Uniqueness of an entire function sharing fixed points with its derivatives

Md Majibur Rahaman *
Imrul Kaish ${ }^{\dagger}$

Abstract

The uniqueness problems of an entire functions that share a nonzero finite value have been studied and many results on this topic have been obtained. In this paper we prove a uniqueness theorem for an entire function, which share a linear polynomial, in particular fixed points, with its higher order derivatives. Keywords: Uniqueness; Entire functions; Fixed points; Sharing; Derivatives 2010 AMS subject classifications: 30D35. ${ }^{1}$

[^0]
1 Introduction, Definitions and Results

Let f be a non-constant meromorphic function in the open complex plane \mathbb{C}. A meromorphic function $a=a(z)$ is called a small function of f if $T(r, a)=$ $S(r, f)$, where $T(r, f)$ is the Nevanlinna characteristic function of f and $S(r, f)=$ $\circ\{T(r, f)\}$, as $r \rightarrow \infty$, possibly outside a set of finite linear measure.

Let f and g be two non-constant meromorphic functions and $a=a(z)$ be a polynomial. We say that f and g share a CM if $f-a$ and $g-a$ have the same zeros with same multiplicities. On the other hand, we say that f and g share a IM if $f-a$ and $g-a$ have the same zeros ignoring multiplicities. We express the CM sharing and IM sharing respectively by the notations $f=a \rightleftharpoons g=a$ and $f=a \Leftrightarrow g=a$.

Let $z_{k}(k=1,2, \ldots)$ be zeros of $f-a$ and t_{k} be the multiplicity of the zero z_{k}. If $z_{k}(k=1,2, \ldots)$ are also zeros of $g-a$ and the multiplicity of the zero z_{k} is at least t_{k} then we use the notation $f=a \rightarrow g=a$.

For standared definitions and notations of the distribution theory we refer the reader to Hayman [1964].

The problem of uniqueness of meromorphic functions sharing values with their derivatives is a special case of the uniqueness theory of meromorphic function. There are some results related to value sharing.

In the begining, Jank, Mues and Volkmann Jank et al. [1986] considered the situation that an entire function shares a nonzero value with its derivatives and they prove the following result.

Theorem A. Jank et al. [1986]. Let f be a non-constant entire function and a be a non-zero finite value. If $f, f^{(1)}$ and $f^{(2)}$ share a $C M$, then $f \equiv f^{(1)}$.

Following example shows that in Theorem A the second derivative cannot be replaced by any higher order derivatives.

Example 1.1. Let $k(\geq 3)$ be an integer and $\omega(\neq 1)$ is a $(k-1)^{\text {th }}$ root of unity. We put $f=e^{\omega z}+\omega-1$. Then $f, f^{(1)}$ and $f^{(k)}$ share the value ω CM, but $f \not \equiv f^{(1)}$.

On the basis of this example, Zhong improved Theorem A by considering higher order derivetives in the following way.

Theorem B. Let f be a non-constant entire function and a be a non-zero finite number. Also let $n(\geq 1)$ be a positive integer. If f and $f^{(1)}$ share the value a CM, and if $f^{(n)}(z)=f^{(n+1)}(z)=a$ whenever $f(z)=a$, then $f \equiv f^{(n)}$.

In 2002, Chang and Fang [2002] extendeed Theorem A by considering shared fixed points.

Uniqueness of an entire function sharing fixed points with its derivatives

Theorem C. Chang and Fang [2002]. Let f be a non-constant entire function. If f, $f^{(1)}$ and $f^{(2)}$ share $z C M$, then $f \equiv f^{(1)}$.

Later in 2003, Wang and Yi [2003] improved Theorem A and generalize Theorem B by considering higher order derivatives in the following way.

Theorem D. Wang and Yi [2003]. Let f be a non-constant entire function and a be a non-zero finite constant. Also let m and n be positive integers satisfying $m>n$. If f and $f^{(1)}$ share the value a CM, and if $f^{(m)}(z)=f^{(n)}(z)=a$ whenever $f(z)=a$, then

$$
f(z)=A e^{\lambda z}+a-\frac{a}{\lambda},
$$

where $A(\neq 0)$ and λ are constants satisfying $\lambda^{n-1}=1$ and $\lambda^{m-1}=1$.
In this paper we improve Theorem D by considering the situation when a nonconstant entire function f shares a linear plynomial $a(z)=\alpha z+\beta, \alpha(\neq 0)$ and β are constants, with higher order derivatives. The main result of the paper is the following theorem.

Theorem 1.1. Let f be a non-constant entire function and $a(z)=\alpha z+\beta$ be a polynomial, where $\alpha(\neq 0)$ and β are constants. Also let m amd n be two positive integers satisfying $m>n>1$. If

$$
f(z)=a(z) \rightleftharpoons f^{(1)}(z)=a(z)
$$

and

$$
f(z)=a(z) \rightarrow f^{(m)}(z)=f^{(n)}(z)=a(z)
$$

then

$$
f(z)=C e^{z}
$$

or

$$
f(z)=C e^{\lambda z}+a(z)-\frac{a(z)}{\lambda}+\frac{\alpha(1-\lambda)}{\lambda^{2}},
$$

where C and λ are non-zero constants.

Md Majibur Rahaman and Imrul Kaish

2 Lemmas

In this section we state some necessary lemmas.
Lemma 2.1. Ngoan and Ostrovskii [1965]. Let f be an entire function of order at most 1 and k be a positive integer, then

$$
m\left(r, \frac{f^{(k)}}{f}\right)=o(\log r)
$$

as $r \rightarrow \infty$.
The above lemma motivates us to prove the following:
Lemma 2.2. Let f be an entire function of finite order and k be a positive integer. Then for any small function $a(z)$ with respect to $f(z)$,

$$
m\left(r, \frac{f^{(k)}(z)-a^{(k)}(z)}{f(z)-a(z)}\right)=o(\log r)
$$

as $r \rightarrow \infty$.
Proof. Let $g(z)=f(z)-a(z)$. Then

$$
g^{(k)}(z)=f^{(k)}(z)-a^{(k)}(z) .
$$

Now by Lemma 2.1 and using above equality, we have

$$
m\left(r, \frac{g^{(k)}(z)}{g(z)}\right)=o(\log r)
$$

as $r \rightarrow \infty$. This implies

$$
m\left(r, \frac{f^{(k)}(z)-a^{(k)}(z)}{f(z)-a(z)}\right)=o(\log r)
$$

as $r \rightarrow \infty$. This proves the lemma.
Lemma 2.3. Clunie [1962]. Let f be a transcendental meromorphic solution of the equation

$$
f^{n} P(f)=Q(f),
$$

where $P(f)$ and $Q(f)$ are polynomials in f and its derivatives with meromorphic coefficients a_{j} (say). If the total degree of $Q(f)$ is at most n, then

$$
m(r, P(f)) \leq \sum_{j} m\left(r, a_{j}\right)+S(r, f) .
$$

Uniqueness of an entire function sharing fixed points with its derivatives

Lemma 2.4. Chen and Li [2014]. Let $a(z)$ be an entire function of finite order and $Q(z)$ be a non-constant polynomial. If f is an entire solution of the equation

$$
f^{(k)}-e^{Q(z)} f=a(z)
$$

such that $\rho(f)>\rho(a)$, then $\rho(f)=\infty$.
We use this Lemma to prove the following one.
Lemma 2.5. Let f be a non-constant entire function of finite order and $a(z)=$ $\alpha z+\beta$ be a polynomial, where $\alpha(\neq 0)$ and β are constant. Also let k be a positive integer. If $f(z)$ and $f^{(k)}(z)$ share $a(z) C M$, then

$$
\begin{equation*}
\frac{f^{(k)}(z)-a(z)}{f(z)-a(z)} \equiv c, \tag{2.1}
\end{equation*}
$$

for some nonzero constant c.
Proof. Since f has finite order and since $f(z)$ and $f^{(k)}(z)$ share $a(z)$ CM, it follows from the Hadamard factorization theorem that

$$
\begin{equation*}
\frac{f^{(k)}(z)-a(z)}{f(z)-a(z)} \equiv e^{Q(z)} \tag{2.2}
\end{equation*}
$$

where $Q(z)$ is a polynomial.
Suppose that $F(z)=f(z)-a(z)$. Then $F^{(k)}(z)=f^{(k)}(z)$.
From (2.2) and above equality, we have

$$
F^{(k)}(z)-e^{Q(z)} F(z)=a(z)
$$

If $Q(z)$ is non-constant, then from above equality and by Lemma 2.4, we get F has infinite order. Since f has finite order, this is impossible. Hence $Q(z)$ is a constant. Therefore from (2.2), we obtain (2.1) for a non-zero constant c. This proves the lemma.

Lemma 2.6. Let f be a transcendental entire function of finite order and $a(z)=$ $\alpha z+\beta$ be a polynomial, where $\alpha(\neq 0)$ and β are constants. Also let m be a positive integer. If
(i) $m\left(r, \frac{1}{f(z)-a(z)}\right)=S(r, f)$,
(ii) $f(z)=a(z) \rightleftharpoons f^{(1)}(z)=a(z)$
and
(iii) $f(z)=a(z) \rightarrow f^{(m)}(z)=a(z)$,
then

$$
f(z)=C e^{z}
$$

where C is a non-zero constant.

Md Majibur Rahaman and Imrul Kaish

Proof. Let

$$
\begin{equation*}
h(z)=\frac{f^{(1)}(z)-a(z)}{f(z)-a(z)} . \tag{2.3}
\end{equation*}
$$

Since $f(z)$ and $f^{(1)}(z)$ share $a(z) \mathrm{CM}$, we see that $h(z)$ is an entire function.
Now by Lemma 2.1, Lemma 2.2 and from the hypothesis of Lemma 2.6, we deduce that

$$
\begin{align*}
T(r, h(z)) & =m(r, h(z)) \\
& =m\left(r, \frac{f^{(1)}(z)-a(z)}{f(z)-a(z)}\right) \\
& \leq m\left(r, \frac{f^{(1)}(z)-a^{(1)}(z)}{f(z)-a(z)}\right)+m\left(r, \frac{a^{(1)}(z)-a(z)}{f(z)-a(z)}\right)+\log 2 \\
& =S(r, f) . \tag{2.4}
\end{align*}
$$

We rewrite (2.3), as

$$
\begin{align*}
f^{(1)}(z) & =h(z) f(z)+a(z)(1-h(z)) \\
& =\xi_{1}(z) f(z)+\eta_{1}(z), \tag{2.5}
\end{align*}
$$

where $\xi_{1}(z)$ and $\eta_{1}(z)$ are defined by

$$
\xi_{1}(z)=h(z), \quad \eta_{1}(z)=a(z)(1-h(z)) .
$$

By (2.5), we have

$$
\begin{aligned}
f^{(2)}(z) & =\xi_{1}(z) f^{(1)}(z)+\xi_{1}^{(1)}(z) f(z)+\eta_{1}^{(1)}(z) \\
& =\xi_{1}(z)\left[\xi_{1}(z) f(z)+\eta_{1}(z)\right]+\xi_{1}^{(1)}(z) f(z)+\eta_{1}^{(1)}(z) \\
& =\left[\xi_{1}^{(1)}(z)+\xi_{1}(z) \xi_{1}(z)\right] f(z)+\eta_{1}^{(1)}(z)+\eta_{1}(z) \xi_{1}(z) \\
& =\xi_{2}(z) f(z)+\eta_{2}(z),
\end{aligned}
$$

where

$$
\xi_{2}(z)=\xi_{1}^{(1)}(z)+\xi_{1}(z) \xi_{1}(z) \text { and } \eta_{2}(z)=\eta_{1}^{(1)}(z)+\eta_{1}(z) \xi_{1}(z) .
$$

Now from above equality and using (2.5), we get

$$
\begin{aligned}
f^{(3)}(z) & =\xi_{2}(z) f^{(1)}(z)+\xi_{2}^{(1)}(z) f(z)+\eta_{2}^{(1)}(z) \\
& =\left[\xi_{2}^{(1)}(z)+\xi_{1}(z) \xi_{2}(z)\right] f(z)+\eta_{2}^{(1)}(z)+\eta_{1}(z) \xi_{2}(z) \\
& =\xi_{3}(z) f(z)+\eta_{3}(z),
\end{aligned}
$$

Uniqueness of an entire function sharing fixed points with its derivatives
where

$$
\xi_{3}(z)=\xi_{2}^{(1)}(z)+\xi_{1}(z) \xi_{2}(z) \text { and } \eta_{3}(z)=\eta_{2}^{(1)}(z)+\eta_{1}(z) \xi_{2}(z)
$$

Similarly,

$$
\begin{equation*}
f^{(k)}(z)=\xi_{k}(z) f(z)+\eta_{k}(z) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{k+1}(z)=\xi_{k}^{(1)}(z)+\xi_{1}(z) \xi_{k}(z) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{k+1}(z)=\eta_{k}^{(1)}(z)+\eta_{1}(z) \xi_{k}(z) \tag{2.8}
\end{equation*}
$$

Puting $k=1$ in (2.7), we have

$$
\begin{aligned}
\xi_{2}(z) & =\xi_{1}^{(1)}(z)+\xi_{1}(z) \xi_{1}(z) \\
& =h^{2}(z)+h^{(1)}(z) .
\end{aligned}
$$

Again puting $k=2$ in (2.7), we get

$$
\begin{aligned}
\xi_{3}(z) & =\xi_{2}^{(1)}(z)+\xi_{1}(z) \xi_{2}(z) \\
& =\left[h^{2}(z)+h^{(1)}(z)\right]^{(1)}+h(z)\left[h^{2}(z)+h^{(1)}(z)\right] \\
& =h^{3}(z)+h^{(2)}(z)+3 h(z) h^{(1)}(z) .
\end{aligned}
$$

Similarly,

$$
\xi_{4}(z)=h^{4}(z)+h^{(3)}(z)+4 h(z) h^{(2)}(z)+3\left[2 h^{2}(z)+h^{(1)}(z)\right] h^{(1)}(z) .
$$

Hence using mathematical induction, one can easily check

$$
\begin{equation*}
\xi_{k}(z)=h^{k}(z)+P_{k-1}(z, h(z)), \tag{2.9}
\end{equation*}
$$

where $P_{k-1}(z, h(z))$ is a polynomial such that total degree $\operatorname{deg} P_{k-1}(z, h(z)) \leq$ $k-1$ in $h(z)$ and its derivatives, and all coefficients in $P_{k-1}(z, h(z))$ are constants.

Now putting $k=1$ in (2.8), we have

$$
\begin{aligned}
\eta_{2}(z) & =\eta_{1}^{(1)}(z)+\eta_{1}(z) \xi_{1}(z) \\
& =[a(z)(1-h(z))]^{(1)}+a(z)(1-h(z)) h(z) \\
& =-a(z) h^{2}(z)-a(z) h^{(1)}(z)+(a(z)-\alpha) h(z)+\alpha .
\end{aligned}
$$

Md Majibur Rahaman and Imrul Kaish

Again putting $k=2$ in (2.8), we get

$$
\begin{aligned}
\eta_{3}(z)= & \eta_{2}^{(1)}(z)+\eta_{1}(z) \xi_{2}(z) \\
= & {\left[-a(z) h^{2}(z)-a(z) h^{(1)}(z)+(a(z)-\alpha) h(z)+\alpha\right]^{(1)} } \\
& +a(z)(1-h(z))\left(h^{2}(z)+h^{(1)}(z)\right) \\
= & -a(z) h^{3}(z)-a(z) h^{(2)}(z)+[2 a(z)-3 a(z) h(z)-2 \alpha] h^{(1)}(z) \\
& +(a(z)-\alpha) h^{2}(z)+\alpha h(z) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
= & -a(z) h^{4}(z)-a(z) h^{(3)}(z)+[3 a(z)-4 a(z) h(z)-3 \alpha] h^{(2)}(z) \\
& +\left[5 a(z) h(z)-5 \alpha h(z)-6 a(z) h^{2}(z)-3 a(z) h^{(1)}(z)+3 \alpha\right] h^{(1)}(z) \\
& +(a(z)-\alpha) h^{3}(z)+\alpha h^{2}(z) .
\end{aligned}
$$

Like the previous one, it can be easily verified that

$$
\begin{equation*}
\eta_{k}(z)=-a(z) h^{k}(z)+Q_{k-1}(z, h(z)), \tag{2.10}
\end{equation*}
$$

where $Q_{k-1}(z, h(z))$ is a polynomial such that total degree $\operatorname{deg} Q_{k-1}(z, h(z)) \leq$ $k-1$ in $h(z)$ and its derivatives, and all coefficients in $Q_{k-1}(z, h(z))$ are either constants or polynomial $a(z)$.

From (2.4) and (2.9), for $k=1,2, \cdots$, we have

$$
\begin{aligned}
T\left(r, \xi_{k}(z)\right) & =T\left(r, h^{k}(z)+P_{k-1}(z, h(z))\right) \\
& \leq T\left(r, h^{k}(z)\right)+T\left(r, P_{k-1}(z, h(z))\right)+\log 2 \\
& =S(r, f)
\end{aligned}
$$

Similarly,

$$
T\left(r, \eta_{k}(z)\right)=S(r, f) .
$$

From hypothesis of Lemma 2.6, we have

$$
\begin{align*}
N\left(r, \frac{1}{f(z)-a(z)}\right) & =T(r, f(z))-m\left(r, \frac{1}{f(z)-a(z)}\right)+O(1) \\
& =T(r, f(z))+S(r, f) \tag{2.11}
\end{align*}
$$

which implies that $f(z)-a(z)$ must have zeros.
Let z_{j} be a zero of $f(z)-a(z)$ with multiplicity $\delta(j)$. Since $f(z)=a(z) \rightarrow$ $f^{(m)}(z)=a(z)$, we see that z_{j} is also a zero of $f^{(m)}(z)-a(z)$ with multiplicity at least $\delta(j)$. Hence $f\left(z_{j}\right)=a\left(z_{j}\right)$ and $f^{(m)}\left(z_{j}\right)=a\left(z_{j}\right)$.

Uniqueness of an entire function sharing fixed points with its derivatives

It follows from (2.6) that, for $k=m$,

$$
\begin{equation*}
f^{(m)}(z)=\xi_{m}(z) f(z)+\eta_{m}(z) \tag{2.12}
\end{equation*}
$$

and then

$$
a\left(z_{j}\right)=a\left(z_{j}\right) \xi_{m}\left(z_{j}\right)+\eta_{m}\left(z_{j}\right)
$$

Now we shall prove that,

$$
\begin{equation*}
a(z) \equiv a(z) \xi_{m}(z)+\eta_{m}(z) \tag{2.13}
\end{equation*}
$$

Otherwise,

$$
a(z) \xi_{m}(z)+\eta_{m}(z)-a(z) \not \equiv 0
$$

From (2.12), we have

$$
a(z) \xi_{m}(z)+\eta_{m}(z)-a(z)=\left(f^{(m)}(z)-a(z)\right)-\xi_{m}(z)(f(z)-a(z))
$$

By the reasoning as mentioned above, we deduce that z_{j} is a zero of $\left(f^{(m)}(z)-\right.$ $a(z))-\xi_{m}(z)(f(z)-a(z))$, that is, a zero of $a(z) \xi_{m}(z)+\eta_{m}(z)-a(z)$ with multiplicity at least $\delta(j)$. It follows from this and the fact that $\xi_{m}(z)$ and $\eta_{m}(z)$ are small functions of $f(z)$,

$$
\begin{aligned}
N\left(r, \frac{1}{f(z)-a(z)}\right) & \leq N\left(r, \frac{1}{a(z) \xi_{m}(z)+\eta_{m}(z)-a(z)}\right) \\
& \leq T\left(r, \frac{1}{a(z) \xi_{m}(z)+\eta_{m}(z)-a(z)}\right) \\
& =S(r, f)
\end{aligned}
$$

which contradicts (2.11). Thus

$$
a(z) \equiv a(z) \xi_{m}(z)+\eta_{m}(z)
$$

which is (2.13).
Now by induction we prove that

$$
\begin{equation*}
\eta_{k+1}(z)+a(z) \xi_{k+1}(z)=(a(z)-\alpha) h^{k}(z)+R_{k-1}(z, h(z)), \tag{2.14}
\end{equation*}
$$

where $R_{k-1}(z, h(z))$ is a polynomial such that $\operatorname{deg} R_{k-1}(z, h(z)) \leq k-1$ in $h(z)$ and its derivatives, and all the coefficients in $R_{k-1}(z, h(z))$ are constants or polynomial $a(z)$.

Firstly, from (2.7), (2.8) and for $k=1$, we have

$$
\begin{aligned}
\eta_{2}(z)+a(z) \xi_{2}(z)= & \eta_{1}^{(1)}(z)+\eta_{1}(z) \xi_{1}(z)+a(z)\left[\xi_{1}^{(1)}(z)+\xi_{1}(z) \xi_{1}(z)\right] \\
= & {[a(z)(1-h(z))]^{(1)}+a(z)(1-h(z)) h(z)+a(z) h^{(1)}(z) } \\
& +a(z) h^{2}(z) \\
= & a(z)\left(-h^{(1)}(z)\right)+\alpha(1-h(z))+a(z) h(z)-a(z) h^{2}(z) \\
& +a(z) h^{(1)}(z)+a(z) h^{2}(z) \\
= & (a(z)-\alpha) h(z)+\alpha .
\end{aligned}
$$

Secondly, we suppose that the following equation holds

$$
\eta_{k}(z)+a(z) \xi_{k}(z)=(a(z)-\alpha) h^{k-1}(z)+R_{k-2}(z, h(z)) .
$$

Now, by (2.7)-(2.10), we deduce that

$$
\begin{aligned}
\eta_{k+1}(z)+a(z) \xi_{k+1}(z)= & \eta_{k}^{(1)}(z)+\eta_{1}(z) \xi_{k}(z)+a(z)\left(\xi_{k}^{(1)}(z)+\xi_{1}(z) \xi_{k}(z)\right) \\
= & {\left[-a(z) h^{k}(z)+Q_{k-1}(z, h(z))\right]^{(1)}+a(z)(1-h(z)) \xi_{k}(z) } \\
& +a(z)\left[h^{k}(z)+P_{k-1}(z, h(z))\right]^{(1)}+a(z) h(z) \xi_{k}(z) \\
= & -k a(z) h^{k-1}(z)-\alpha h^{k}(z)+\left[Q_{k-1}(z, h(z))\right]^{(1)}+a(z) \xi_{k}(z) \\
& -a(z) h(z) \xi_{k}(z)+k a(z) h^{k-1}(z)+a(z)\left[P_{k-1}(z, h(z))\right]^{(1)} \\
& +a(z) h(z) \xi_{k}(z) \\
= & a(z)\left[h^{k}(z)+\left(P_{k-1}(z, h(z))\right)\right]-\alpha h^{k}(z)+\left[Q_{k-1}(z, h(z))\right]^{(1)} \\
& +a(z)\left[P_{k-1}(z, h(z))\right]^{(1)} \\
= & (a(z)-\alpha) h^{k}(z)+R_{k-1}(z, h(z)),
\end{aligned}
$$

which proves (2.14).
From (2.13) and (2.14), we obtain

$$
\begin{equation*}
(a(z)-\alpha) h^{m-1}(z)+R_{k-2}(z, h(z)) \equiv a(z) \tag{2.15}
\end{equation*}
$$

Clearly, $R_{k-2}(z, h(z)) \not \equiv a(z)$. Othewise, from (2.3), (2.15) and the hypothesis of Lemma 2.6, we have a contradiction. Hence by Lemma 2.3 and from (2.15), we can deduce that $h(z)$ must be constant.

From (2.7) and $\xi_{1}(z)=h(z)$, we have

$$
\xi_{2}(z)=h^{2}(z), \quad \xi_{3}(z)=h^{3}(z), \quad \xi_{4}(z)=h^{4}(z)
$$

Similarly,

$$
\begin{equation*}
\xi_{k}(z)=h^{k}(z), \text { for } k=1,2, \ldots \tag{2.16}
\end{equation*}
$$

Now, from (2.8) and $\eta_{1}(z)=a(z)(1-h(z))$, we get

$$
\begin{aligned}
& \eta_{2}(z)=(1-h(z))(\alpha+a(z) h(z)) \\
& \eta_{3}(z)=(1-h(z))(\alpha+a(z) h(z)) h(z) \\
& \eta_{4}(z)=(1-h(z))(\alpha+a(z) h(z)) h^{2}(z)
\end{aligned}
$$

Similarly,

$$
\begin{equation*}
\eta_{k}(z)=(1-h(z))(\alpha+a(z) h(z)) h^{k-2}(z), \text { for } k=2,3, \ldots \tag{2.17}
\end{equation*}
$$

From (2.13), (2.16) and (2.17), we have

$$
\begin{aligned}
a(z) & \equiv a(z) h^{m}(z)+(1-h(z))(\alpha+a(z) h(z)) h^{m-2}(z) \\
& \equiv h^{m-2}(z)\left[a(z) h^{2}(z)+\alpha(1-h(z))+a(z) h(z)-a(z) h^{2}(z)\right] \\
& \equiv h^{m-2}(z)[a(z) h(z)+\alpha(1-h(z))]
\end{aligned}
$$

which implies that $h(z)=1$.
Hence from (2.3) and $h(z)=1$, we can obtain

$$
f^{(1)}(z)=f(z) .
$$

This implies

$$
f(z)=C e^{z}
$$

where $C(\neq 0)$ ia a constant. This proof the Lemma 2.6.

3 Proof of the theorem 1.1

First we verify that $f(z)$ cannot be a polynomial. Let $f(z)$ be a polynomial of degree 1 . Suppose that $f(z)=A_{1} z+B_{1}$, where $A_{1}(\neq 0)$ and B_{1} are constants. Then $f^{(1)}(z)=A_{1}, f^{(m)}(z) \equiv 0 \equiv f^{(n)}(z)$. Now $\frac{\beta-B_{1}}{A_{1}-\alpha}$ is the only zero of $f(z)-a(z), \frac{A_{1}-\beta}{\alpha}$ is the only zero of $f^{(1)}(z)-a(z)$ and $-\frac{\beta}{\alpha}$ is the only zero of $f^{(m)}(z)-a(z)$. Since $f(z)$ and $f^{(1)}(z)$ share polynomial $a(z)$ CM and the zeros of $f(z)-a(z)$ are the zeros of $f^{(m)}(z)-a(z)$, we have $\frac{A_{1}-\beta}{\alpha}=-\frac{\beta}{\alpha}$ and so $A_{1}=0$, a contradiction.

Now let $f(z)$ be a polynomial of degree greater than 1 . Suppose that $\operatorname{deg}(f(z))=$ p. Then $\operatorname{deg}(f(z)-a(z))=p$ and $\operatorname{deg}\left(f^{(1)}(z)-a(z)\right)=p-1$, it contradicts the fact that $f(z)$ and $f^{(1)}(z)$ share polynomial $a(z) \mathrm{CM}$.

Hence $f(z)$ is a transcendental entire function. Thus $T(r, a(z))=S(r, f)$.

Md Majibur Rahaman and Imrul Kaish

To prove the theorem let us consider two functions defined as follows.

$$
\begin{equation*}
\Phi(z)=\frac{\left(a(z)-a^{(1)}(z)\right) f^{(m)}(z)-a(z)\left(f^{(1)}(z)-a^{(1)}(z)\right)}{f(z)-a(z)} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi(z)=\frac{\left(a(z)-a^{(1)}(z)\right) f^{(n)}(z)-a(z)\left(f^{(1)}(z)-a^{(1)}(z)\right)}{f(z)-a(z)} . \tag{3.2}
\end{equation*}
$$

Then $\Phi(z) \not \equiv \Psi(z)$.
We know from the hypothesis of Theorem 1.1 that $\Phi(z)$ and $\Psi(z)$ are entire functions. Then, by Lemma 2.1 and Lemma 2.2, we have

$$
\begin{aligned}
T(r, \Phi(z))= & m(r, \Phi(z)) \\
= & m\left(r, \frac{\left(a(z)-a^{(1)}(z)\right) f^{(m)}(z)-a(z)\left(f^{(1)}(z)-a^{(1)}(z)\right)}{f(z)-a(z)}\right) \\
\leq & m\left(r,\left(a(z)-a^{(1)}(z)\right) \frac{f^{(m)}(z)}{f(z)-a(z)}\right)+m\left(r, a(z) \frac{\left(f^{(1)}(z)-a^{(1)}(z)\right)}{f(z)-a(z)}\right) \\
& +\log 2 \\
= & S(r, f) .
\end{aligned}
$$

Similarly,

$$
T(r, \Psi(z))=S(r, f)
$$

We shall the following three cases.
Case 1. First we suppose that $\Phi(z) \not \equiv 0$. Then by (3.1), we have

$$
\begin{equation*}
f(z)=a(z)+\frac{1}{\Phi(z)}\left\{\left(a(z)-a^{(1)}(z)\right) f^{(m)}(z)-a(z)\left(f^{(1)}(z)-a^{(1)}(z)\right)\right\} . \tag{3.3}
\end{equation*}
$$

From (3.1) and (3.2), we get

$$
f^{(1)}(z)=\frac{\left(a(z)-a^{(1)}(z)\right)}{a(z)(\Phi(z)-\Psi(z))}\left(\Phi(z) f^{(n)}(z)-\Psi(z) f^{(m)}(z)\right)+a^{(1)}(z)
$$

Therefore

$$
\begin{align*}
f^{(1)}(z)-a(z)= & \frac{\left(a(z)-a^{(1)}(z)\right)}{a(z)(\Phi(z)-\Psi(z))}\left(\Phi(z) f^{(n)}(z)-\Psi(z) f^{(m)}(z)\right) \\
& +a^{(1)}(z)-a(z) . \tag{3.4}
\end{align*}
$$

Uniqueness of an entire function sharing fixed points with its derivatives

First we suppose that $m>n>2$. Then from (3.4), we get

$$
\begin{align*}
\frac{1}{f^{(1)}(z)-a(z)}= & \frac{1}{a(z)(\Phi(z)-\Psi(z))} \frac{\left(\Phi(z) f^{(n)}(z)-\Psi(z) f^{(m)}(z)\right)}{f^{(1)}(z)-a(z)} \\
& +\frac{1}{a^{(1)}(z)-a(z)} . \tag{3.5}
\end{align*}
$$

Using Lemma 2.1 and from (3.5), we have

$$
\begin{equation*}
m\left(r, \frac{1}{f^{(1)}(z)-a(z)}\right)=S(r, f) \tag{3.6}
\end{equation*}
$$

Next we suppose $m>n=2$. Then from (3.4), we get

$$
\begin{align*}
\left(f^{(1)}(z)-a(z)\right)(\Phi(z)-\Psi(z)) a(z)= & \gamma(z)+\left(a(z)-a^{(1)}(z)\right) \Phi(z)\left(f^{(2)}(z)-a^{(1)}(z)\right) \\
& -\left(a(z)-a^{(1)}(z)\right) \Psi(z) f^{(m)}(z), \tag{3.7}
\end{align*}
$$

where

$$
\gamma(z)=\left(a(z)-a^{(1)}(z)\right)\left(\Phi(z) a^{(1)}(z)-(\Phi(z)-\Psi(z)) a(z)\right) .
$$

Clearly $\gamma(z) \not \equiv 0$.
If $\gamma(z) \equiv 0$, then

$$
\Phi(z) \equiv \frac{a(z)}{a(z)-a^{(1)}(z)} \Psi(z)
$$

which is a contradiction because $\Phi(z)$ and $\Psi(z)$ are entire functions and $\Psi(z) \neq 0$ when $a(z)-a^{(1)}(z)=0$.

Now from (3.7) we get

$$
\begin{align*}
\frac{1}{f^{(1)}(z)-a(z)}= & \frac{(\Phi(z)-\Psi(z)) a(z)}{\gamma(z)}-\frac{a(z)-a^{(1)}(z)}{\gamma(z)} \Phi(z) \frac{f^{(2)}(z)-a^{(1)}(z)}{f^{(1)}(z)-a(z)} \\
& +\frac{a(z)-a^{(1)}(z)}{\gamma(z)} \Psi(z) \frac{f^{(m)}(z)}{f^{(1)}(z)-a(z)} . \tag{3.8}
\end{align*}
$$

Again using Lemma 2.1 and from (3.8), we get

$$
m\left(r, \frac{1}{f^{(1)}(z)-a(z)}\right)=S(r, f)
$$

which is (3.6).

Md Majibur Rahaman and Imrul Kaish

Since $\Phi(z) \not \equiv 0$, it follows from (3.3) and Lemma 2.1 that

$$
\begin{align*}
T(r, f(z))= & m(r, f(z)) \\
= & m\left(r, a(z)+\frac{1}{\Phi(z)}\left\{\left(a(z)-a^{(1)}(z)\right) f^{(m)}(z)-a(z)\left(f^{(1)}(z)-a^{(1)}(z)\right)\right\}\right) \\
= & m\left(r, a(z)+\frac{(a(z)-\alpha) f^{(m)}(z)-a(z) f^{(1)}(z)+a(z) \alpha}{\Phi(z)}\right) \\
\leq & m(r, a(z))+m\left(r, \frac{(a(z)-\alpha) f^{(m)}(z)-a(z) f^{(1)}(z)}{\Phi(z)}\right)+m\left(r, \frac{\alpha a(z)}{\Phi(z)}\right) \\
& +\log 3 \\
= & m\left(r, a(z) f^{(1)}(z) \frac{\frac{(a(z)-\alpha)}{a(z)} \frac{f^{(m)}(z)}{f^{(1)}(z)}-1}{\Phi(z)}\right)+S(r, f) \\
\leq & m\left(r, \frac{\frac{(a(z)-\alpha)}{a(z)} \frac{f^{(m)}(z)}{f^{(1)}(z)}-1}{\Phi(z)}\right)+m\left(r, f^{(1)}(z)\right)+S(r, f) \\
\leq & m\left(r, \frac{f^{(m)}(z)}{f^{(1)}(z)}-1\right)+m\left(r, f^{(1)}(z)\right)+S(r, f) \\
= & T\left(r, f^{(1)}(z)\right)+S(r, f) . \tag{3.9}
\end{align*}
$$

Applying Lemma 2.1, We can easily see that

$$
\begin{align*}
T\left(r, f^{(1)}(z)\right) & =m\left(r, f^{(1)}(z)\right) \\
& =m\left(r, \frac{f^{(1)}(z)}{f(z)} \cdot f(z)\right) \\
& \leq m\left(r, \frac{f^{(1)}(z)}{f(z)}\right)+m(r, f(z)) \\
& =m(r, f(z))+S(r, f) \\
& \leq T(r, f(z))+S(r, f) . \tag{3.10}
\end{align*}
$$

Combining (3.9) and (3.10), we have

$$
\begin{equation*}
T\left(r, f^{(1)}(z)\right)=T(r, f(z))+S(r, f) . \tag{3.11}
\end{equation*}
$$

Since $f(z)$ and $f^{(1)}(z)$ share $a(z) \mathrm{CM}$, by using (3.6) and (3.11) together with
the First Fundamental Theorem, we obtain

$$
\begin{aligned}
m\left(r, \frac{1}{f(z)-a(z)}\right)= & T(r, f(z))-N\left(r, \frac{1}{f(z)-a(z)}\right)+O(1) \\
= & T\left(r, f^{(1)}(z)\right)-N\left(r, \frac{1}{f^{(1)}(z)-a(z)}\right)+S(r, f) \\
= & m\left(r, \frac{1}{f^{(1)}(z)-a(z)}\right)+N\left(r, \frac{1}{f^{(1)}(z)-a(z)}\right) \\
& -N\left(r, \frac{1}{f^{(1)}(z)-a(z)}\right)+S(r, f) \\
= & m\left(r, \frac{1}{f^{(1)}(z)-a(z)}\right)+S(r, f) \\
= & S(r, f) .
\end{aligned}
$$

Hence by Lemma 2.6, we have

$$
f(z)=C e^{z}
$$

where $C(\neq 0)$ is a constant.
Case 2. Now we suppose that $\Psi(z) \not \equiv 0$. Then following the similar arguments of Case-1 and using Lemma 2.6, we have

$$
f(z)=C e^{z} .
$$

where $C(\neq 0)$ is a constant.
Case 3. Finally we suppose that $\Phi(z) \equiv 0$ and $\Psi(z) \equiv 0$. Then from (3.1) and (3.2), we get

$$
\begin{equation*}
\left(a(z)-a^{(1)}(z)\right) f^{(m)}(z)-a(z)\left(f^{(1)}(z)-a^{(1)}(z)\right) \equiv 0 \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a(z)-a^{(1)}(z)\right) f^{(n)}(z)-a(z)\left(f^{(1)}(z)-a^{(1)}(z)\right) \equiv 0 . \tag{3.13}
\end{equation*}
$$

Now subtracting (3.13) from (3.12), we have

$$
\left(a(z)-a^{(1)}(z)\right)\left(f^{(m)}(z)-f^{(n)}(z)\right) \equiv 0 .
$$

Since $a(z) \not \equiv a^{(1)}(z)$, we get

$$
f^{(m)}(z) \equiv f^{(n)}(z)
$$

Solving this we have

$$
f(z)=p_{0}+p_{1} e^{t_{1} z}+p_{2} e^{t_{2} z}+\cdots+p_{m-n} e^{t_{m-n} z}
$$

where $t_{1}, t_{2}, \cdots, t_{m-n}$ are distinct $(m-n)^{t h}$ roots of unity and $p_{0}, p_{1}, p_{2}, \cdots$ p_{m-n} are constants.

Since $f(z)$ and $f^{(1)}(z)$ share $a(z) \mathrm{CM}$, applying Lemma 2.5, we get

$$
\frac{f^{(1)}(z)-a(z)}{f(z)-a(z)}=\lambda
$$

for some nonzero constant λ.
Solving above equality, we obtain

$$
f(z)=C e^{\lambda z}+a(z)-\frac{a(z)}{\lambda}+\frac{\alpha(1-\lambda)}{\lambda^{2}}
$$

where $C(\neq 0)$ is a constant. This completes the proof of Theorem 1.1.

4 Conclusions

After the above discussion we arrive at the conclusion that if an entire function and its first derivative share a linear polynomial with counting multiplicity and it partially shares the linear polynomial with its two higher order derivatives then the funtion is either one of the following two forms.
(i) $f(z)=C e^{z}$,
(ii) $f(z)=C e^{\lambda z}+a(z)-\frac{a(z)}{\lambda}+\frac{\alpha(1-\lambda)}{\lambda^{2}}$,
where C and λ are non-zero constants.

5 Acknowledgements

Authors are thankful to the referee for valuable suggestions and observations towards the improvement of the paper.

References

J Chang and M Fang. Uniquness of entire functions and fixed points. Kodai Math. J., 25:309-320, 2002.

B Chen and S Li . Some results on the entire function sharing problem. Math. Solovaca., 64:1217-1226, 2014.

J Clunie. On integral and meromorphic functions. J. London Math. Soc., 37: 17-27, 1962.

Hayman. Meromorphic Functions. The Clarendon Press, Oxford, Oxford, 1964.
G Jank, E Mues, and L Volkmann. Meromorphe funktionen, die mit ihrer ersten und zweiten ableitung einen endlichen wert teilen. Complex Var. Theory Appl., 6:51-71, 1986.

V Ngoan and I. V Ostrovskii. The logarithmic derivative of meromorphic function. Akad. Nauk. Armjan. SSR. Dokl., 41:272-277, 1965.
J. P Wang and H. X Yi. Entire functions that share one value cm with their derivatives. J. Math. Anal. Appl., 277:155-163, 2003.

[^0]: *Department of Mathematics and Statistics, Aliah University, Kolkata, West Bengal 700160, India; e-mail :majiburjrf107@gmail.com
 ${ }^{\dagger}$ Department of Mathematics and Statistics, Aliah University, Kolkata, West Bengal 700160, India; e-mail:imrulksh3@gmail.com
 ${ }^{1}$ Received on April 19th, 2020. Accepted on June 19th, 2020. Published on June 30th, 2020. doi: $10.23755 / \mathrm{rm} . v 38 i 0.520$. ISSN: 1592-7415. eISSN: 2282-8214. ©Md Majibur rahaman. This paper is published under the CC-BY licence agreement.

