = \{X,\phi,\{p\},\{q\},\{r\},\{p,q\},\{p,r\},\{q,r\},\{p,q,r\}\}$. $DaO(X) = \{X,\phi,\{p\},\{q\},\{r\},\{p,q\},\{p,r\},\{q,r\},\{p,q,r\},\{q,r,s\}\}$. Therefore, $\{q,r,s\} \in DaO(X)$ but $\{q,r,s\} \notin aO(X)$ and $\{q,r,s\} \notin g\delta O(X)$.

Lemma 3.1. If there exists a $M \in G\delta O(X)$ such that $M \subset N \subset Int_{g\delta}(Cl_{\delta}(M))$, then N is Da-open. **Proof:** Since M is $g\delta$ -open, $Int_{\delta g}(M)=M$. Therefore, $Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(N)) \supset Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)) = Int_{g\delta}(Cl_{\delta}(M)) \supset N$. Hence N is Da-open.

Converse of the Lemma 3.1 is not true as shown in Example 3.1.

Example 3.2. In Example 3.1, $\{p,q,r\} \in DaO(X)$ and $\{p,r\} \in G\deltaO(X)$ but $\{p,r\} \subseteq \{p,q,r\} \not\subseteq Int_{g\delta}(Cl_{\delta}(\{p,r\})) = \{p,r\}$.

Lemma 3.2. For a family $\{B_{\lambda}:\lambda \in \wedge\}$ of subsets of a space (X,τ) , the following hold:

 $(1) Cl_{g\delta}(\bigcap\{B_{\lambda}:\lambda\in\wedge\}) \subset \bigcap\{Cl_{g\delta}(B_{\lambda}):\lambda\in\wedge\}.$ $(2) Cl_{g\delta}(\bigcup\{V_{\lambda}:\lambda\in\wedge\}) \supset \bigcup\{Cl_{g\delta}(B_{\lambda}):\lambda\in\wedge\}.$ $(3) Cl_{\delta}(\bigcap\{B_{\lambda}:\lambda\in\wedge\}) \subset \bigcap\{Cl_{\delta}(B_{\lambda}):\lambda\in\wedge\}.$ $(4) Cl_{\delta}(\bigcup\{B_{\lambda}:\lambda\in\wedge\}) \supset \bigcup\{Cl_{\delta}(B_{\lambda}):\lambda\in\wedge\}.$

Theorem 3.2. If $\{G_{\alpha}: \lambda \in \wedge\}$ is a collection of Da-open sets in a space (X, τ) , then $\bigcup_{\alpha \in \wedge} G_{\alpha}$ is a Da-open set in (X, τ) : **Proof:** Since each G_{α} is Da-open, $G_{\alpha} \subset Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(G_{\alpha})))$ for each $\alpha \in \wedge$ and

hence $\bigcup_{\alpha \in \wedge} G_{\alpha} \subset \bigcup_{\alpha \in \wedge} Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(G_{\alpha})) \subset Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(\bigcup_{\alpha \in \wedge} G_{\alpha})))$. Thus $\bigcup_{\alpha \in \wedge} G_{\alpha}$ is *Da-open*.

Corolary 3.1. If $\{F_{\alpha}: \alpha \in \wedge\}$ is a collection of Da-closed sets in a space (X, τ) , then $\bigcap_{\alpha \in \wedge} F_{\alpha}$ is a Da-closed set in (X, τ)

Remark 3.2. M and $N \in DaO(X) \not\Rightarrow M \cap N \in DaO(X)$ as seen from Example 3.1, where both $M = \{q,r,s\}$ and $N = \{p,q,s\} \in DaO(X)$ but $M \cap N = \{q,s\} \notin DaO(X)$.

Corolary 3.2. If $M \in DaO(X)$ and $B \in aO(X)$, then $M \cup B \in DaO(X)$. **Proof:** Follows from Theorem 3.1(iv) and Theorem 3.2

Corolary 3.3. If $M \in DaO(X)$ and $B \in G\deltaO(X)$, then $M \cup B \in DaO(X)$. **Proof:** Follows from Theorem 3.1(v) and Theorem 3.2

Definition 3.2. In (X, τ) , let $M \subset X$. (1) The Da-interior of M, denoted by $Int_a^D(M)$ is defined as $Int_a^D(M) = \bigcup \{G: G \subseteq M \text{ and } M \in DaO(X)\};$ (2) The Da-closure of M, denoted by $Cl_a^D(M)$ is defined as $Cl_a^D(A) = \bigcap \{F: M \subseteq F \text{ and } F \in DaC(X)\}.$

Theorem 3.3. In (X, τ) , let $M, N, F \subset X$. Then: $(1)M \subset Cl_a^D(M) \subset aCl(M), \ Cl_a^D(M) \subset Cl_{q\delta}(M).$ (2) $Cl_a^D(M)$ is a Da-closed set. (3) If F is a Da-closed set, and $F \supset M$, then $F \supset Cl_a^D(M)$. *i.e.*, $Cl_a^D(M)$ is the smallest Da-closed set containing M. (4)*M* is Da-closed set if and only if $Cl_a^D(M)=M$. $(5) \ Cl^D_a(Cl^D_a(M)) = Cl^D_a(M).$ (6) $M \subseteq N$ implies $Cl_a^D(M) \subseteq Cl_a^D(N)$. (7) $p \in Cl_a^D(M)$ if and only if for each Da-open set V containing $p, V \cap M \neq \phi$. (8) $Cl_a^D(M) \cup Cl_a^D(N) \subset Cl_a^D(M \cup N).$ (9) $Cl_a^{\mathcal{D}}(M \cap N) \subset Cl_a^{\mathcal{D}}(M) \cap Cl_a^{\mathcal{D}}(N).$ **Proof:** (1)It follows from Theorem 3.1(iv) and (v) (2)It follows from Definition 3.2 and Corollary 3.1 (3)Let F be a Da-closed set, containing $M.Cl_a^D(M)$ is the intersection of Da-closed sets containing M, and F is one among these; hence $F \supset Cl_a^D(M)$. (4) Let M be Da-closed, then by Definition 3.2(2), $Cl_a^D(M)=M$. Conversely, let $Cl_a^D(M)=M$. Then by (2) above, M is Da-closed. (5)It follows from (2) and (4). (6) Obvious. $p \notin Cl_a^D(M) \Leftrightarrow (\exists G \in DaC(X))(M \subset G)(p \notin G)$ (7) $\Leftrightarrow (\exists G \in DaC(X))(M \subset G)(p \in G^c)$ $\Leftrightarrow (\exists G^c \in DaO(X))(M \cap G^c = \phi)(p \in G^c)$

 $\Leftrightarrow (\exists G^c \in DaO(X,p))(M \cap G^c = \phi)$

 $i.e., (\exists \ U(=G^c) \in DaO(X,p))(M \cap U = \phi)$

(8) and (9) follows from (6).

Remark 3.3. (1) $Cl_a^D(M) \cup Cl_a^D(N) \neq Cl_a^D(M \cup N)$, in general, as seen from Example 3.1 where $M = \{p\}$, $N = \{r\}$ and $M \cup N = \{p,r\}$. Then $Cl_a^D(M) = \{p\}$, $Cl_a^D(N) = \{r\}$, $Cl_a^D(M) \cup Cl_a^D(N) = \{p,r\}$ and $Cl_a^D(M \cup N) = \{p,r,s\}$; (2) $Cl_a^D(M \cap N) \neq Cl_a^D(M) \cap Cl_a^D(N)$, in general, as seen from Example 3.1 where, $M = \{p,q,r\}$, $N = \{s\}$ and $M \cap N = \phi$. Then $Cl_a^D(M) = X$, $Cl_a^D(N) = \{s\}$, $Cl_a^D(M) \cap Cl_a^D(N) = \{s\}$, $Cl_a^D(M) \cap Cl_a^D(N) = \phi$.

Lemma 3.3. In (X, τ) , let $M \subset X$. Then (1) $Cl_a^D(X \setminus M) = X \setminus Int_a^D(M)$, (2) $Int_a^D(X \setminus M) = X \setminus Cl_a^D(M)$.

Theorem 3.4. In (X, τ) , let $M, N, G \subset X$, $(1)aInt(M) \subseteq Int_a^D(M) \subseteq M$, $Int_{g\delta}(M) \subseteq Int_a^D(M)$. $(2) Int_a^D(M)$ is a Da-open set. (3) If G is a Da-open set, and $G \subset M$, then $G \subset Int_a^D(M)$. $i.e., Int_a^D(M)$ is the largest Da-open set contained in M. (4)M is Da-open set if and only if $Int_a^D(M)=M$. $(5) Int_a^D(Int_a^D(M)) = Int_a^D(M)$. $(6)M \subseteq N$ implies $Int_a^D(M) \subseteq Int_a^D(N)$. $(7) p \in Int_a^D(M)$ if and only if there exists Da-open set N containing p such that N $\subseteq M$. $(8) Int_a^D(M \cap N) \subseteq Int_a^D(M) \cap Int_a^D(N)$. $(9) Int_a^D(M) \cup Int_a^D(N) \subseteq Int_a^D(M \cup N)$. **Proof:** Similar to the proof of Theorem 3.3

Remark 3.4. (8) $Int_a^D(M \cap N) \neq Int_a^D(M) \cap Int_a^D(N)$, in general, as seen from Example 3.1, where $M = \{p,q,s\}$, $N = \{q,r,s\}$ and $M \cap N = \{q,s\}$. Then $Int_a^D(M) = \{p,q,s\}$, $Int_a^D(N) = \{q,r,s\}$, $Int_a^D(M) \cap Int_a^D(N) = \{q,s\}$ and $Int_a^D(M \cap N) = \{q\}$. (9) $Int_a^D(M) \cup Int_a^D(N) \neq Int_a^D(M \cup N)$, in general, as seen from Example 3.1, where $M = \{p,q,r\}$, $N = \{s\}$ and $M \cup N = X$. Then $Int_a^D(M) = \{p,q,r\}$, $Int_a^D(N) = \{p,q,r\}$ and $Int_a^D(M \cup N) = X$.

Lemma 3.4. In (X, τ) , let $M \subset X$. Then (1)M is Da-open if and only if $M = M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)))$. (2)M is Da-closed if and only if $M = M \cup Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(M)))$.

Proof: (1) Let M be an Da-open. Then, $M \subseteq Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)) \text{ implies } M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M))=M.$ Conversely, let $M = M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)) \text{ implies } M \subset Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)).$ (2) It follows from (1) Lemma 3.5. $In (X, \tau)$, let $M \subset X$. Then $(i)M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)) \text{ is } Da\text{-}open$ $(ii)M \cup Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(M)) \text{ is } Da\text{-}closed.$ **Proof:** $(i) Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M) \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M))))) = Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(A) \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M))))))$ $= Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)))$. This implies that $M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M))) = M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)))))) \subseteq$ $Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M) \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M))))))$. Therefore $M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)))$ is Da-open. (ii) From (i) we have $X \setminus (M \cup Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(M))) = (X \setminus M) \cap Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(X \setminus M)))$ is Da-open so that $M \cup Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(M)))$ is Da-closed. Lemma 3.6. $In (X, \tau)$, let $M \subset X$. Then $(i)Int_{a}^{D}(M)=M \cap Int_{g\delta}(Cl_{\delta}(Int_{g\delta}(M)))$. $(ii)Cl_{a}^{D}(M)=M \cup Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(M)))$. **Proof:** $(i)Let N=Int_{a}^{D}(M)$, then $N \subset M$. Since N is Da-open, $N \subset Int_{g\delta}(Cl_{\delta}(Int_{q\delta}(N))$)

Proof: (*i*) Let $N = Int_a^{\mathbb{Z}}(M)$, then $N \subseteq M$. Since N is Da-open, $N \subseteq Int_{g\delta}(Ct_{\delta}(Int_{g\delta}(N)) \subseteq Int_{g\delta}(Ct_{\delta}(Int_{g\delta}(M)))$. Then $N \subseteq M \cap Int_{g\delta}(Ct_{\delta}(Int_{g\delta}(M)) \subseteq M$. Therefore, by Lemma 3.5, it follows that $M \cap Int_{g\delta}(Ct_{\delta}(Int_{g\delta}(M)))$ is a Da-open set contained in M. But $Int_a^{D}(M)$ is the largest Da-open set contained in M it follows that $M \cap Int_{g\delta}(Ct_{\delta}(Int_{g\delta}(M)) \subseteq Int_a^{D}(M) = N$. Then $N = M \cap Int_{g\delta}(Ct_{\delta}(Int_{g\delta}(M))$. Therefore, $Int_a^{D}(M) = M \cap Int_{g\delta}(Ct_{\delta}(Int_{g\delta}(M))$. (*ii*) It follows from (*i*)

4 Da-Continuous functions.

Definition 4.1. A function $f:(X,\tau) \to (Y,\eta)$ is said be a Da-continuous if for each $p \in X$ and each $N \in O(Y,f(p))$, there exists $M \in DaO(X,p)$ such that $f(M) \subset N$.

Theorem 4.1. For a function $f:(X,\tau) \to (Y,\eta)$, the following are equivalent (1)f is Da-continuous; (2)For each $N \in O(Y)$, $f^{-1}(V) \in DaO(X)$. **Proof:**(1) \longrightarrow (2)Let $N \in O(Y)$ and $p \in f^{-1}(N)$. Since $f(p) \in N$, then by(1), there exists $M_p \in DaO(X,p)$ such that $f(M_p) \subset N$. It follows that $f^{-1}(N)=\cup\{M_p: p \in f^{-1}(N)\} \in DaO(X)$, by Theorem 3.2. (2) \longrightarrow (1) Let $p \in X$ and $N \in O(Y, f(p))$. Then, by (2), $f^{-1}(N) \in DaO(X,p)$. Take $M = f^{-1}(N)$, then $f(M) \subset N$.

Corolary 4.1. A function $f:(X,\tau) \to (Y,\eta)$ is Da-continuous if and only if $f^{-1}(F) \in DaC(X)$ for each $F \in C(Y)$.

Remark 4.1. *The following implications hold for a function* $f:(X,\tau) \to (Y,\eta)$ *:*

 $\begin{array}{ccc} continuity & \longleftarrow & \delta\mbox{-}continuity & \longrightarrow & a\mbox{-}continuity \\ \downarrow & & \downarrow & & & \\ g\mbox{-}continuity & & & \\ g\mbox{-}continuity & & & \\ g\mbox{-}continuity & & & \\ \end{array}$

Example 4.1. Consider (X,τ) as in Example 3.1 and $\eta = \{X,\phi,\{p\},\{q\},\{p,q\},\{p,q,r\}\}$. Define $f:(X,\sigma) \rightarrow (X,\eta)$ by f(p)=s,f(q)=p,f(r)=q and f(s)=r. Then f is Da-continuous but neither a-continuous nor $g\delta$ -continuous since $\{p,q,r\}$ is open in (X,η) , $f^{-1}(\{p,q,r\}) = \{q,r,s\} \in DaO(X)$ but $\{q,r,s\} \notin aO(X)$ and $\{q,r,s\} \notin g\delta O(X)$. The other Examples are shown in[3,5,21]

Theorem 4.2. *The following conditions are equivalent for a function* $f:(X,\tau) \to (Y,\eta):$ (1) f is Da-continuous; (2) For each subset N of Y, $Cl_{q\delta}(Int_{\delta}(Cl_{q\delta}(f^{-1}(N))) \subset f^{-1}(Cl(N);$ (3) For each subset N of Y, $f^{-1}(Int(N)) \subset Int_{a\delta}(Cl_{\delta}(Int_{a\delta}(f^{-1}(N));$ (4) For each subset N of Y, $Cl_a^D(f^{-1}(N)) \subset f^{-1}(Cl(N))$; (5) For each subset M of $X, f(Cl_a^D(M)) \subset Cl(f(M));$ (6) For each subset N of Y, $f^{-1}(Int(N)) \subset Int_a^D(f^{-1}(N))$. **Proof:** (1) \rightarrow (2) Let $N \subset Y$. Then by (1), $f^{-1}(Cl(N)) \in DaC(X)$ implies $f^{-1}(Cl(N) \supset Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(f^{-1}(Cl(N))) \supset Cl_{g\delta}(Int_{\delta}(Cl_{g\delta}(f^{-1}(N))))))))$ $(2) \rightarrow (3)$. Replace N by $Y \setminus N$ in (2), we have $Cl_{a\delta}(Int_{\delta}(Cl_{a\delta}(f^{-1}(Y \setminus N))) \subset f^{-1}(Cl(Y \setminus N)), and therefore$ $f^{-1}(Int(N)) \subset Int_{a\delta}(Cl_{\delta}(Int_{a\delta}(f^{-1}(N))))$ for each subset N of Y. $(3) \rightarrow (1)$. Clear (1) \rightarrow (4). Let $N \subset Y$. Then by (1), $f^{-1}(Cl(N)) \in DaC(X)$. Thus $Cl_a^D(f^{-1}(N)) \subset Cl_a^D(f^{-1}(Cl(N)) = f^{-1}(Cl(N) \text{ by Theorem 3.3(4)}).$ (4) \rightarrow (1). Let $N \in C(Y)$. Then by (4), $Cl_a^D(f^{-1}(N)) \subset f^{-1}(Cl(N)=f^{-1}(N) \text{ implies } Cl_a^D(f^{-1}(N))=f^{-1}(N).$ Then by Theorem 3.3(4), $f^{-1}(N) \in DaC(X)$. $(4) \rightarrow (5)$.Let $M \subset X$.Then $f(M) \subset Y$.By (4), we have $f^{-1}(Cl(f(M))) \supset Cl^D_a(f^{-1}(f(M))) \supset Cl^D_a(M).$ Therefore, $f(Cl_a^D(M)) \subset f(f^{-1}(Cl(f(M))) \subset Cl(f(M)).$ $(5) \rightarrow (4)$.Let $N \subset Y$ and $M = f^{-1}(N) \subset X$.Then by (5), $f(Cl_a^D(f^{-1}(N))) \subset Cl(f(f^{-1}(N)) \subset Cl(N) \text{ implies } Cl_a^D(f^{-1}(N)) \subset f^{-1}(Cl(N)).$ $(4) \rightarrow (6)$. Replace N by $Y \setminus N$ in (4), we get $Cl_a^D(f^{-1}(Y \setminus N)) \subset f^{-1}(Cl(Y \setminus N)) \text{ implies } Cl_a^D(X \setminus f^{-1}(N)) \subset f^{-1}(Y \setminus Int(N))$ *Therefore*, $f^{-1}(int(N)) \subset Int_a^D(f^{-1}(N))$ for each subset N of Y.

 $(6) \rightarrow (1)$.Let $G \subset Y$ be open.Then $f^{-1}(G) = f^{-1}(Int(G)) \subset Int_a^D(f^{-1}(G) \text{ implies } Int_a^D(f^{-1}(G) = f^{-1}(G)$.So by Theorem 3.4(4), $f^{-1}(G) \in DaO(X)$.

Definition 4.2. Two non-empty subsets A and B of a topological space (X,τ) are said to be Da-separated if there exist two Da-open sets G and H, such that $A \subset G, B \subset H, A \cap H = \phi$ and $B \cap G = \phi$.

Definition 4.3. Two non-empty subsets A and B of a topological space (X,τ) are said to be strongly Da-separated if there exist two Da-open sets U and V, such that $A \subset U, B \subset V$ and $U \cap V = \phi$.

Definition 4.4. A topological space (X,τ) is said to be (1) Da- T_2 if any two distinct points are strongly Da-separated in (X,τ) (2) Da- T_1 if every pair of distinct points is Da-separated in (X,τ) .

Remark 4.2. The following implications are hold for a topological space (X,τ) $a - T_2 \longrightarrow Da - T_2 \longleftarrow T_2$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ a - T_1 \longrightarrow Da - T_1 \longleftarrow T_1$$

Theorem 4.3. If an injective function $f:(X,\tau) \to (Y,\eta)$ is Da-continuous and (Y,η) is T_1 , then (X,τ) is Da- T_1 .

Proof: Let (Y,σ) be T_1 and $p,q \in X$ with $p \neq q$. Then there exist open subsets G, H in Y such that $f(p) \in G$, $f(q) \notin G$, $f(p) \notin H$ and $f(q) \in H$. Since f is Da-continuous, $f^{-1}(G)$ and $f^{-1}(H) \in DaO(X)$ such that $p \in f^{-1}(G)$, $q \notin f^{-1}(G)$, $p \notin f^{-1}(H)$ and $q \in f^{-1}(H)$. Hence, (X,σ) is Da- T_1 .

Theorem 4.4. If an injective function $f: (X, \tau) \rightarrow (Y, \eta)$ is Da-continuous and (Y, η) is T_2 , then (X, τ) is Da- T_2 .

Proof: Similar to the proof of Theorem 4.3

Recall that for a function $f:(X,\tau) \to (Y,\eta)$, the subset $G_f = \{(x,f(x)): x \in X\} \subset X \times Y$ is said to be graph of f.

Definition 4.5. A graph G_f of a function $f:(X,\tau) \to (Y,\eta)$ is said to be Da-closed if for each $(p,q) \notin G_f$, there exist $U \in DaO(X,p)$ and $V \in O(Y,q)$ such that $(U \times V) \cap G_f = \phi$.

As a consequence of Definition 4.5 and the fact that for any subsets $C \subset X$ and $D \subset Y$, $(C \times D) \cap G_f = \phi$ if and only if $f(C) \cap D = \phi$, we have the following result.

Lemma 4.1. For a graph G_f of a function $f:(X,\tau) \to (Y,\eta)$, the following properties are equivalent:

(1) G_f is Da-closed in X×Y;

(2)For each $(p,q) \notin G_f$, there exist $U \in DaO(X,p)$ and $V \in O(Y,q)$ such that $f(U) \cap V = \phi$.

Theorem 4.5. If $f:(X,\tau) \to (Y,\eta)$ is Da-continuous and (Y,η) is T_2 , then G_f is Da-closed in $X \times Y$.

Proof: Let $(p,q) \notin G_f$, $f(p) \neq q$. Since Y is T_2 , there exist V, $W \in O(Y)$ such that $f(p) \in V$, $q \in W$ and $V \cap W = \phi$. Since f is Da-continuous, $f^{-1}(V) \in DaC(X,p)$. Set $U = f^{-1}(V)$, we have $f(U) \subset V$. Therefore, $f(U) \cap W = \phi$ and G_f is Da-closed in $X \times Y$

Theorem 4.6. Let $f:(X,\tau) \to (Y,\eta)$ have a Da-closed graph G_f . If f is injective, then (X,τ) is $Da-T_1$.

Proof:Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Then $f(x_1) \neq f(x_2)$ as f is injective So that $(x_1, f(x_2)) \notin G_f$. Thus there exist $U \in DaO(X, x_1)$ and $V \in O(Y, f(x_2))$ such that $f(U) \cap V = \phi$. Then $f(x_2) \notin f(U)$ implies $x_2 \notin U$ and it follows that X is $Da-T_1$.

Theorem 4.7. Let $f:(X,\tau) \to (Y,\eta)$ have a Da-closed graph G_f . If f is surjective, then (Y,η) is T_1 .

Proof:Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f is surjective, $f(x) = y_2$ for some $x \in X$ and $(x, y_2) \notin G_f$. By Lemma 4.1, there exist $U \in DaO(X, x)$ and $V \in O(Y, y_1)$ such that $f(U) \cap V = \phi$. It follows that $y_2 \notin V$. Hence Y is T_1 .

Theorem 4.8. Let $f:(X,\tau) \to (Y,\eta)$ have a Da-closed graph G_f . If f is surjective, then (Y,η) is Da- T_1 . **Proof:** Similar to the proof of Theorem 4.7

Corolary 4.2. Let $f:(X,\tau) \to (Y,\eta)$ have a Da-closed graph G_f . If f is bijective, then both (X,τ) and (Y,η) are Da- T_1 **Proof:**Follows from Theorems 4.6 and 4.8

Definition 4.6. A graph G_f of a function $f:(X,\tau) \to (Y,\eta)$ is said to be (D,a)closed if for each $(p,q) \notin G_f$, there exist $U \in DaO(X,p)$ and $V \in aO(Y,q)$ such that $(U \times aCl(V)) \cap G_f = \phi$.

Lemma 4.2. For a graph G_f of a function $f:(X,\tau) \to (Y,\eta)$, the following properties are equivalent: (1) G_f is Da-closed in $X \times Y$;

(2) For each $(p,q) \notin G_f$, there exist $U \in DaO(X,p)$ and $V \in aO(Y,q)$ such that $f(U) \cap aCl(V)$ = ϕ .

Theorem 4.9. Let $M \subset X$. Then $x \in a$ -Cl(M) if and only if $G \cap M \neq \Phi$, for every *a*-open set G containing x. **Proof:** Similar to the proof of Theorem 3.3(7)

Theorem 4.10. Let $f:(X,\tau) \to (Y,\eta)$ have a (D,a)-closed graph G_f . If f is surjective, then (Y,η) is $a - T_2(resp, a - T_1)$.

Proof: Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f surjective, $f(x_1) = y_1 x_1 \in X$ and hence $(x_1, y_2) \notin G_f$. By Lemma 4.2, there exist $E \in DaO(X, x_1)$ and $F \in aO(Y, y_2)$ such that $f(E) \cap aCl(F) = \phi$. Now, $x_1 \in E$ implies $f(x_1) = y_1 \in f(E)$ so that $y_1 \notin aCl(F)$. By Theorem 4.9, there exists $D \in aO(Y, y_1)$ such that $D \cap F = \phi$. Hence Y is $a \cdot T_2$.

Theorem 4.11. Let $f:(X,\tau) \to (Y,\eta)$ have a (D,a)-closed graph G_f . If f is surjective, then (Y,η) is $Da-T_2(resp,Da-T_1)$. **Proof:**Similar to the proof of Theorem 4.10

Theorem 4.12. Let $f:(X,\tau) \to (Y,\eta)$ have a (D,a)-closed graph G_f . If f is injective, then (X,τ) is $Da-T_1$. **Proof:** Similar to the proof of Theorem 4.6

Corolary 4.3. Let $f:(X,\tau) \to (Y,\eta)$ have a (D,a)-closed graph G_f . If f is bijective, then both (X,τ) and (Y,η) are $Da-T_1$ **Proof:**Follows from Theorems 4.11 and 4.12

5 Almost Da-Continuous functions.

Definition 5.1. A function $f:(X,\tau) \to (Y,\eta)$ is said to be almost Da-continuous if for each point $p \in X$ and each open subset V of Y containing f(p), there exists $U \in DaO(X,p)$ such that $f(U) \subset int(Cl(V))$.

Theorem 5.1. If $f:(X,\tau) \to (Y,\eta)$ is Da-continuous function, then f is an almost Da-continuous, but not conversely. **Proof:** Obvious

Example 5.1. Consider (X,τ) and (X,η) as in 4.1. Define $f:(X,\tau) \to (X,\eta)$ by f(p)=p,f(q)=s,f(r)=q and f(s)=r Then f is almost Da-continuous but not Da-continuous since $\{p,q,r\}$ is open in $(X,\eta), f^{-1}(\{p,q,r\})=\{p,r,s\}\notin DaO(X,\tau)$

Definition 5.2. [Noiri and Popa, 1998] A space X is said to be semi-regular if for any open set U of X and each point $x \in U$ there exists a regular open set V of X such that $x \in V \subset U$.

Theorem 5.2. If $f:(X,\tau) \to (Y,\eta)$ is an almost Da-continuous function and Y is semi-regular, then f is Da-continuous.

Proof: Let $p \in X$ and let $V \in O(Y,f(p))$. By the semi-regularity of Y, there exists $G \in RO(Y,f(p))$ such that $G \subset V$. Since f is almost Da-continuous, there exists $U \in DaO(X, x)$ such that $f(U) \subset Int(Cl(G)) = G \subset V$ and hence f is Da-continuous.

Lemma 5.1. Let (X,τ) be a space and let A be a subset of X. The following statements are true:

(1) $A \in PO(X)$ if and only if sCl(A) = Int(Cl(A)) [Janković, 1985]. (2) $A \in \beta O(X)$ if and only if Cl(A) is regular closed [Abd El-Monsef, 1983]. **Theorem 5.3.** Let $f:(X,\tau) \to (Y,\eta)$ be a function. Then the following conditions are equivalent:

(1) f is almost Da-continuous;

(2) For every $N \in RO(Y)$, $f^{-1}(N) \in DaO(X)$;

(3) For every $M \in RC(Y)$, $f^{-1}(M) \in DaC(X)$;

(4) For each subset C of X, $f(Cl_a^D(C)) \subset Cl_{\delta}(f(C))$;

(5) For each subset D of Y, $Cl_a^D(f^{-1}(D)) \subset f^{-1}(Cl_{\delta}(D))$;

(6) For every $G \in \delta C(Y)$, $f^{-1}(G) \in DaC(X)$;

(7)For every $H \in \delta O(Y)$, $f^{-1}(H) \in DaO(X)$;

(8) For every $N \in O(Y)$, $f^{-1}(Int(Cl(N) \in DaO(X));$

(9) For every $M \in C(Y)$, $f^{-1}(Cl(Int(M) \in DaC(X));$

(10) For every $N \in \beta O(Y)$, $Cl_a^D(f^{-1}(N)) \subset f^{-1}(Cl(N))$;

(11) For every $M \in \beta C(Y)$, $f^{-1}(Int(M)) \subset Int_a^D(f^{-1}(M))$;

(12) For every $M \in SC(Y)$, $f^{-1}(Int(M)) \subset Int_a^D(f^{-1}(M))$;

(13) For every $N \in SO(Y)$, $Cl_a^D(f^{-1}(N)) \subset f^{-1}(Cl(N))$;

(14) For every $M \in PO(Y)$, $f^{-1}(M) \subset Int_a^D(f^{-1}(Int(Cl(M));$

(15) For each $p \in X$ and each $N \in O(Y, f(p))$, there exists $M \in DaO(X, p)$ such that $f(M) \subset sCl(N)$;

(16) For each $p \in X$ and each $N \in RO(Y, f(p))$, there exists $M \in DaO(X, p)$ such that $f(M) \subset N$;

(17) For each $p \in X$ and each $N \in \delta O(Y, f(p))$, there exists $M \in DaO(X, p)$ such that $f(M) \subset N$.

Proof: (1) \longrightarrow (2) *Similar to the proof of* (1) \longrightarrow (2) *of Theorem 4.1.*

(2) \longrightarrow (3) It follows from the fact that $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$.

(3)→(4) Suppose that $D \in \delta C(Y)$ such that $f(C) \subset D$. Observe that $D = Cl_{\delta}(D)$ = $\bigcap \{F: D \subset F \text{ and } F \in RC(Y)\}$ and so $f^{-1}(D) = \bigcap \{f^{-1}(F): D \subset F \text{ and } F \in RC(Y)\}$. By (3) and Corollary 3.1,we have $f^{-1}(D) \in DaC(X)$ and $C \subset f^{-1}(D)$. Hence $Cl_a^D(C) \subset f^{-1}(D)$, and it follows that $f(Cl_a^D(C)) \subset D$. Since this is true for any δ -closed set D containing f(C), we have $f(Cl_a^D(C)) \subset Cl_{\delta}(f(C))$.

 $(4) \longrightarrow (5) Let D \subset Y, then f^{-1}(D) \subset X. By (4),$

 $f(Cl_a^D(f^{-1}(D))) \subset Cl_\delta(f(f^{-1}(D))) \subset Cl_\delta(D)$. So that

 $Cl_a^D(f^{-1}(D)) \subset f^{-1}(Cl_\delta(D)).$

 $(5) \longrightarrow (6)$ Let $G \in \delta C(Y)$ Then by (5), $Cl_a^D(f^{-1}(G)) \subset f^{-1}(Cl_\delta(G)) = f^{-1}(G)$. In consequence, $Cl_a^D(f^{-1}(G)) = f^{-1}(G)$ and hence by Theorem 3.3(4), $f^{-1}(G) \in DaC(X)$. (6) $\longrightarrow (7)$: Clear.

(7)→(1): Let $p \in X$ and let $O \in O(Y, f(p))$. Set D = Int(Cl(O)) and $C = f^{-1}(D)$. Since $D \in \delta O(Y)$, then by (7), $C = f^{-1}(D) \in DaO(X)$. Now, $f(p) \in O = Int(O) \subset Int(Cl(O)) = D$ it follows that $p \in f^{-1}(D) = C$ and $f(C) = f(f^{-1}(D) \subset D = Int(Cl(O))$. (2)↔(8): Let $N \in O(Y)$. Since $Int(Cl(N)) \in RO(Y)$, by (2), $f^{-1}(Int(Cl(N)) \in DaO(X)$. The compared is similar.

The converse is similar.

 $(3) \longleftrightarrow (9) It is similar to (8) \longleftrightarrow (2).$

 $(3) \longrightarrow (10)$: Let $N \in \beta O(Y)$. Then by Lemma 5.1(2), $Cl(N) \in RC(Y)$. So by (3), $f^{-1}(Cl(N))$ $\in DaC(X)$. Since $f^{-1}(N) \subset f^{-1}(Cl(N))$ and by Theorem 3.3(4), $Cl_a^D(f^{-1}(N)) \subset f^{-1}(Cl(N))$. $(10) \longrightarrow (11)$: and $(12) \longrightarrow (13)$: Follows from Lemma 3.3 $(11) \longrightarrow (12)$: It follows from the fact that $SC(Y) \subset \beta C(Y)$ $(13) \longrightarrow (3)$: It follows from the fact that $RC(Y) \subset SO(Y)$. $(2) \longleftrightarrow (14)$: Let $N \in PO(Y)$. Since $Int(Cl(N)) \in RO(Y)$, then by (2), $f^{-1}(Int(Cl(N))) \in DaO(X)$ and hence $f^{-1}(N) \subset f^{-1}(int(Cl(N))) = Int_a^D(f^{-1}(int(Cl(N)))).$ Conversely, let $N \in RO(Y)$. Since $N \in PO(Y)$, $f^{-1}(N) \subset Int_a^{\tilde{D}}(f^{-1}(int(Cl(N)))) = Int_a^{\tilde{D}}(f^{-1}(N))$. In consequence, $Int_{a}^{D}(f^{-1}(N)) = f^{-1}(N)$ and by Theorem 3.4, $f^{-1}(N) \in DaO(X)$. (1) \rightarrow (15): Let $p \in X$ and $N \in O(Y, f(p))$. By (1), there exists $M \in DaO(X, p)$ such that $f(M) \subset Int(Cl(N))$. Since $N \in PO(Y)$, by Lemma 5.1, $f(M) \subset sCl(N)$. $(15) \rightarrow (16)$: Let $p \in X$ and $N \in RO(Y, f(p))$. Since $N \in O(Y, f(p))$ and by (15), there exists $M \in DaO(X,p)$ such that $f(M) \subset sCl(N)$. Since $N \in PO(Y)$, then by Lemma 5.1, $f(M) \subset Int(Cl(N)) = N.$ (16) \longrightarrow (17):Let $p \in X$ and $V \in \delta O(Y, f(p))$. Then, there exists $G \in O(Y, f(p))$ such that $G \subset Int(Cl(G)) \subset N$. Since $Int(Cl(G)) \in RO(Y, f(p))$, by (16), there exists $M \in$ DaO(X,p) such that $f(M) \subset Int(Cl(G)) \subset N$. $(17) \longrightarrow (1)$. Let $p \in X$ and $N \in O(Y, f(p))$. Then $Int(Cl(N)) \in \delta O(Y, f(p))$. By (17), there exists $M \in DaO(X,p)$ such that $f(M) \subset Int(Cl(N))$. Therefore, f is almost continuous

Theorem 5.4. If $f:(X,\tau) \to (Y,\eta)$ is an almost Da-continuous injective function and (Y,η) is $r-T_1$, then (X,σ) is $Da-T_1$. **Proof:** It is similar to the proof of Theorem 4.3

Theorem 5.5. If $f:(X,\tau) \to (Y,\sigma)$ is an almost Da-continuous injective function and (Y,σ) is $r-T_2$, then (X,τ) is $Da-T_2$. **Proof:** It is similar to the proof of Theorem 4.4

Lemma 5.2. [Ayhan and Ozkoç, 2016] Let (X, τ) be a space and let A be a subset of X. Then: $A \in e^*O(X)$ if and only if $Cl_{\delta}(A)$ is regular closed.

Theorem 5.6. For a function $f:(X,\tau) \to (Y,\eta)$, the following are equivalent: (a) *f* is almost Da-continuous;

(b) For every e^* -open set N in Y, $f^{-1}(Cl_{\delta}(N))$ is Da-closed in X;

(c) For every δ -semiopen subset N of Y, $f^{-1}(Cl_{\delta}(N))$ is Da-closed set in X;

(d) For every δ -preopen subset N of Y, $f^{-1}(Int(Cl_{\delta}(N)))$ is Da-open set in X;

(e) For every open subset N of Y, $f^{-1}(Int(Cl_{\delta}(N)))$ is Da-open set in X;

(f) For every closed subset N of Y, $f^{-1}(Cl(Int_{\delta}(A)))$ is Da-closed set in X.

Proof: (*a*) \rightarrow (*b*):Let $N \in e^*O(Y)$ Then by Lemma 5.2, $Cl_{\delta}(N) \in RC(Y)$.

By (a), $f^{-1}(Cl_{\delta}(N)) \in DaC(X)$. (b) \rightarrow (c): Obvious since $\delta SO(Y) \subset e^*O(Y)$. (c) \rightarrow (d): Let $N \in \delta PO(Y)$, then $Int_{\delta}(Y \setminus N) \in \delta$ -SO(Y). By (c), $f^{-1}(Cl_{\delta}(Int_{\delta}(Y \setminus N)) \in DaC(X)$ which implies $f^{-1}(Int(Cl_{\delta}(N)) \in DaO(X)$. (d) \rightarrow (e): Obvious since $O(Y) \subset \delta PO(Y)$. (e) \rightarrow (f): Clear (f) \rightarrow (a): Let $N \in RO(Y)$. Then $N = Int(Cl_{\delta}(N))$ and hence $Y \setminus N \in C(X)$. By (f), $f^{-1}(Y \setminus N) = X \setminus f^{-1}(Int(Cl_{\delta}(N))) = f^{-1}(Cl(Int_{\delta}(Y \setminus N)) \in DaC(X)$. Thus $f^{-1}(N) \in DaO(X)$.

Lemma 5.3. [Ayhan and Ozkoç, 2016] Let (X,τ) be a space and let $A \subset X$. The following statements are true: (a) For each $A \in e^*O(X)$, $a - Cl(A) = Cl_{\delta}(A)$ (b)For each $A \in \delta SO(X)$, $\delta - pCl(A) = Cl_{\delta}(A)$. (c)For each $A \in \delta PO(X)$, $\delta - sCl(A) = Int(Cl_{\delta}(A))$.

As a consequence of Theorem 5.6 and Lemma 5.3, we have the following result:

Theorem 5.7. The following are equivalent for a function $f:(X,\tau) \to (Y,\eta)$: (a) f is almost Da-continuous; (b) For every e^* -open subset G of $Y, f^{-1}(a\text{-}Cl(G))$ is Da-closed set in X; (c) For every δ -semiopen subset G of $Y, f^{-1}(\delta \text{-}pCl(G))$ is Da-closed set in X; (d) For every δ -preopen subset G of $Y, f^{-1}(\delta \text{-}sCl(G))$ is Da-open set in X;

References

- ME Abd El-Monsef. β -open sets and β -continuous mappings. *Bull. Fac. Sci.* Assiut Univ., 12:77–90, 1983.
- Burcu Sünbül Ayhan and Murad Ozkoç. Almost e-continuous functions and their characterizations. *Journal of Nonlinear Sciences & Applications (JNSA)*, 9(12), 2016.
- Julian Dontchev, I Arokiarani, and Krishnan Balachandran. On generalized deltaclosed sets and almost weakly hausdorff spaces. *Questions and Answers in General Topology*, 18(1):17–30, 2000.
- Erdal Ekici. Generalization of perfectly continuous, regular set-connected and clopen functions. *Acta Mathematica Hungarica*, 107(3):193–206, 2005.
- Erdal Ekici. On a-open sets *a**-sets and decompositions of continuity and supercontinuity. In *Annales Univ. Sci. Budapest*, volume 51, pages 39–51, 2008.

- Erdal Ekici. On e*-open sets and (d, s)*-sets. *Mathematica Moravica*, 13(1): 29–36, 2009.
- MS El Naschie. On the uncertainty of cantorian geometry and the two-slit experiment. *Chaos, Solitons & Fractals*, 9(3):517–529, 1998.
- MS El Naschie. On the unification of heterotic strings, m theory and e^{∞} theory. *Chaos, Solitons & Fractals*, 11(14):2397–2408, 2000.
- MS El Naschie. Stability analysis of the two-slit experiment with quantum particles. *Chaos, Solitons & Fractals*, 26(2):291–294, 2005.
- DS Janković. A note on mappings of extremally disconnected spaces. *Acta Mathematica Hungarica*, 46(1-2):83–92, 1985.
- Efim Khalimsky, Ralph Kopperman, and Paul R Meyer. Computer graphics and connected topologies on finite ordered sets. *Topology and its Applications*, 36 (1):1–17, 1990.
- Vladimir Kovalevsky. Some topology-based image processing algorithms. Ann. New York Acad. of Sci.; Papers on General Topology and Applications, 728: 174–182, 1994.
- Norman Levine. Semi-open sets and semi-continuity in topological spaces. *The American mathematical monthly*, 70(1):36–41, 1963.
- Norman Levine. Generalized closed sets in topology. *Rendiconti del Circolo Matematico di Palermo*, 19(1):89–96, 1970.
- AS Mashhour. On preconlinuous and weak precontinuous mappings. In *Proc. Math. Phys. Soc. Egypt.*, volume 53, pages 47–53, 1982.
- T Noiri and V Popa. On almost β -continuous functions. *Acta Mathematica Hungarica*, 79(4):329–339, 1998.
- Jin Han Park, Bu Young Lee, and MJ Son. On δ -semiopen sets in topological space. J. Indian Acad. Math, 19(1):59–67, 1997.
- S Raychaudhuri and MN Mukherjee. On δ -almost continuity and δ -preopen sets. *Bull. Inst. Math. Acad. Sinica*, 21(4):357–366, 1993.
- Michael B Smyth. Semi-metrics, closure spaces and digital topology. *Theoretical computer science*, 151(1):257–276, 1995.

- Marshall Harvey Stone. Applications of the theory of boolean rings to general topology. *Transactions of the American Mathematical Society*, 41(3):375–481, 1937.
- NV Velicko. H-closed topological spaces. Amer. Math. Soc. Transl., 78:103–118, 1968.