
Ratio Mathematica Volume 39, 2020, pp. 79-110

On some computational and applications of
finite fields

Jean Pierre Muhirwa*

Abstract

Finite field is a wide topic in mathematics. Consequently, none can
talk about the whole contents of finite fields. That is why this re-
search focuses on small content of finite fields such as polynomials
computational, ring of integers modulo p where p is prime or a power
of prime. Most of the times, books which talk about finite fields are
rarely to be found, therefore one can know how arithmetic computa-
tional on small finite fields works and be able to extend to the higher
order. This means how integer and polynomial arithmetic operations
are done for Zp such as addition, subtraction, division and multipli-
cation in Zp followed by reduction of p (modulo p). Only addition
and multiplication arithmetic operations are considered for a small
range of finite fields (Z2 − Z17). With polynomials, one can learn
how arithmetic computational through polynomials over finite fields
are performed as their coefficients are drawn from finite fields. The
paper includes also construction of polynomials over finite fields as
an extension of finite fields with polynomials i.e Fq[x]/f(x), where
f(x) is irreducible over Fq. From the past decades, many researchers
complained about the applications of some topics in pure mathemat-
ics and therefore the finite fields play more important role in coding
theory, such as error-coding detection and error-correction as well as
cyclic codes. Hence, this paper shows these applications.
Keywords: Finite Fields; Error-detection; Error-correction; Coding;
Decoding; Codewords; Cosets; Syndromes.1

*University of Rwanda, College of Science and Technology, School of Science, Department of
Mathematics, Kigali, Rwanda; muhijeapi@gmail.com.

1Received on January 20th, 2020. Accepted on June 19th, 2020. Published on December
31st, 2020. doi: 10.23755/rm.v39i0.521. ISSN: 1592-7415. eISSN: 2282-8214. ©Jean Pierre
Muhirwa. This paper is published under the CC-BY licence agreement.

79

Jean Pierre Muhirwa

1 Introduction
The structure of this research paper includes the introductory part where some

preliminary properties of set theory, group theory, ring theory and fields theory
are discussed. In reality we can not know what is a field without defining a
group and a ring since the field is a special case of the ring. Apart from intro-
ductory, the second section consist of computational in the first seven finite fields.
The third, the fourth and the fifth parts of this paper discuss and compare the
usual polynomial arithmetic computational and the finite field polynomial com-
putational. The sixth part of this paper explains some of the applications of finite
fields with the typical examples in coding and decoding theories, the seventh sec-
tion gives the conclusion of the research paper while the last part acknowledges
the financial support received from the Eastern Africa Universities Mathemat-
ics Programme-International Science Programme, University of Rwanda Node
(EAUMP-ISP, UR-Node).

1.1 Preliminaries
Definition 1.1. A set is a collection of distinct objects, considered as an object in
it own rights. Sets are the one of the most fundamental concepts of mathematics.

Example 1.1. The set R, denote the set of all real numbers, and this set includes
rational numbers and irrational numbers (example π,

√
2, and e) Z, denote the

set of all integers for both sign (negative and positive).

Definition 1.2. Group Theory, a set R together with a binary operation is called
a group if it satisfies the conditions such that closure, associative, admits identity
element and inverse element under the operation within the elements of R.

Definition 1.3. Abelian Group, a set R is an abelian group if it is a group for
which commutative law within an operation together with R to the elements of R
is verified.

Definition 1.4. Ring Theory, a set R together with two binary operations (ad-
dition and multiplication) on the elements of R is called a ring if the following
conditions are satisfied:

1. (R, +) is an abelian group.

2. Associative law for multiplication and distributive law are also satisfied.

Definition 1.5. Commutative Ring, a commutative ring is a ring for which the
multiplication is commutative.

80

On some computational and applications of finite fields

Definition 1.6. Commutative Ring with Unity, a commutative ring with unity is
a ring for which there exists a non-zero multiplicative identity element.

Example 1.2. The set of integers Z is commutative ring with 1 as a multiplicative
identity element.

Definition 1.7. Field, a field is a commutative ring with unity and for which every
non-zero element of that commutative ring is invertible.

Example 1.3. In the set of rational numbers, Q, every non-zero element has its
inverse i.e (Every non-zero element is invertible).

Definition 1.8. Finite Field, a finite field is a field with a finite number of elements.

Example 1.4. Consider the set of integers modulo p (Zp), where p is prime inte-
gers). This set consists of p− 1 elements and all non-zero elements of this set are
invertible.

Definition 1.9. Galois Group, the Galois group of an extension of fields F/K, is
the set of all automorphisms obtained by fixing the elements of K.

Definition 1.10. Codewords, codewords are string of digits that can be inter-
preted by any machine as words or characters.

Example 1.5. The string 100110 is a codeword of the vector space V (6, 2) of the
length 6 over the finite field F2.

Definition 1.11. Prime Number, a prime number is a natural number that can be
divisible only by 1 and itself (i.e, a prime number has two divisors namely 1 and
the number itself).

Example 1.6. The first ten prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Definition 1.12. Algorithm, an algorithm is a scientific term for solving an in-
stance or a set of instructions that can be followed for solving a problem.

Example 1.7. To find the greatest common divisor (GCD) of two numbers a and
b, we can apply division algorithm, and the GCD is the last non-zero remainder.
All steps that are followed to determine the GCD will make an algorithm.

1.2 Mathematical Definition of a Group
A set R together with a binary operation (∗) is said to be a group if it satisfies the
following properties:

For a, b and c ∈ R,

81

Jean Pierre Muhirwa

1. a ∗ b ∈ R (closure)

2. (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity)

3. There exists additive identity element e of R such that a ∗ e = e ∗ a = a ,
for all a ∈ R (for (*) operation, identity is always e (identity element))

4. There exists inverse element a−1 of R such that a ∗ a−1 = a−1 ∗ a = e (
inverse element)

5. Furthermore if a ∗ b = b ∗ a, then R is said to be a commutative group or an
abelian Group.

Note: this operation is not always (∗) it can be also addition, and it may be an-
other operation defined on a set R.
However, in this research paper we are restricted on the usual addition and multi-
plication operators.

1.3 Mathematical Definition of a Ring
A set R together with two binary operations namely addition (+) and multiplica-
tion (∗) is said to be a ring if the following 3 conditions are satisfied:
Fora, b and c ∈ R,

1. (R, +) must be an abelian group

2. a ∗ (b ∗ c) = (a ∗ b) ∗ c: associativity law for multiplication

3. a ∗ (b+ c) = a ∗ b+ a ∗ c (left distributive law) (a+ b) ∗ c = a ∗ c+ b ∗ c
(right distributive law)

Note: The above two operations (+) and (∗) are not necessarily the ordinary ad-
dition and multiplication operations, reason why the definition of these operations
may be needed in mathematical expressions. But this paper considers them as
ordinary addition and multiplication.

If there exists multiplicative identity element of R for each every non-zero ele-
ment of R, always denoted 1 such that a ∗ 1 = 1 ∗ a = a, then we can call the ring
R to be the ring with unity.

The inverse of an element a for the abelian group (R,+) is denoted (−a).

In addition if a ∗ b = b ∗ a, then R is called a commutative ring with unity. If
every non- zero element of a commutative ring R with unity is invertible, then R

82

On some computational and applications of finite fields

becomes a field.

1.4 Classification of fields
Fields can be classified by size or by the number of elements that a field possesses.
If a field contains a finite number of elements then that field is called finite field,
otherwise it is an infinite field. For the rest of the work we will proceed with the
finite field only.

For example consider the commutative ring, Zp, where p is a prime number, is a
commutative ring with unity which is the field hence finite field because it pos-
sesses finite number of element. This is the most popular example of finite field.

Then, definition of this topic as the name indicated above, a finite field is a field
with a finite order (i.e number of elements is finite). It is also called Galois field
(so named in honor of Evariste Galois). The order of a finite field is always a
prime number or a power of a prime number. A finite field of order pn is denoted
GF (pn), often written as F (pn) in current usage.

GF (pn) is called the prime field of order p, where the p elements are denoted
0, 1, 2, 3, ..., p − 1. In the finite field GF (p) if two elements are written as a = b
this is the same as a ≡ b(mod p). Finite fields are therefore denoted by GF (pn)
instead of GF (k) where k = pn, for clarity. The finite field GF (2) consists of
elements 0, 1 which satisfy the addition and multiplication modulo 2. Let us first
consider the addition and multiplication of elements in GF (2) as shown in fol-
lowing two tables below:

+ 0 1
0 0 1
1 1 0

Table 1: The table shows the addition in GF (2)

* 0 1
0 0 0
1 0 1

Table 2: The table describes the multiplication in GF (2)

83

Jean Pierre Muhirwa

ClearlyGF (2) is finite field since it contains two elements 0 and 1 which is a finite
number of elements and also by the rule that every non-zero element is invertible,
in the table it is clear that 1 is the only non-zero element and it is invertible. The
finite fields are classified by size, as follows:

1. The order or number of elements of finite fields is of the form pn, where p
is a prime number called the characteristic of the field, and n is a positive
integer.

2. For every prime number p and a positive integer n, there exists a finite field
with pn elements.

3. Any two finite fields with the same number of elements are isomorphic. For
example Z/(3) is isomorphic to F3. That is under some renaming of the
elements of one of these two fields, its addition and multiplication tables
become identical to the corresponding tables of the other one. This classi-
fication is justified by using a naming scheme for finite fields that specifies
only the order of the field.

Note: Finite fields are important and very useful in number theory, algebraic ge-
ometry, Galois Theory, cryptography, coding theory and quantum error correction.
Its applications may also be appearing in the electrical circuits.

2 Computational Over Finite Fields with First seven
Rings (Zp, where p = 2, 3, 5, 7, 11, 13, 17)

Arithmetic in a finite field is different from standard integers arithmetic. There
are a limited number of elements in the finite field; all operations performed in the
finite field result in an element within that field.

While each finite field is itself not infinite, there are infinitely many different finite
fields; their number of elements (which is also called cardinality) is necessarily of
the form pn, where p is a prime number and n is a positive integer, and two finite
fields of the same size are isomorphic. Consider Z/(3) is isomorphic to Z3. The
prime p is called the characteristic of the finite field, and the positive integer n is
called the dimension of the field over its prime field.

The finite field with pn elements is denoted GF (pn) and is also called the Galois
Field, in honor of the founder of finite field theory, Evariste Galois [Cox, 2011].
GF (p), where p is a prime number, is simply the ring of integers modulo p. That

84

On some computational and applications of finite fields

is, one can perform operations (addition, subtraction, division and multiplication)
by using the usual operation on integers, followed by reduction modulo p. For
instance, in GF (5), 4+3 = 7 is reduced to 2 modulo 5. Division is multiplication
by the inverse modulo p, which may be computed using the extended Euclidean
algorithm.

A particular case isGF (2), as addition and multiplication have been shown above
in Table 1 and Table 2 respectively, and the only invertible element is 1. Now
arithmetic operations in this paper are done on the first seven rings of integers
modulo p (Zp), where p is a prime number, and those are Z2,Z3,Z5,Z7,Z11,Z13

and Z17.

2.1 Arthmetic Operation in the Ring of Integers (Z3)

The class of residues in Z3 are 0, 1, 2

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Table 3: This is a table that shows the addition in Z3

* 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Table 4: This table describes the multiplication in Z3

2.2 Arthmetic Operation in the Ring of Integers (Z5)

The class residues in Z5 are 0, 1, 2, 3, 4

85

Jean Pierre Muhirwa

* 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 6: This a multiplication table in Z5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 5: This is a table that illustrates how an addition is done in Z5

2.3 Arthmetic Operation in the Ring of Integers (Z7)

The class residues of Z7 are 0, 1, 2, 3, 4, 5, 6

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Table 7: An addition table in Z7

86

On some computational and applications of finite fields

* 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 8: Multiplication table in Z7

2.4 Arthmetic Operation in the Ring of Integers (Z11)

The class residues of Z11 are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

+ 0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10 0
2 2 3 4 5 6 7 8 9 10 0 1
3 3 4 5 6 7 8 9 10 0 1 2
4 4 5 6 7 8 9 10 0 1 2 3
5 5 6 7 8 9 10 0 1 2 3 4
6 6 7 8 9 10 0 1 2 3 4 5
7 7 8 9 10 0 1 2 3 4 5 6
8 8 9 10 0 1 2 3 4 5 6 7
9 9 10 0 1 2 3 4 5 6 7 8
10 10 0 1 2 3 4 5 6 7 8 9

Table 9: This table demonstrates the addition in Z11

87

Jean Pierre Muhirwa

* 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10
2 0 2 4 6 8 10 1 3 5 7 9
3 0 3 6 9 1 4 7 10 2 5 8
4 0 4 8 1 5 9 2 6 10 3 7
5 0 5 10 4 9 3 8 2 7 1 6
6 0 6 1 7 2 8 3 9 4 10 5
7 0 7 3 10 6 2 9 5 1 8 4
8 0 8 5 2 10 7 4 1 9 6 3
9 0 9 7 5 3 1 10 8 6 4 2
10 0 10 9 8 7 6 5 4 3 2 1

Table 10: Multiplication table in Z11

2.5 Arthmetic Operation in the Ring of Integers (Z13)
The class residues of Z13 are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

+ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12 0
2 2 3 4 5 6 7 8 9 10 11 12 0 1
3 3 4 5 6 7 8 9 10 11 12 0 1 2
4 4 5 6 7 8 9 10 11 12 0 1 2 3
5 5 6 7 8 9 10 11 12 0 1 2 3 4
6 6 7 8 9 10 11 12 0 1 2 3 4 5
7 7 8 9 10 11 12 0 1 2 3 4 5 6
8 8 9 10 11 12 0 1 2 3 4 5 6 7
9 9 10 11 12 0 1 2 3 4 5 6 7 8

10 10 11 12 0 1 2 3 4 5 6 7 8 9
11 11 12 0 1 2 3 4 5 6 7 8 9 10
12 12 0 1 2 3 4 5 6 7 8 9 10 11

Table 11: This is an addition table in Z13

88

On some computational and applications of finite fields

* 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 4 6 8 10 12 1 3 5 7 9 11
3 0 3 6 9 12 2 5 8 11 1 4 7 10
4 0 4 8 12 3 7 11 2 6 10 1 5 9
5 0 5 10 2 7 12 4 9 1 6 11 3 8
6 0 6 12 5 11 4 10 3 9 2 8 1 7
7 0 7 1 8 2 12 3 10 4 11 5 12 6
8 0 8 3 11 6 1 8 4 12 7 2 10 5
9 0 9 5 1 10 6 2 11 7 3 12 8 4
10 0 10 7 4 1 11 8 5 2 12 9 6 3
11 0 11 9 7 5 3 1 12 10 8 6 4 2
12 0 12 11 10 9 8 7 6 5 4 3 2 1

Table 12: Multiplication Table in Z13

From this table, each non-zero element has its multiplicative inverse, the multi-
plicative inverse of 8 for example is 5, the multiplicative inverse of 11 is 6, and so
on.

2.6 Arithmetic Operation in the Ring of Integers (Z17)

The class residues of Z17 are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

89

Jean Pierre Muhirwa

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8

10 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
16 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 13: This table points out how to perform an addition in Z17

90

On some computational and applications of finite fields

* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 0 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15
3 0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14
4 0 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13
5 0 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12
6 0 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11
7 0 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10
8 0 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9
9 0 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8
10 0 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7
11 0 11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6
12 0 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5
13 0 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4
14 0 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3
15 0 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2
16 0 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 14: This a multiplication table in Z17

Apart from the 14 tables represented above, one may proceed in the same way
up to the finite fields of p − 1 class residues with p being a prime number or a
power of a prime number.

3 Arithmetic Computational of Polynomials over
Finite Fields

The theory of polynomials over finite fields is important for investigating the al-
gebraic structure of finite fields as well as for many applications. Above all, ir-
reducible polynomials, the prime elements of polynomial rings over finite fields
are indispensable for constructing finite fields and computing with the elements
of finite fields [Rónyai, 1992].
A polynomial is an expression of the form anx

n + an−1x
n−1 + ... + a1x + a0,

for some non-negative integer n and where the coefficients a0, a1..., an are drawn
from some designated set S, which is in particular finite field and called the coef-
ficient set.

Polynomial arithmetic deals with the addition, subtraction, multiplication, and

91

Jean Pierre Muhirwa

division of polynomials.

3.1 What Problems Does Polynomial Arithmetic Adress?
Given two polynomials whose coefficients are derived from a set S, what can
we say about the coefficients of the polynomial that results from an arithmetic
operation on the two polynomials? If we insist that the polynomial coefficient
all come from a particular S, then which arithmetic operations are permitted and
which prohibited? Let us say that the coefficient set is a finite field F with its own
rules for addition, subtraction, multiplication and division, and let us further say
that when we carry out an arithmetic operation on two polynomials, we subject
the operations on the coefficients to those that apply to the finite field F . Now
what can be said about the set of such polynomials? All these questions will have
their answers as we move on in this paper.

3.2 Ordinary Addition and Subtraction of Polynomials

Let f(x) = a2x
2 + a1x + a0 and g(x) = b1x + b0 Then f(x) + g(x) = a2x

2 +
(b1 + a1)x+ (a0 + b0)
Let f(x) = a2x

2 + a1x+ a0 and g(x) = b3x
3 + b0, Then f(x)− g(x) = −b3x3 +

a2x
2 + a1x+ (a0 − b0)

3.3 Ordinary Multiplication of Polynomials
Let f(x) = a2x

2 + a1x+ a0 and g(x) = b1x+ b0, Then f(x) ∗ g(x) = a2b1x
3 +

(a2b0 + a1b1)x
2 + (a1b0 + a0b1)x+ a0b0.

3.4 Ordinary Division of Polynomials

3.4.1 When is Division of Polynomials Permited?

Polynomial division is obviously not allowed for polynomials that are not defined
over certain fields. For example, for polynomials defined over the set of all inte-
gers, you cannot divide 4x2 + 5 by the polynomial 5x. If you tried, the first term
of the quotient would be (4

5
)x where the coefficient of x is not an integer. You

can always divide polynomials defined over a certain field. What that means is
that the operation of division is legal when the coefficients are drawn from a finite
field. Note that, in general, when you divide such polynomial by another, you will
end up with a remainder, and when, in general you divide one integer by another

92

On some computational and applications of finite fields

integer it is possible in purely integer arithmetic.

Therefore, in general, for polynomials defined over a field, the division of a poly-
nomial f(x) of a degree m by another polynomial g(x) of a degree n − m can
be expressed by f(x)/g(x) = q(x)g(x) + r(x), where q(x) is the quotient and,
r(x) the remainder, so we can write for any two polynomials defined over a field,
f(x) = q(x) ∗ g(x) + r(x) assuming that the degree of f(x) is not less than that
of g(x). When r(x) is zero, we say that g(x) divides f(x). This fact can also be
expressed by saying that g(x) is a divisor of f(x) and by notation, g(x)|f(x).

3.4.2 Division of a Polynomial by Another Upon Using Long Division

Let us divide the polynomial 8x2 + 3x+ 2 by the polynomial 2x+ 1:

In this example, our dividend is 8x2 + 3x + 2 and the divisor is 2x + 1. We now
need to find the quotient.
Long division for polynomials consists of the following steps:

Step 1: Arrange both the dividend and the divisor in the descending powers of the
variable.
Step 2: Divide the first term of the dividend by the first term of the divisor and
write the result as the first term of the quotient.
In our example, the first term of the dividend is 8x2 and the first term of the divisor
is 2x , so the first term of the quotient is 4x.
Step 3: Multiply the divisor with the quotient term just obtained and arranges the
result under the dividend so that the same powers of x match up. Subtract the
expression just laid out from the dividend. In our example, 4x times 2x + 1 is
equal to 8x2 + 4x. Subtracting this from the dividend yields −x + 2. consider
the result of the above subtraction as the new dividend and go back to the first
step. (The new dividend in our case is (−x + 2). In our example, dividing the
polynomial 8x2+3x+2 by the polynomial 2x+1, yield quotient of 4x− 0.5 and
a remainder of 2.5.

3.5 Arithmetic Operations on Polynomials whose Coefficients
Belong to a Defined Finite Fields

The arithmetic operations on polynomials whose coefficients are drawn from fi-
nite fields is not the same as the usual operations of polynomials. To see this, Let
us consider the set of all polynomials whose coefficients belong to the finite field
Z7 (which is the same as GF(7)). Here is an example of adding two such polyno-
mials: f(x) = 5x2+4x+6, g(x) = 5x+6 we get f(x)+g(x) = 5x2+9x+12 =

93

Jean Pierre Muhirwa

5x2 + 2x+ 5

If we perform the difference of both polynomials, f(x) = 5x2 + 4x + 6 and
g(x) = 5x+6 then f(x)− g(x) = 5x2− x = 5x2 +6x since the additive inverse
of 5 in Z7 is 2 and that of 6 is 1. So 4x − 5x is the same as 4x + 2x and 6 − 6 is
the same as 6 + 1, with both additions modulo 7.
The multiplication of polynomials f(x) = 5x2 + 4x + 6, and g(x) = 5x + 6 is
given by f(x) ∗ g(x) = 4x3 + x2 + 5x+ 1
Lastly the divison of polynomials f(x) = 5x2+4x+6, g(x) = 2x+1 is given by
f(x)/g(x) = 6x+ 6. If you multiply the divisor 2x+ 1 with the quotient 6x+ 6
, you get the dividend 5x2 + 4x+ 6.

Let consider also the polynomials defined over GF (2). Recall that the notation
GF (2) means the same thing as Z2. We are obviously talking about arithmetic
modulo 2. First of all, GF (2) is a sweet basic finite field. Recall that the num-
ber 2 is the first prime. (A prime has exactly two distinct divisors, 1 and itself).
GF (2) consists of the set 0, 1. The two elements of this set obey the following
addition and multiplication rules:

0 + 0 = 0
0 x 0 = 0
0 + 1 = 1
0 x 1 = 0
1 + 0 = 1
1 x 0 = 0
1 + 1 = 0
1 x 1 = 1

So the addition over GF (2) is equivalent to the logical XOR operation, and mul-
tiplication to the logical AND operation. Some examples of polynomials defined
over GF (2): are x3 + x2 − 1;−x5 + x4 − x2 + 1;x+ 1, etc.

3.5.1 Arithmetic Computational of Polynomials Defined Over GF (2)

Here is an example of adding two such polynomials: f(x) = x2 + x + 1, g(x) =
x+ 1, therefore f(x) + g(x) = x2 + 2x+ 2 = x2

• Here is an example of subtracting two such polynomials, f(x) = x2 + x +
1, g(x) = x+ 1, then f(x)− g(x) = x2

• Here is an example of multiplying two such polynomials, f(x) = x2+x+1,
and g(x) = x+ 1, then f(x)× g(x) = x3 + 1

94

On some computational and applications of finite fields

• Here is an example of dividing two such polynomials,f(x) = x2 + x +
1, g(x) = x+ 1, then f(x)/g(x) = x.

If you multiply the divisor, x+ 1 with the quotient x, you get x2 + x. That
when added to the remainder 1 gives us back the dividend x2 + x+ 1

3.6 Division of Polynomials Defined Over Finite Fileds

First, note that a polynomial is defined over a field if all its coefficients are drawn
from that field. Dividing polynomials defined over a finite field is a little bit more
frustrating than performing other arithmetic operations on such polynomials. Now
your mental gymnastics must include both additive inverses and multiplicative in-
verses.Consider again the polynomials defined over GF (7). Let’s say we want to
divide 5x2 + 4x + 6 by 2x + 1. In a long division, we must start by dividing 5x2

by 2x. This requires that we divide 5 by 2 in GF (7). Dividing 5 by 2 is the same
as multiplying 5 by the multiplicative inverse of 2. Multiplicative inverse of 2 is
4 since 2 ≡ 4 mod 7 is 1. So we have 5 ≡ 2−1 = 5 ≡ 4 = 20 mod 7 = 6.
Therefore, the first term of the quotient is 6x. Since the product of 6x and 2x+ 1
is 5x2 + 6x, we need to subtract 5x2 + 6x from the dividend 5x2 + 4x + 6. The
result is (4 − 6)x + 6, which (since the additive inverse of 6 is 1) is the same as
(4 + 1)x+ 6, and that is the same as 5x+ 6.

Our new dividend for the next round of long division is therefore 5x + 6. To find
the next quotient term, we need to divide 5x by the first term of the divisor, that is
by 2x. Reasoning as before, we see that the next quotient term is again 6. The final
result is that when the coefficients are drawn from the set GF (7)), 5x2 + 4x + 6
divided by 2x+ 1 yields a quotient of 6x+ 6 with the remainder zero.
So we can say that as a polynomial defined over the field, GF (7), 5x2 +4x+6 is
a product of two factors, 2x+1 and 6x+6. We can therefore write 5x2+4x+6 =
(2x+ 1) ≡ (6x+ 6)

4 Irreducible Polynomials or Prime Polynomials

Definition 4.1. According to [Rónyai, 1992], a polynomial f ∈ F [x] is said to
be irreducible over F (or irreducible in F [x], or prime in F [x]) if f has positive
degree and f = g ∗ h, with g, h ∈ F [x] implies that either g or f is a constant
polynomial, otherwise it is reducible over F . The reducibility or irreducibility of a
given polynomial depends heavily on the field under considerations. For instance,
the polynomial x2− 2 ∈ Q(x) is irreducible over the field Q of rational numbers,
but x2 − 2 = (x +

√
2)(x −

√
2) but reducible over the field of real numbers

95

Jean Pierre Muhirwa

(R). For polynomials over finite fields, the same argument hold except that the
coefficients are reduced in mod p.

Example 4.1. f(x) = x2 + x + 1 is irreducible over F2 but g(x) = x2 + 1 is
reducible over F2 to see this g(x) = x2 + 1 = (x + 1)(x + 1) = x2 + 2x + 1,
since 2 ≡ 0 mod(2), and then 2x ≡ 0 mod(2). In few words we can say, when
g(x) divides f(x) without leaving a remainder, we say g(x) is a factor of f(x). A
polynomial f(x) over a field F is called irreducible, if f(x) cannot be expressed
as a product of two polynomials, both over F and both of degree lower than that
of f(x). An irreducible polynomial is also referred to as a prime polynomial.

5 Some Computational Tables of Quotient Polyno-
mials Over Finite Fields

To represent the elements of an extension fields over finite fields in a computa-
tional table, we must have the quotient? Fq[x]/f(x), where f(x) is irreducible
over Fq[x]. This form of polynomials are looked like powers of prime [Lidl and
Niederreiter, 1994].

Example 5.1. Let f(x) = x2 + 1 ∈ F3[x]. Thus to find the computational tables
of F3[x]/(f(x)), we need to find the residue class ring as pn where n is the degree
of polynomial f(x), and then we have a set of residue class ring of 32 = 9 ele-
ments, as it looks like a representation of F (9), such as 0, 1, 2, x, 1+x, 2+x, 1+
2x, 2x, 2 + 2x, these are precisely the polynomials of degree less than 2 over F3

by equating x2 + 1 = 0 and this implies that x2 = −1 = 2, but remember that
computational in finite fields are followed by mod p [Gong et al., 2013]
.

+ 0 1 2 x 1+x 2+x 1+2x 2x 2+2x
0 0 1 2 x 1+x 2+x 1+2x 2x 2+2x
1 1 2 0 1+x 2+x x 2+2x 1+2x 2x
2 2 0 1 2+x x 1+x 2x 2+2x 1+2x
x x 1+x 2+x 2x 1+2x 2+2x 1 0 2

1+x 1+x 2+x x 1+2x 2+2x 2x 2 1 0
2+x 2+x x 1+x 2+2x 2x 1+2x 0 2 1

1+2x 1+2x 2+2x 2x 1 2 0 2+x 1+x x
2x 2x 2x+1 2+2x 0 1 2 1+x x 2+x

2+2x 2+2x 2x 1+2x 2 0 1 x 2+x 1+x

Table 15: Addition table for F3[x]/(f(x))

96

On some computational and applications of finite fields

* 0 1 2 x 1+x 2+x 1+2x 2x 2+2x
0 0 0 0 0 0 0 0 0 0
1 0 1 2 x 1+x 2+x 1+2x 2x 2+2x
2 0 2 1 2x 2+2x 1+2x 2+x x 1+x
x 0 x 2x 2 x+2 2x+2 x+1 1 2x+1

1+x 0 1+x 2+2x x+2 2x 1 2 2x+1 x
2+x 0 2+x 1+2x 2x+2 1 x 2x x+1 2
1+2x 0 1+2x 2+x x+1 2 2x x 2x+2 1

2x 0 2x x -2 2x+1 x+1 2x+2 x x+2
2+2x 0 2+2x 1+x 2x+1 x 2 1 x+2 2x

Table 16: Multiplication Table for F3[x]/(f(x))

6 Applications of Finite Fields

6.1 Algebraic Coding Theory

It is one of the major applications of finite field. This theory has its origin in
famous theorem of Shannon that guarantees the existence of codes that can trans-
mit information at rates close to the capacity of a communication channel with
an arbitrary small probability of error. One of the purposes of algebraic coding
theory, the theory of error-correcting and error-detecting codes is to devise meth-
ods for construction of such codes [von zur Gathen et al.]. During the last two
decades more and more abstract algebraic tools such as the theory of finite fields
and the theory of polynomials over finite fields have influenced coding. In partic-
ular, the description of redundant codes by polynomials over Fq is a milestone in
this development. The fact that one can use shift registers for coding and decod-
ing establishes a connection with linear recurring sequences. In our discussion of
algebraic coding theory we do not consider any of the problems of the implemen-
tation or technical realization of the codes. We restrict ourselves to the study of
basic properties of block codes and the description of some interesting classes of
block codes.

6.1.1 Linear coding

The problem of communicating the information, in particular the coding and de-
coding of information for the reliable transmission over a ”noisy” channel is of
great importance today. Typically, one has to transmit a message which consists
of finite string of symbols that are elements of some finite alphabet. For instance,
if this alphabet consists of simply 0 and 1, the message can be described as binary

97

Jean Pierre Muhirwa

number.

Generally the alphabet is assumed to be finite fields. Now the transmission of
finite string of elements of the alphabet over a communication channel need not
to be perfect in the sense that each bit of information is transmitted unaltered
over this channel. As there is no ideal channel without ”noise” the receiver of
the transmitted message may obtain distorted information and may make errors in
interpreting the transmitted signal.

One of the main problems of coding theory is to make the errors, which occur for
instance because of noisy channel, extremely improbable.

The methods of improve the reliability of transmission depend on properties of
finite fields. A basic idea in algebraic coding theory is to transmit redundant infor-
mation together with the message one wants to communicate; that is, one extends
the string of message symbols to a longer string in a systematic way.

A simple model of communication system is shown in the figure bellow:

We assume that the symbols of the message and the coded message are elements
of the same finite field Fq. Coding means to encode a block of k message symbols
a1, a2, ..., ak where ai ∈ Fq into a code word c1, c2, ..., cn of n symbols, where
cj ∈ Fq, with n > k. We regard the code word as an n-dimensional row vector
c ∈ F n

q . Thus f in the Figure below is a function from F k
q into F n

q , called a coding
scheme, and g : F n

q → F k
q is a decoding scheme.

Figure 1: Communication figure that shows how a message is coded, transmitted
and decoded

A simple type of coding scheme arises when each block a1a2...ak of message sym-
bols is encoded into a code word of the form a1a2...akck+1...cn, where the first k

98

On some computational and applications of finite fields

symbols are the original message symbols and the additional n− k symbols in Fq
are control symbols. Such coding schemes are often presented in the following
way. Let H be a given (n− k)× n matrix with entries in Fq that is of the special
formH = (A, In−k), whereA is (n−k)×k matrix and In−k is the identity matrix
of order n − k. The control symbols ck+1, ..., cn can then be calculated from the
system of the equations HCT = 0, for code word c. The equations of this system
are called parity-check equations. The examples of this theory will be given later.

6.2 Error-Correcting Codes (Practice of Linear Code)
Since the theory of codes was developed in order to ensure reliability of transmit-
ted information, as an example, consider the ISBN (International Standard Book
Number) of published book. This number usually appears on the back of the book
in the bottom right-hand corner. The ISBN consists of a nine-digits 0, 1, ..., 9 or
the symbol X (standing for 10). This final symbol may be calculated from the
other nine as follows:
From an integer N by adding together the first digit, twice the second digit,
three times the third and so on. The check digit is the remainder when N is
divided by 11. For example, a book with first 9 digits 019853453 will have
N = 0 + 2 + 27 + 32 + 25 + 18 + 28 + 40 + 27 = 199, and so the check
digit should be 1, giving ISBN 01953453 1. The point about such a number is
that if it is inaccurately copied, and an error is made in any of the digits in the
first nine locations (such as the last ”5” being copied as a ”3”), then the result-
ing number will not have ”1” as its check digit. This is an example of error-
detecting code: the ISBN detects when a single error is made after transcribing
the number. Another example of finding check digit is that of 102463798, then
N = 1× 1+0× 2+2× 3+4× 4+6× 5+3× 6+7× 7+9× 8+8× 9 = 264,
and divide this number by 11 to get the check digit which is 0, and hence giving
ISBN 102463798 0 In this part we shall explain methods which not only detect
errors, but also enables us to correct it.

Definition 6.1. Let p be prime integer. Denote by V (n, p) the set of all sequences
of length n of the elements from the set Zp of congruence classes modulo p, so that
V (n, p) has pn elements. We will usually omit the commas and brackets commonly
used to denote elements of the vector spaces, so that (1, 0, 1), will be written as
101. Thus V (3, 2) consists of the eight sequences 000, 001, 010, 011, 100, 101, 110, 111
while V (2, 3) consists of the nine sequences 00, 01, 02, 10, 11, 12, 20, 21, 22. We
add sequences by adding the corresponding terms, by just remembering that we
are adding congruence classes. Thus, for example in V (3, 2), 110 + 011 = 101

99

Jean Pierre Muhirwa

while in V (2, 3), 12 + 11 = 20. We can also multiply an element in V (n, p) by
a congruence class by multiplying each term in the sequence by the representa-
tive for the congruence class and reducing modulo p. For example, in the space
V (3, 3) we see that 2(102) =201. In fact V (n, p) is a vector space of dimension n
over the field Zp

Definition 6.2. A linear (n, k)-code is any k-dimensional subspace C of the vec-
tor space V (n, p). Thus C satisfies the following two conditions:
The difference of any two elements of C is an element of C, and the product of
any element of C with an element of Zp is also an element of C. The elements of
C are called codewords.

Note: A subspace of a vector space is necessary non-empty, so condition (1) en-
sures that the zero element of the vector space is in the subspace C. It then follows
by the additive version that C is a group under addition.

Example 6.1. Consider the four elements 000, 001, 010, 011 of V (3, 2). These are
precisely the four sequences which start with 0. This subspace of V (3, 2) satisfies
condition one, that subtracting any two of these gives a sequence starting with
0. Also condition (2) holds, since 0 and 1 are the only elements of Z2 and then
multiply each sequence by any of these two elements we get an element starting
with 0. Therefore the four elements form a linear (3, 2)-code.

Definition 6.3. Let v be any element of V (n, p). The weight of v is the number
of non-zero terms in the sequence v. If v and w are two elements of V (n, p), the
distance d(v, w) is the number of places at which v and w differ.

Example 6.2. In V (4, 3) the weight of 1201 is three, since there are three non-
zero entries. The distance from 1201 to 2211 is two, since these two vectors differ
in two places. In V (5, 5) the weight of 13402 is four and so on.

Proposition 6.1. Let u, v and w be any elements of V (n, p). Then

1. d(u, v) ≥ 0 with equality if and only if u = v;

2. d(u, v) = d(v, u); and

3. d(u, v) + d(v, w) ≥ d(u,w).

100

On some computational and applications of finite fields

Proof.

1. It follows directly from the definition that d(u, v) is positive except u and v
do not differ anywhere.

2. This is always true for u and v.

3. In each location at which u and w differ, v cannot agree with both u and w.
Thus every contribution to the value of d(u,w) provides a contribution to
either d(u, v) or to d(v, w). 2

Definition 6.4. Let C be subspace of V (n, p). The minimum distance d of C is the
least distance between different codewords: d = minu,v{d(u, v)}. The next result
shows that for a linear code, the minimum distance d can be calculated from the
code words.

Proposition 6.2. Let C be a linear (n − k)-code. Then the minimum distance of
C is equal to the smallest possible weight of any non-zero codeword.

Proof.

Let f be the smallest possible weight of any non-zero codeword, and let 0 denote
the sequence consisting entirely of zeros. Suppose that w is a codeword of weight
f . Then d(w, 0) if and only if so f ≥ d. Now let u and v be pair of codewords
with d(u, v) = d. Since C is a linear code, the word u−v is a codeword of weight
d, so d ≥ f . It follows that d = f .

The importance of the minimum distance lies in the detecting the errors and cor-
rection of those errors. To see this, consider the following proposition. 2

Proposition 6.3. Let C be linear code with minimum distance d. Then C detects
d− 1 or fewer errors, and corrects e errors for any e with 2e+ 1 ≤ d.

Proof.

Let v be a vector which has distance f from a codeword c, where f ≤ d− 1. We
think of c as the transmitted word and v as the received word, so that there are f er-
rors in transmission. Since d is the minimum distance for C, the received v cannot
be a codeword. We express this by saying that the codeC detects d or fewer errors.
Suppose now that v has distance e from a codeword c and also that 2e + 1 ≤ d.
Then there can be no other codeword near to v: If c1 was in C and d(v, c1) ≤ e,

101

Jean Pierre Muhirwa

then by property of triangle inequality d(c, c1) ≤ d(c, v) + d(v, c1) ≤ e + e < d,
which contradicts the definition. Thus there is a unique nearest codeword to v,
and we say that C corrects e errors in this case. 2

Definition 6.5. Let n and k be any positive integers with n > k. Let p be a prime
number. A (standard) generator matrix G over Zp is a k × n matrix with entries
in Zp, in which the first k columns form an identity k × k matrix. Given such a
matrix, we obtain a linear code by regarding the rows as sequences and taking all
possible linear combinations of these. Alternatively, we can consider the code as
consisting of all sequences obtained from matrix multiplications of the form u.G
as u varies over all sequences of length k over Zp.

Example 6.3. Consider the generator matrix over Z2

G =

(
1 0 1
0 1 1

)
The corresponding code consists of the combinations of the rows and so has four
elements: 000; 101; 011 and 110. The codewords can also be described as the
vectors of the form uG, as u varies over the four vectors 00; 01; 10; 11. Every
non-zero codeword has weight 2, so the codeword detects one error, but does not
correct errors. For example, 111 is not among codewords (so it is detected) but
it is of equal distance from the two codewords 101 and 011 in G, so it cannot be
corrected.

Example 6.4. Another example of a binary code (code over Z2) is provided by
the matrix

G =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

There are 8 code words obtained from the rows of this matrix:
000000; 100110; 010101; 110011; 001011; 101101; 011110; 111000.

There are four code words of weight 3, three code words of weight 4 and one of
weight 0. The minimum distance (d) of this code is therefore 3, so the code detects
d − 1 errors means two errors and corrects one error. For example, 100111 lies
at distance one from a unique codeword, 100110 and so there is unique way to
correct one error. The vector 100001, however has distance two from 000000 and
110011, so cannot be corrected.

102

On some computational and applications of finite fields

Example 6.5. Consider the following generator matrix over Z3 :

G =

(
1 0 2 1
0 1 1 2

)
In this case, the codeword consists of the linear combinations of the rows of the
matrix, including multiplication by 1 and 2 since p = 3. There are 9 code words:
0000; 1021; 2012; 0112; 1100; 2121; 0221; 1212 and 2200.

Since there is a codeword of weight 2, this code detects one error. Note that the
minimum distance is 2 despite the fact that each row of the generator matrix has
weight 3.

Example 6.6. Consider also the following important code over Z3
1 0 0 0 0 0 0 1 2 2 1
0 1 0 0 0 0 1 0 1 2 2
0 0 1 0 0 0 2 1 0 1 2
0 0 0 1 0 0 2 2 1 0 1
0 0 0 0 1 0 1 2 2 1 0
0 0 0 0 0 1 1 1 1 1 1

By considering this matrix, the minimum distance of this code is at most 5 since
there is a row of the generator matrix of weight 5. It can be shown that the min-
imum distance is exactly 5, so that code corrects two errors. This is the Ternary
Golay code and is one of the most important code. More details and its descrip-
tions are found in [Cohen et al., 2013].

We now consider the problem of decoding a linear (n, k)-code C. This is done by
listing the left cosets of the subgroup C of V (n, p) in a table known as the cosets
decoding table. The table is organized by writing the codewords as its first row
with the zero codeword first. Each subsequent row is a left coset of C. The entries
in the first column are the coset representatives, now called cosets leaders. The
algorithm for choosing the rth-coset leader is to choose any word of minimum
weight not already included in the first (r − 1) rows. Then to decode a given
vector, locate it in the table, and correct it to the codeword standing in the same
column of the coset decoding table.

Example 6.7. Consider Example 6.6, above there are eight code words which
form a subgroup C of the vector space V (6, 2). Since V has 26 = 64 elements,

103

Jean Pierre Muhirwa

this subgroup has index 64/8=8. To form a complete coset decoding table, we list
the elements of C in a row. We then choose any element v2 which is of smallest
weight among those not in the first row and write this at the left hand end of the
second row. The second row is obtained by adding each element of C in turn to
this. Thus the second row is just the coset of C with respect to v2. Continue this
process by choosing v3 to be of the smallest weight among the elements not in the
first two rows, and so on. This process is not unique, but depends upon the choice
of coset representatives [Pless, 1998]. One example of these choices is given in
the following table

000000, 100110, 010101, 110011, 001011, 101101, 011110, 111000
100000, 000110, 110101, 010011, 101011, 001101, 111110, 011000
010000, 110110, 000101, 100011, 011011, 111101, 001110, 101000
001000, 101110, 011101, 111011, 000011, 100101, 010110, 110000
000100, 100010, 010001, 110111, 001111, 101001, 011010, 111100
000010, 100100, 010111, 110001, 001001, 101111, 011100, 111010
000001, 100111, 010100, 110010, 001010, 101100, 011111, 111001
100001, 000111, 110100, 010010, 101010, 001100, 111111, 011001

To decode any element v of V (6, 2), we locate v in the table and then correct it to
the element in the first row of the column containing v. Thus to use the table to
decode 011010, we need to locate it (it is in the fifth row and seventh column) and
correct it to the element in the first row and the same column, giving 011110. Note
that the cosets representative for the last row is not easy to find. According to the
algorithm, we need a word of weight 2 not in the first seven rows. The represen-
tative we choose, 100001, is not unique. This is actually a somewhat cumbersome
way to arrange the decoding, since an exhaustive search is required. The cal-
culation can be made more systematic for codes given by (standard) generator
matrices using (standard) parity check matrices [Sayed, 2011].

Definition 6.6. Let C be an (n, k)-linear code over Zp defined using k × n gen-
erator matrix G of the form

G =

1 0 0 ... 0
0 1 0 ... 0 A
...
0 0 0 ... 1

where, A is k × (n− k) matrix. The parity check matrix associated with G is the
(n− k)× n matrix

104

On some computational and applications of finite fields

P =

1 0 0 ... 0

−AT 0 1 0 ... 0
...
0 0 0 ... 1

Note: The generator matrix G above is often written, in a block matrix form as
G = (Ik|A). similarly, the parity check matrix is written as P = (−AT |I(n−k))
[kar, 2012].

Example 6.8. The parity check matrix of the generator matrix over Z2. The parity
check of the matrix of

G =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 ,

is the matrix

P =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

[kar, 2012]. This matrix is obtained by considering the matrix

A =

1 1 0
1 0 1
0 1 1

 ,

and then after computing −AT get the above matrix P given by −AT |I(n−k) [kar,
2012].

Definition 6.7. Let C be a linear (n, k)-code with generator matrix G and asso-
ciated parity matrix P . For any v in V (n, p), let vT denote the transpose of v, the
column vector obtained by writing the members of the sequence v vertically. Then
the syndrome of v is the element of V (n− k, p) given by PvT . Thus in the above
example, the syndrome of v = 100000 is 110 and the syndrome of v = 110011 is
000.

Note: If C is a code with standard parity check matrix P , then an element v
in V (n, p) is a codeword if and only if the syndrome of v is the zero sequence.

105

Jean Pierre Muhirwa

Example 6.9. We need not store or the complete coset decoding table, but merely
a table of two columns, the coset representatives and their syndromes. In our
previous example in which P was1 1 0 1 0 0

1 0 1 0 1 0
0 1 1 0 0 1

This table would be as the following,

Coset representatives Syndromes
000000 000
100000 110
010000 101
001000 011
000100 100
000010 010
000001 001
100001 111

Table 17: This a table of syndromes and cosets representatives

Thus to decode a given vector such as 100111, calculate its syndrome to obtain
001. This is the syndrome for the seventh row, so this vector is not a codeword, but
the word 100110 obtained by subtracting 000001 is a codeword. The advantage
of listing coset representatives together with syndromes is that, it is much easier to
find any missing coset representatives, since each sequence in V (n− k, p) occurs
as syndrome. Thus in this above example, the syndrome for the last row must
be 111 because the other seven sequences of length 3 have already been used as
syndromes. This enables us to find a representative relatively easily (compared
with searching through the first seven rows), by seeing how to combine known
coset leaders and their syndromes to obtain 111.

6.3 Cyclic Codes
Definition 6.8. In the paper of [Peterson and Brown, 1961], a linear code C is
called a cyclic code if it has the following property:

If (c0, c1, c2, ..., cn−1) ∈ C, then it is also reality that (c1, c2, ..., cn−1, c0) ∈ C.
From this definition the automorphism group Aut(C) of a code C is the set of per-
mutations δ ∈ Sn such that δ(c) ∈ C for all c ∈ C, where δ(c0, c1, c2, ..., cn−1) =

106

On some computational and applications of finite fields

(cδ(0), ..., cδ(n−1)). In other words, the code, C is cyclic if and only if the permuta-
tion δ = (0, 1, 2, ..., n− 1) is in Aut (C)[Roberts and Vivaldi, 2005].

Example 6.10. Let C be a subspace of a vector space V (6, 7) and consider the
code words v = (345601) ofC, thenC is cyclic code if (4, 5, 6, 0, 1, 3); (5, 6, 0, 1, 3, 4);
(6, 0, 1, 3, 4, 5); (0, 1, 3, 4, 5, 6); (1, 3, 4, 5, 6, 0), all are elements of C. We can de-
fine an algebraic structure by looking at cyclic code if we let C to be a cyclic code
over the field Fq and we set Rn + Fq[x]/(x

n − 1). We can take the elements of
Rn as polynomials of degree at most n − 1 over Fq, where multiplication can be
happen except that xn = 1, xn+1 = x , and so on. From this, we can deduce one
to one correspondence between polynomials and the code words of cyclic code as
can be seen in [Sziklai, 2013].

Example 6.11. Let C be a subspace of a vector space V (5, 7) over F7 = Z/7Z
and let consider the code word (1, 2, 3, 5, 6). Then we can find the polynomial
of degree less than 5 correspond to this code word which is given by 1 + 2x +
3x2 + 5x3 + 6x4. To find the elements of Rn + Fq[x]/(x

n − 1), we do it as
found for the previous case of quotient finite fields, and these are precisely the
polynomials of degree at most n − 1, hence the total number of the elements of
Rn + Fq[x]/(x

n − 1), are qn elements.

Example 6.12. Let find the elements of R3 + F2[x]/(x
3 − 1), here our q = 2

and n = 3, therefore the total number of the elements of this polynomial field are
qn = 23 = 8 polynomials of degree less than 3 whose coefficients are in F2. So
the elements R3 + F2[x]/(x

3− 1) are 0, 1, x, 1+x, x2, x2+1, 1+x+x2, x+x2.

Theorem 6.1. From this kind of cyclic codes we define also an ideal of Rn given
by IC + (c(x) + c0 + c1x+ ...+ cn−1x

n−1) ∈ Rnc + (c0, c1, ..., cn−1) ∈ C

Proof.

Let c, d ∈ IC , a ∈ Rn, then we want to show that c − d ∈ IC and ac ∈ IC ,
therefore c(x) = c0 + c1x+ ...+ cn−1x

(n−1), d(x) = d0 + d1x+ ...+ d(n−1)x
(n−1)

and a(x) = a0+a1x+ ...+an−1x
(n−1). So, c(x)−d(x) = c0−d0+(c1−d1)x+

...+ (cn−1 − dn−1)x
(n−1) ∈ IC ⇒ (c0 − d0, c1 − d1, ..., cn−1 − dn−1) ∈ C.

C ∈ IC ⇔ (c0, c1, ..., cn−1) ∈ C
d ∈ IC ⇔ (d0, d1, ..., dn−1) ∈ C.
(c0−d0, c1−d1, ..., cn−1−dn−1) ∈ C, is a code word of cyclic code C (since C is
a vector space of V (n, q) over Fq. It remains to show that a(x)c(x) is an element
of IC . Then a(x)c(x) = (a0+a1x+...+an−1x

(n−1))(c0+c1x+...+cn−1x
(n−1)) =

a0c0+a0c1+a0c2+...a1c0+a1c1+...+a2c0+..., is also a code word of length n−1.

107

Jean Pierre Muhirwa

Let illustrate by using example, let a(x) ∈ R3 + F2[x]/(x
3 − 1), and c(x) ∈ IC ,

we have a(x) = a0 + a1x+ a2x
2 and c(x) = c0 + c1x+ c2x

2, where ai ∈ Fq for
i = 0, 1, 2 and ci ∈ C for i = 1, 2, 3. Then a(x)c(x) = (a0+a1x+a2x

2)(c0+c1x+
c2x

2) = a0c0+(a0c1+a1c0)x+(a0c2+a1c1+a2c0)x
2+(a1c2+a2c1)x

3+(a2c2)x
4.

But x3 = 1 and x4 = x, then we have a0c0+a1c2+a2c1+(a0c1+a1c0+a2c2)x+
(a0c2 + a1c1 + a2c0)x

2 ∈ IC .

⇒ (a0c0 + a1c2 + a2c1; a0c1 + a1c0 + a2c2; a0c2 + a1c1 + a2c0) ∈ C.
⇒ (a0c0, a0c1, a0c2) + (a1c2, a1c0, a1c1) + (a2c1, a2c2, a2c0).
⇒ a0(c0, c1, c2) + a1(c2, c0, c1) + a2(c1, c2, c0).
But (c0, c1, c2), (c2, c0, c1), (c1, c2, c0) ∈ C since C is cyclic code. Therefore IC is
an ideal of Rn. 2

Theorem 6.2. Let IC be an ideal of R(n) and let g(x) ∈ C be monic polynomial
of minimal degree l = deg(g(x)). Then

a. g(x) is the only monic polynomial of degree l in IC .

b. g(x) generates IC as an ideal of Rn.

Proof.

Let f be any other non- zero monic polynomial of minimal of I with de-
gree less than l then f − g ∈ I , but f 6= g ⇒ f − g 6= 0, f(x) − g(x) =
ckx

k+ ...+ c1x+ c0 and this polynomial is not monic, it becomes monic if we di-
vide it by c−1

k with ck 6= 0 , and then we get 1/ck(f(x)−g(x)) = xk+...+d1x+d0,
where d = ci/ck for i = 0, 1, ..., k. Hence k < l which contradicts that l is the
minimal degree. Therefore, g(x) is unique monic polynomial of the minimal de-
gree. g(x) generates I means that I =< g >= gh, h ∈ Rn, this also means if
f ∈ I , then f = gh for some h ∈ Rn . Let f ∈ I ⊂ Rn = Fq[x]/(x

n − 1), write
f(x) = g(x)q(x) + r(x) ∈ I with deg(r(x)) < deg(g(x)) = l.
⇔ f(x)− g(x)q(x) = r(x) ∈ I (since q(x), g(x) ∈ I).
⇒ r(x) = 0
⇒ f(x) = g(x)q(x)
⇒ f ∈< g > and I ∈< g > But g ∈ I , so < g >∈ I . Hence I =< g >. 2

7 Conclusion
This paper has discussed about finite fields whereby some important defini-

tions, propositions, theorems and their proofs have been given in order to capture

108

On some computational and applications of finite fields

what finite fields are and how finite fields deal with operations in different ways
from usual known operations that may be performed for a set of integers. The op-
erations procedure required any arithmetic followed by reduction of p, and this is
the reason why several tables from finite fields Z2 to Z17 are computed to highlight
how one may compute in finite fields. It includes polynomials arithmetic opera-
tions over finite fields such as addition, subtraction, multiplication, and division.
The arithmetic polynomials over finite fields are computed by using the reduction
of p to its coefficients, because their coefficients are drawn from finite fields that
are taken into consideration. Besides polynomials computational over finite fields,
this paper also explains what are cyclic codes and their applications. This research
paper has further shown the applications of finite fields in the most important do-
main of communication regarding algebraic coding theory, code error-detection
and error-correction, whereby coding and decoding schemes using cosets repre-
sentative and syndromes table are discussed by using tangible examples. From
this paper one may learn about finite fields and its applications and be able to ex-
tend up to p− 1 class residues with p being any prime number or any power of a
prime number.

8 Acknowledgement

I would like to acknowledge the financial support from the Eastern Africa Uni-
versities Mathematics Programme-International Science Programme, University
of Rwanda Node (EAUMP-ISP, UR-Node).

References

Parity check matrix recognition from noisy codewords. arXiv preprint
arXiv:1205.4641, 2012.

Arjeh M Cohen, Hans Cuypers, and Hans Sterk. Some tapas of computer algebra,
volume 4. Springer Science & Business Media, 2013.

David A Cox. Galois Theory., volume 61. John Wiley & Sons, 2011.

Guang Gong, Katalin Gyarmati, Fernando Hernando, Sophie Huczynska, Dieter
Jungnickel, Gohar M Kyureghyan, Gary McGuire, Harald Niederreiter, Alina
Ostafe, and Igor E Shparlinski. Finite fields and their applications: character
sums and polynomials, volume 11. Walter de Gruyter, 2013.

109

Jean Pierre Muhirwa

Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and
their Applications. Cambridge University Press, 2 edition, 1994. doi:
10.1017/CBO9781139172769.

William Wesley Peterson and Daniel T Brown. Cyclic codes for error detection.
Proceedings of the IRE, 49(1):228–235, 1961.

Vera Pless. Introduction to the theory of error-correcting codes, volume 48. John
Wiley & Sons, 1998.

John AG Roberts and Franco Vivaldi. Signature of time-reversal symmetry in
polynomial automorphisms over finite fields. Nonlinearity, 18(5):2171, 2005.

Lajos Rónyai. Galois groups and factoring polynomials over finite fields. SIAM
Journal on Discrete Mathematics, 5(3):345–365, 1992.

Mohamed Sayed. Coset decomposition method for decoding linear codes. Inter-
national Journal of Algebra, 5(28):1395–1404, 2011.

Péter Sziklai. Applications of polynomials over finite fields. PhD thesis, ELTE
TTK, 2013.

Joachim von zur Gathen, Igor E Shparlinski, and Henning Stichtenoth. Finite
fields: Theory and applications.

110

