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Abstract 

The aim of this work is to present a novel approach based on the fuzzy  neural 

network for finding the numerical solution of the first order fuzzy differential 

equations under generalized H-derivation.The differentiability concept that 

used in this paper is the generalized differentiability since a first order fuzzy 

differential equation under this differentiability can have two solutions.The 

fuzzy trial solution of the fuzzy initial value problem is written as a sum of two 

parts. The first part satisfies the fuzzy condition, it contains no fuzzy 

adjustable parameters. The second part involves fuzzy feed-forward neural 

networks containing fuzzy adjustable parameters. This method, in comparison 

with existing numerical methods and the analytical solutions, shows that the 

use of fuzzy neural networks provides solutions with good generalization and 

high accuracy.      
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1 Introduction 

     Nowadays, fuzzy differential equations (FDEs) is a popular topic studied 

by many researchers since it is utilized widely for the purpose of modeling 

problems in science and engineering. Most of the practical problems require 

the solution of a FDE which satisfies fuzzy initial or fuzzy boundary 

conditions, therefore, a fuzzy initial or fuzzy boundary problem should be 

solved. However, many fuzzy initial or fuzzy boundary value problems could 

not be solved exactly, sometimes it is even impossible to find their analytical 

solutions. Thus, considering their approximate solutions is becoming more 

important [1]. 

     The theory of FDE was first formulated by Kaleva and Seikkala. Kaleva 

had formulated FDE in terms of the Hukuhara derivative (H-derivative). 

Buckley and feuring have given a very general formulation of a first-order 

fuzzy initial value problem. They first find the crisp solution, make it fuzzy 

and then check if it satisfies the fuzzy differential equation [2]. 

     In recent years artificial neural network (ANN) for estimation of the 

ordinary differential equation (ODE) and partial differential equation (PDE) 

has been used. We briefly review some articles in the literature concerning the 

differential equations. Lee and Kang in [3] used parallel processor computers 

to solve a first order differential equation with Hopfield neural network 

models. Meade and Fernandez in [4,5] solved linear and non-linear ODEs by 

using feed-forward neural networks (FFNN) architecture and B-splines of 

degree one. Lagaris and Likas in [6,7] used ANN for solving ODEs and PDEs  

with the initial / boundary value problems. Liu and Jammes in [8] developed 

some properties of the trial solution to solve the  ODEs  by using ANN. Ali 

and Ucar in [9] solved the vibration control problems by using ANN. Tawfiq 

in [10] presented and developed supervised and unsupervised algorithms for 

solving ODE and PDE. Malek and shekari in [11] presented numerical method 

based on ANN and optimization techniques which the higher-order ODE 

answers approximates by finding a package form analytical of specific 

functions. Pattanaik and Mishra in [12] applied and developed some properties 

of ANN for solution of PDE in RF Engineering. Baymani and Kerayechian in 

[13] proposed ANN approach for solving stokes problems. Oraibi in [14] 

designed FFNN for solving ordinary initial value problem.  Ali in [15] 
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designed fast FFNN to solve two-point boundary value problems. Hussein in 

[16] designed fast FFNN to solve singular boundary value problems. Tawfiq 

and Al-Abrahemee in [17] designed ANN to solve singular perturbation 

problems, and other researchers. 

      Numerical solution of FDE by using ANN is the subject of a very modern 

because it only goes back to 2010. Effati and pakdaman in [18] used ANN for 

solving FDE, they used for the first time the ANN to approximate fuzzy initial 

value problems. Mosleh and Otadi in [19] used ANN for solving fuzzy 

Fredholm integro-differential equations. Ezadi and Parandin in [20] used ANN 

based on semi-Taylor series to solve first order FDE. 

     Numerical solution of FDE by using fuzzy artificial neural network 

(FANN) is more modern than the previous subject, where it goes back to 2012. 

Mosleh and Otadi in [21] used FANN for solving first order FDE, they used 

for the first time FANN to approximate fuzzy initial value problems. Mosleh 

in  [22] used FANN for solving a system of FDE. Mosleh and Otadi in [23] 

used FANN for solving second order FDE. Suhhiem in [24] developed and 

used FANN for solving fuzzy and non-fuzzy differential equations. 

      In 2008, the concept of the generalized Hukuhara – differentiability is 

studied by Chalco-Cano and Roman Flores [25,26] to solve FDE. 

      In this work, for solving FDE Under Generalized H – Derivation, we 

present modified method which relies on the function approximation 

capabilities of fuzzy FFNN and results in the construction of a solution written 

in a differentiable, closed analytic form. This form employs fuzzy FFNN as the 

basic approximation element, whose fuzzy parameters (weights and biases) 

are adjusted to minimize an appropriate error function. To train the FANN 

which we design, we employ optimization techniques, which in turn require 

the computation of the gradient of the error with respect to the network 

parameters. In this proposed approach the model function is expressed as the 

sum of the two terms: the first term satisfies the  fuzzy initial / fuzzy boundary 

conditions and contains no fuzzy adjustable parameters. The second term can 

be found by using fuzzy FFNN, which is trained so as to satisfy the FDE.   
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2 Basic Definitions  

2.1 Fuzzy Concepts  

     In this subsection, the basic notations which are used in fuzzy calculus are 

introduced. 

Definition (𝟐. 𝟏. 𝟏), [𝟐] : The r - level ( or r - cut ) set of a fuzzy set Ã  

labeled by Ar, is the crisp set of all x in X (universal set) such that : µÃ(x) ≥ r  

; i. e. 

   Ar = {x ∈ X ∶ µÃ(x)  ≥ r, r ∈ [0,1] }.                    (1) 

Definition(2.1.2),[𝟐]: Extension Principle  

     Let X  be the Cartesian product of universes X 1 , X 2, …, X m  and Ã1, Ã2, 

…, Ãm  be m - fuzzy subset in X 1, X 2, …, X m  respectively, with Cartesian 

product Ã = Ã1 × Ã2 × … × Ãm  and f is a function from X  to a universe Y,  ( 

y = f ( x1, x 2, …, x m ) ). Then, the extension principle allows to define a fuzzy 

subset B̃ = f (Ã)  in Y by  B̃ = {( y,µ
B̃
 ( y ))  : y = f ( x1, x 2, …, x m ), ( x1, 

x 2, …, x m ) ∈ X}, where   

 µ
B̃
(y)={

    sup
( x1,…,xm )∈f −1(y)

Min {µ
Ã1
(x1),…, µ

Ãm
(xm) } , if f 

−1(y)≠∅

 
             0,                                                                 otherwise.

  

                                                                                                                           (2)                                                                                                                   

and  f −1 is the inverse image of  f.  

For m = 1, the extension principle will be :  

B̃ = f(Ã) = {(y,µ
B̃
(y)) ∶ y = f(x), x ∈ X },         where  

µ
B̃
(y) = {

sup
x ∈ f −1(y)

µ
Ã
(x)   ,           if   f −1(y)≠∅  

     0,                                    otherwise.
                                       (3) 
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Definition (𝟐. 𝟏. 𝟑), [𝟐𝟒]: Fuzzy Number 

     A fuzzy number ũ is completely determined by an ordered pair of functions 

(u (r), u (r)), 0 ≤ r ≤ 1, which satisfy the following requirements:   

 𝟏) u (r) is a bounded left continuous and non-decreasing function on [0,1]. 

 𝟐) u (r) is a bounded left continuous and non-increasing function on [0,1].  

 𝟑) u (r) ≤ u (r), 0 ≤ r ≤ 1.  

The crisp number a is simply represented by:  

u (r) = u (r) = a, 0 ≤ r ≤ 1.  

The set of all the fuzzy numbers is denoted by  E1. 

Remark (𝟏), [𝟐𝟒]: For arbitrary ũ = (u, u), ṽ = (v, v) and K ∈ R, the addition 

and multiplication by K  can be defined as :  

 𝟏) (u + v)  (r) = u (r) + v (r)                                                                          (4) 

 𝟐) (u + v)  (r) = u (r) + v (r)                                               (5) 

 𝟑) (Ku) (r) = K u (r), (Ku) (r) = K u (r), if  K ≥ 0                                    (6) 

 𝟒) (Ku) (r) = K u (r), (Ku) (r) = K u (r), if  K < 0.                                  (7)        

For all r ∈ [0,1] . 

Remark (𝟐), [𝟏]:                                                                                                                                                         

     The distance between two arbitrary fuzzy numbers ũ = (u, u) and ṽ = (v, v)  

is given as:  

    D (ũ, ṽ) = [∫ ( u (r) - v (r)
1

0
)
2dr + ∫ ( u (r) - v (r)

1

0
)
2dr]

1

2
                         (8) 

Remark (𝟑), [𝟏]: (E1,D) is a complete metric space.                                                                                                                                                        
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Remark (𝟒), [𝟐]: The operations of fuzzy numbers (in parametric form) can 

be generalized from that of crisp intervals. Let us have a look at the operations 

of intervals. ∀ a1, b1, a2, b2  ∈ R, A = [a1, b1]  and   B = [a2, b2 ].               

     Assuming A and B numbers expressed as interval, main operations of 

intervals are :  

𝟏) Addition: A + B = [a1, b1] + [a2, b2 ] = [a1 + a2, b1 + b2 ].                      

𝟐) Subtraction: A - B = [a1, b1] - [a2, b2 ] = [a1 - b2, b1 - a2 ].                     

𝟑) Multiplication:  

A. B = [min{a1 a2, a1 b2, b1  a2, b1 b2},max{a1 a2, a1 b2, b1  a2, b1 b2}]  

𝟒) Division : A/B =[min{a1 / a2, a1 / b2, b1 / a2, b1 / b2},max{a1 / a2, a1 /

b2, b1 / a2, b1 / b2}]    excluding the case a2 = 0 or b2 = 0.  

𝟓) Inverse  : A-1 = [a1, b1]-1 = [min { 
1

a1

,
1

b1

 } , max { 
1

a1

,
1

b1

}]                    

excluding the case a1 = 0 or b1 = 0. 

 In the case of 0 ≤ a2  ≤ b2, multiplication operation can be simplified as: 

A. B = [min{a1 a2, a1 b2 },max{ b1  a2, b1 b2}]   

when previous sets A and B is defined in the positive real number R+, the 

operations of multiplication, division and inverse are written as :    

𝟑 ́) Multiplication: A. B = [a1, b1]. [a2, b2 ] = [a1 a2, b1 b2] 

𝟒 ́) Division: A / B = [a1, b1] / [a2, b2 ] = [
a1

b2

,
b1

a2

].                    

𝟓 ́) Inverse: A-1 = [a1, b1]-1 = [ 
1

b1

,
1

a1

 ].                         

Definition (𝟐. 𝟏. 𝟒), [𝟐𝟒] : Triangular Fuzzy Number  

     Among the various shapes of fuzzy numbers, triangular fuzzy numbers is 

the most popular one.  A triangular fuzzy number is a fuzzy number 

represented with three points as follows: Ã = (a1, a2, a3), where   a1 ≤ a2 ≤ a3. 
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This representation is interpreted as membership functions: 

             μÃ(x)
  = 

{
 
 

 
 

 

   0                    , if                 x < a1

x - a1

a2 - a1

                , if        a1 ≤ x ≤ a2

a3-x

a3-a2

                  , if        a2 ≤ x ≤ a3

   0                    , if                 x > a3

                                 (9) 

Now if you get crisp interval by r - cut operation, interval [A]r shall be 

obtained as follows   ∀ r ∈ [0,1]  from:          
A − a1

a2 − a1
  = r,  

a3 − A

a3 – a2
  =r, 

We get: A= (a2 – a1)r + a1, A= (a2 – a3) r + a3.                      

Thus: [A]r = [A,A ] = [(a2 – a1)r + a1,  (a2 – a3) r + a3]                             (10) 

which is the parametric form of triangular fuzzy number Ã.                                                                                         

Definition (𝟐. 𝟏. 𝟓), [𝟏𝟖] : Fuzzy Function  

     A classical function F : X  ⟶ Y maps from a fuzzy domain Ã ⊆ X  into a 

fuzzy range B̃ ⊆ Y if and only if  ∀ x  ∈ X , μB̃(F (x))
 
 ≥ μÃ(x)

 .  

Remark (𝟓) , [𝟏𝟖] : 

(1) The function F : R  ⟶ E1 is called a fuzzy function . 

(2) We call every function defined in set Ã ⊆ E1  to B̃ ⊆ E1  a fuzzy function. 

Definition (𝟐. 𝟏. 𝟔), [𝟏𝟖]: The fuzzy function F :  R ⟶ E1  is said to be 

continuous if :    

For an arbitrary t1 ∈ R  and ϵ > 0 there exists a  δ > 0 such that: 

 |t - t1| < δ ⇒ D (F (t), F(t1)) < ϵ, where D is the distance between two fuzzy 

numbers. 

Definition (2.1.7),[25]: Let  I  be a real interval. The  r-level set of the fuzzy 

function  y ∶ I → E1  can be denoted by : 

[y(t)]r = [y1
r(t), y2

r(t)]     t ∈ I                                                                           (11)     

The Seikkala derivative  yˊ(t) of the fuzzy function y(t) is defined by: 
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  [yˊ(t)]r = [(y1
r)ˊ(t), (y2

r)ˊ(t)]     t ∈ I                                                             (12)  

2.2 H – Differentiability 

     In this subsection, the basic definitions which are used in H – 

differentiability are introduced. 

Definition (2.2.1), [𝟏𝟖]: let u, v ∈ E1 . If there exist w ∈ E1 such that 

 u = v+w then w is called the H-difference (Hukuhara-difference) of u, v and it 

is denoted by w=  u ⊝ v.  

In this work the ⊝ sign stands always for H-difference, and let us remark that  

u ⊝ v ≠ u + (-1) v. 

Definition (2.2.2), [𝟐𝟒] 

     Let F : (a,b) → E1   and  t0  ∈  (a,b).We  say  that  F is H-differential 

(Hukuhara-differential) at t0, if there exists an element  Fˊ(t0) ∈ E
1 such that 

for all  h> 0  (sufficiently small), ∃ F (t0 +h)⊝F(t0), F(t0) ⊝ F (t0 - h)   and  

the limits (in the metric D) 

lim
h→0

F(t0 + h) ⊝F(t0)

h
= lim

h→0

F(t0) ⊝ F(t0 − h) 

h
=  Fˊ(t0)                            (13) 

Then  Fˊ(t0)  is called fuzzy derivative (H-derivative) of  F at  t0. 

where D is the distance between two fuzzy numbers.        

It is necessary to note that the definition (2.2.2) is the classical definition of the 

H-derivative (or differentiability in the sense of Hukuhara ). 

Definition (2.2.3), [𝟐𝟓, 𝟐𝟔]:    

     Let  F ∶ T → E1   and   t0 ∈ T ⊂ R .   F is differentiable at  t0, if 

(1) there exist an element  Fˊ(t0)  ∈ E
1,  such that for all  h > 0 sufficiently 

small, there are   F(t0 + h) ⊝F(t0), F(t0)⊝F(t0 − h) and the limits (in the 

metric D ) 

lim
h→0

F(t0 + h) ⊝F(t0)

h
= lim

h→0

F(t0) ⊝ F(t0 − h) 

h
=  Fˊ(t0)                            (14) 
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(in this case, F is called  (1)-differentiable) 

or 

(2) there exist an element  Fˊ(t0)  ∈ E
1,  such that for all  h > 0 sufficiently 

small, there are F(t0)⊝F(t0 + h), F(t0 − h)⊝ F(t0) and the limits (in the 

metric D ) 

lim
h→0

F(t0)⊝F(t0 + h) 

−h
= lim

h→0

F(t0 − h)⊝ F(t0) 

−h
=  Fˊ(t0)                            (15) 

(in this case, F is called (2)-differentiable) 

Where the relation (1) is the classical definition of the H-derivative. 

Theorem (1) : Let  F ∶ I → E1 be a function and denote [F(t)]r =

[ fr(t), gr(t)], for each r ∈ [0,1]. Then 

(i) If  F is differentiable in the first form (1) of definition (2.2.3.), then fr and  

gr are differentiable functions and  

[Fˊ(t)]r = [ fr
ˊ(t), gr

ˊ (t) ] 

(ii) If  F is differentiable in the second form (2) of definition (2.2.3), then 

fr and  gr are differentiable functions and  

[Fˊ(t)]r = [gr
ˊ (t), fr

ˊ(t) ] 

Proof: see [25]          □   

 

3 Fuzzy Neural Network [24]  

     A fuzzy neural network (FNN) or neuro – fuzzy system is a learning 

machine that finds the parameters of a fuzzy system (i.e., fuzzy set, fuzzy 

rules) by exploiting approximation techniques from neural networks. 

Combining fuzzy systems with neural networks. Both neural networks and 

fuzzy systems have some things in common. They can be used for solving a 

problem (e. g. fuzzy differential equations, fuzzy integral equations, etc. ).  
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     Before 2005 FNN called fuzzy weight neural networks was developed by 

Pabisek, Jakubek and et al.  Membership functions of FWNN were formulated 

by the multi – layered perceptron (MLP) network training, separately for each 

learning pattern and then the interval arithmetic was applied to process crisp or 

fuzzy data. 

3.1 Input – Output Relations of Each Unit [21,22]  

     Let us consider a three-layer fuzzy FFNN with n input units, m hidden units 

and s output units. Target vector, connection weights and biases are fuzzy 

numbers and input vector is real numbers. For convenience in this discussion, 

FNN with an input layer, a single hidden layer, and an output layer in Fig. (1) 

is represented as a basic structural architecture. Here, the dimension of FNN is 

denoted by the number of neurons in each layer, that is   n × m × s, where n, 

m and s are the number of the neurons in the input layer, the hidden layer and 

the output layer, respectively. 

     The architecture of the model shows how the  FNN  transforms        the n 

inputs (x1, x2, … , xi, … , xn) into the s fuzzy outputs 

([y1]r, [y2]r, … , [yk]r, … , [ys]r)  throughout the m hidden fuzzy neurons 

([z1]r, [z2]r, … [zj]r, … [zm]r), where the cycles represent the neurons in each 

layer. Let [bj]r  be the fuzzy bias for the fuzzy neuron [zj]r, [ck]r  be the fuzzy 

bias for the fuzzy neuron [yk]r, [wji]r  be the fuzzy weight connecting crisp 

neuron xi to fuzzy neuron [zj]r, and [wkj]r be the fuzzy weight connecting 

fuzzy neuron [zj]r to fuzzy neuron [yk]r. 

When an n – dimensional input vector (x1, x2, … , xi, … , xn) is presented to our 

FNN, its input – output relations can be written as follows, where  H : Rn ⟶ 

Es :  

Input units: oi = xi ,  i = 1,2,3, …n                                                             (16)                                                                       

Hidden units: [zj]r = H ([netj]r) , j = 1,2,3, …,m,                                    (17)                                     

 where                                                 

[netj]r = ∑ oi [wji]r + [bj]r
n
i=1                                                                        (18)                                      
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Output units: 

    [yk]r =H ([netk]r), k = 1,2,3, …, s,                                                         (19) 

  where  

  [netk]r=∑ [wkj]r [zj]r+
m
j=1 [ck]r                                                                   (20) 

 Fig. (1) Three-layer feed forward fuzzy neural network. 

     The architecture of our fuzzy neural network is shown in Fig. (1), where 

connection weights, biases, and targets are fuzzy numbers and inputs are real 

numbers.  

From the operations of fuzzy numbers (which we have described in section 

two), the above relations are rewritten as follows when the inputs xi´s  are non 

– negative, i.e., xi ≥ 0  :  

Input units:        oi = xi                                                                                 (21)                                    
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Hidden units: 

[zj]r = H ([netj]r) = [[zj]r
L
, [zj]r

U
] =  [H ([netj]r

L
) , H ([netj]r

U
)]     (22) where                                                                                                                

    [netj]r
L
= ∑ oi [wji]r

L
 + [bj]r

Ln
i=1                                                                    (23) 

    [netj]r
U

=∑ oi [wji]r
U

 + [bj]r
Un

i=1                                                                    (24) 

Output units: 

[yk]r = H ([netk]r) = [[yk]r
L, [yk]r

U] =  [H([netk]r
L), H([netk]r

U)]            (25) 

where                                                                                                                

[netk]r
L = ∑  [wkj]r

L
  [zj]r

L 
j∈a  + ∑  [wkj]r

L
  [zj]r

U 
j∈b  + [ck]r

L                             (26)                                                                                                  

 [netk]r
U = ∑  [wkj]r

U
  [zj]r

U 
j∈c  + ∑  [wkj]r

U
  [zj]r

L 
j∈d  + [ck]r

U                           (27)                                                                                                        

     For [zj]r
U

 ≥ [zj]r
L
 ≥ 0   ,     

 where  

    a = {j ∶  [wkj]r
L
 ≥ 0}, b = {j ∶  [wkj]r

L
 < 0} 

    c = {j ∶  [wkj]r
U
 ≥ 0}, d = {j ∶  [wkj]r

U
 < 0},  

    a ∪ b = {1,2,3, … ,m}  and  c ∪ d = {1,2,3, … ,m}. 

 

4 Technique of The Proposed Method  

4.1 First Order Fuzzy Differential Equation  

      To solve any fuzzy ordinary differential equation we consider a three – 

layered fuzzy FFNN with one unit entry x, one hidden layer consisting of m 

activation functions and one unit output N(x, p). The activation function for 

the hidden units of our FNN is the hyperbolic tangent function. Here, the 

dimension of FNNM is (1 × m × 1)  . 
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For every entry x (where x ≥ 0 ) equations (21-27) will be :  

Input unit: o = x,                                                                                     (28)     

Hidden units :                                              

    [zj]r = [[zj]r
L
, [zj]r

U
] = [s ([netj]r

L
) , s ([netj]r

U
)]                                   (29)      

where 

    [netj]r
L
 = o [wj]r

L
 + [bj]r

L
                                                                            (30) 

    [netj]r
U

 = o [wj]r
U

 + [bj]r
U

                                                                           (31)               

Output unit:   

    [N]r = [[N]r
L, [N]r

U]                                                                                   (32) 

 where                                                                       

    [N]r
L=∑ [vj]r

L
 [zj]r

L
+ ∑ [vj]r

L
 [zj]r

U
j∈b   

j∈a                                                        (33) 

    [N]r
U=∑ [vj]r

U
 [zj]r

U
+ ∑ [vj]r

U
 [zj]r

L
j∈d   

j∈c                                                       (34) 

     For illustration the solution steps of our proposed method, we will consider 

the first order fuzzy differential equation : 

    
dy(x)

dx
 = F(x, y)      ,  x ∈ [a, b] , y (a) = A                                               (35) 

where A is a fuzzy number in E1 with r – level sets: 

    [A]r = [[A]r
L, [A]r

U] , r ∈ [0, 1]. 

The fuzzy trial solution for this problem is: 

[yt(x, p)]r
L    = [A]r

L + (x − a)[N(x, p)]r
U 

[yt(x, p)]r
U    = [A]r

U + (x − a)[N(x, p)]r
L                                                      (36) 

This fuzzy solution by intention satisfies the fuzzy initial condition in (35). 
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     In this work we use the error function : E = ∑ (Eir
L  +  Eir

U)
g
i=1 , where Eir

L  and 

Eir
U can be viewed as the squared errors for the lower limits and the upper 

limits of the r-level sets, respectively.  

Therefore, The error function that must be minimized for the problem (35) is 

in the form [23] : 

    E= ∑ (Eir
L + Eir

U)
g
i=1                                                                                     (37) 

where  

    Eir
L  = [ [

d yt (xi,p)

dx
]
r

L

− [F (xi, yt (xi, p))]r
L
 ]
2

                                     

    Eir
U = [ [

d yt (xi,p)

dx
]
r

U

− [F (xi, yt (xi, p))]r
L
 ]
2

                                            (38)     

where {xi}i=1
g

 are discrete points belonging to the interval [a, b] (training set) 

and in the cost function (37), Er
L and Er

U can be viewed as the squared errors 

for the lower limits and the upper limits of the  r – level sets, respectively. 

It is easy to express the first derivative of [N(x, p)]r
U and [N(x, p)]r

L                                                 

in terms of the derivative of the hyperbolic tangent activation function, i.e.,  

    
∂ [N]r

L

∂x
 = ∑ [vj]r

L
 
∂ [zj]r

L

∂ [netj]r
L   

∂ [netj]r
L

∂xa  + ∑ [vj]r
L
 
∂ [zj]r

U

∂ [netj]r
U   

∂ [netj]r
U

∂xb                      (39)                                                                                             

   
∂ [N]r

U

∂x
 = ∑ [vj]r

U
 
∂ [zj]r

U

∂ [netj]r
U   

∂ [netj]r
U

∂xc  + ∑ [vj]r
U
 
∂ [zj]r

L

∂ [netj]r
L   

∂ [netj]r
L

∂xd                      (40)  

From (29-31) we can get                                                                                       

    
∂[netj]r

L

∂x
 =  [wj]r

L
                                                                                           (41)                                                           

    
∂[zj]r

L

∂ [netj]r
L = 1 - ([zj]r

L
)
2

                                                                                 (42)                                                      

    
∂[netj]r

U

∂x
 =  [wj]r

U
                                                                                          (43)                                                                     
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∂ [zj]r

U

∂ [netj]r
U = 1 - ([zj]r

U
)
2

                                                                                 (44)   

From (36) we can get      

    
∂[yt (x,p)]r

L

∂x
 = [N (x, p)]r

U + (x − a) 
∂ [N (x,p)]r

U

∂x
                                            (45)                                              

   
∂[yt (x,p)]r

U

∂x
  = [N (x, p)]r

L + (x − a) 
∂ [N (x,p)]r

L

∂x
                                             (46)    

Then we have                              

Eir
U = [ ∑ [vj]r

L
 [zj]r

L
+ ∑ [vj]r

L
 [zj]r

U
+ (xi − a)ba (∑   [vj]r

L
 [wj]r

L
(1 −a

 ([zj]r
L
)
2

) + ∑   [vj]r
L
 [wj]r

U
 (1 − ([zj]r

U
)
2

)b ) − F(xi, [A]r
U + (xi −

a) (∑ [vj]r
L
 [zj]r

L
+∑ [vj]r

L
 [zj]r

U
ba )) ]2                                                             (47) 

Eir
L = [ ∑ [vj]r

U
 [zj]r

U
+ ∑  [vj]r

U
 [zj]r

L
+ (xi − a)dc (∑   [vj]r

U
 [wj]r

U
(1 −c

 ([zj]r
U
)
2

)+ ∑   [vj]r
U
 [wj]r

L
 (1 − ([zj]r

L
)
2

)d ) − F(xi, [A]r
L + (xi −

a) (∑ [vj]r
U
 [zj]r

U
+∑ [vj]r

U
 [zj]r

L
dc )) ]2                                                          (48) 

Then we substitute (47) and (48) in (37) to find the error function that must 

be minimized for problem (35). 

Note : For reducing the complexity of the learning algorithm in (37), we have 

used partially fuzzy neural network (PFNN) architecture where connection 

weights to the output unit are fuzzy numbers while connection weights and 

biases to the hidden units are real numbers . 

 The input – output relation of each unit of the PFNN can be rewritten for r – 

level sets as follows: 

Input unit:           o = x                                                                                 (49)                                                                 

Hidden units:      zj = s (netj) , j = 1,2,3, …m                                           (50)                    

   where                netj = o wj + bj                                                                 (51)                                                             

Output unit: 



Basim N. Abood 

302 

 

   [N]r=[[N]r
L, [N]r

U]=[∑ [vj]r
L
zj 

m
j=1 , ∑ [vj]r

U
zj 

m
j=1 ]                                       (52)            

Now, to find the minimized error function  for problem (35) :  

   
∂ [N]r

L

∂x
 = ∑ [vj]r

L
 
∂ zj

∂ netj
  
∂ netj

∂x

m
j=1 = ∑ [vj]r

L
 m

j=1 wj (1 − zj
2)                             (53)                                         

   
∂ [N]r

U

∂x
 = ∑ [vj]r

U
 
∂ zj

∂ netj
  
∂ netj

∂x

m
j=1  = ∑ [vj]r

U
 m

j=1  wj (1 − zj
2)                  (54)                                                 

Then we obtain : 

Eir
U = [ ∑ zj

m
j=1 [vj]r

L
+ (xi − a) ∑  wj

m
j=1 (1 − zj

2)[vj]r
L
− F(xi, [A]r

U+ (xi −

a) ∑ zj 
m
j=1 [vj]r

L
) ]2                                                                                         (55) 

Eir
L = [ ∑ zj

m
j=1 [vj]r

U
+ (xi − a) ∑  wj

m
j=1 (1 − zj

2)[vj]r
U
− F(xi, [A]r

L+ (xi −

a) ∑ zj 
m
j=1 [vj]r

U
) ]2                                                                                        (56)                                           

Then we substitute (55) and (56) in (37) to find the error function that must 

be minimized for problem (35) under PFNN. 

4.2 Reducing a FDE to a System of ODEs [24,25] 

     The solution of the fuzzy differential equation (35) is depend on the choice 

of the derivative (in the first form or in the second form of definition (10)).  

Let us explain the proposed method, if we denote  

[y(x)]r = [y1
r(x), y2

r(x)],                    [y0]
r = [y01 

r ,  y02
r ] 

and 

   [F(x, y(x))]r =

[ F1
r(x, y1

r(x), y2
r(x)), F2

r(x, y1
r(x), y2

r(x)) ]                             (57) 

we have the following results: 

Case I.  If we consider  yˊ(x) in the first form (1) of definition (2.2.3), then we 

have to solve the following system of ODEs 



Analytical and numerical solution of differential equations with generalized fuzzy 

derivative 

303 

 

d

dx
(y1

r(x)) = F1
r(x, y1

r(x), y2
r(x))                                 y1

r(a) = y01
r  

d

dx
(y2

r(x)) = F2
r(x, y1

r(x), y2
r(x))                                 y2

r(a) = y02
r  

Case II.  If we consider  yˊ(t) in the second form (2) of definition (2.2.3) then 

we have to solve the following system of ODEs 

d

dx
(y1

r(x)) = F2
r(x, y1

r(x), y2
r(x))                                 y1

r(a) = y01
r  

d

dx
(y2

r(x)) = F1
r(x, y1

r(x), y2
r(x))                                 y2

r(a) = y02
r  

The existence and uniqueness of the two solutions (for problem (35)) which 

described above are given by the following theorem 

Theorem (2) :  Let  F ∶   I ×  E1    →   E1  be a continuous fuzzy function such 

that there exists  k > 0  such that  

D(F(x,w), F(x, z))  ≤ k D(w, z)     for  all  t ∈ I  and   w, z ∈ E1   then the    

problem (35) has two solutions (one (1)-differentiable and the other one (2)-

differentiable)  on  I, where  I = [a, b]  . 

Proof: see [26]          □   

To illustrate how we can find the two solutions for a fuzzy differential 

equation under generalized H-derivation, we present the following problems: 

Problem (1): Consider the fuzzy initial value problem  

                 y ́ = −y(x)  ,    y(0) = [ 0.96 + 0.04r, 1.01 − 0.01r ]                                                   

 (1) According to subsection (4.2), Case I., after reducing the above problem , 

we have the following system of ODEs   

d

dx
(y1

r(x)) = −y1
r(x),                            y1

r(0) = 0.96 + 0.04r 

d

dx
(y2

r(x)) = −y2
r(x),                            y2

r(0) = 1.01 − 0.01r 
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Which gives the following fuzzy analytical solution 

y(x, r) = [ (0.96 + 0.04r)e−x, (1.01 − 0.01r)e−x ]  

(2) According to subsection (4.2), Case II., after reducing the above problem  , 

we have the following system of ODEs   

d

dx
(y1

r(x)) = −y2
r(x),                            y1

r(0) = 0.96 + 0.04r 

d

dx
(y2

r(x)) = −y1
r(x),                            y2

r(0) = 1.01 − 0.01r 

Which gives the following fuzzy analytical solution 

y(x, r) = [ (0.985 + 0.015r)e−x − (1 − r)0.025ex, (0.985 + 0.015r)e−x +

(1 − r)0.025ex ]. 

Problem (2): Consider the fuzzy initial value problem 

            y ́ = −3y(x) + e2x ,    y(0) = [ 0.75 + 0.25r, 1.25 − 0.25r ]                                                   

 (1) According to subsection (4.2), Case I., after reducing the above problem , 

we have the following system of ODEs   

d

dx
(y1

r(x)) = −3y1
r(x) + e2x,                            y1

r(0) = 0.75 + 0.25r 

d

dx
(y2

r(x)) = −3y2
r(x) + e2x,                            y2

r(0) = 1.25 − 0.25r 

Which gives the following fuzzy analytical solution 

y(x, r) = [ (0.55 + 0.25r)e−3x + 0.2e2x, (1.05 − 0.25r)e−3x + 0.2e2x ]  

(2) According to subsection (4.2), Case II., after reducing the above problem , 

we have the following system of ODEs   

d

dx
(y1

r(x)) = −3y2
r(x) + e2x,                            y1

r(0) = 0.75 + 0.25r 

d

dx
(y2

r(x)) = −3y1
r(x) + e2x,                            y2

r(0) = 1.25 − 0.25r 
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Which gives the following fuzzy analytical solution 

y(x, r) = [ (0.75 + 0.25r)cosh3x − (1.25 − 0.25r)sinh3x + 0.2e2x −

0.2e−3x , (1.25 − 0.25r)cosh3x − (0.75 + 0.25r)sinh3x + 0.2e2x −

0.2e−3x  ]. 

 

5 Numerical Examples 

     To show the behavior and properties of the proposed method, two problem 

will be solved in this section. We have used a multilayer perceptron having 

one hidden layer with ten hidden units and one output unit. The activation 

function of each hidden unit is hyperbolic tangent activation function. The 

analytical solution [ya(x)]r
L and [ya(x)]r

U  has been known in advance. 

Therefore, we test the accuracy of the obtained solutions by computing the 

deviation (absolute error):  

e (x, r) = |[ya(x)]r
U − [yt (x)]r

U|, e (x, r)= |[ya(x)]r
L − [yt(x)]r

L|  

In order to obtain better results, more hidden units or training points may be 

used. To minimize the error function we have used BFGS quasi-Newton 

method (For more details, see [24]). The computer programs which we have 

used in this work are coded in MATLAB 2015. 

Example 1: Consider the following linear fuzzy initial value problem: 

   y´ = - y + x + 1,   with   x ∈ [0, 1]  

y(0) = [0.96 +  0.04r, 1.01 –  0.01r], where r ∈ [0, 1]. 

The analytical solution (According to subsection (4.2), Case II. ) are : 

    [ya(x)]r
L = x + (0.985 + 0.015r)e−x − (1 − r)0.025ex  

    [ya(x)]r
U= x + (0.985 + 0.015r)e−x + (1 − r)0.025ex 

The trial solution (According to the proposed method in this work) are: 

   [yt(x)]r
L =  (0.96 + 0.04r) + x [N(x, p)]r

U  

   [yt(x)]r
U=  (1.01 − 0.01r) + x  [N(x, p)]r

L                                                                                                             
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The ANN trained using a grid of ten equidistant points in [0, 1].  

The error function that must be minimized for this problem will be: 

E = ∑ ( [11
i=1 xi∑ [vj]r

L
 wj s´

10
j=1 (xi wj + bj)+ (1 + xi)  

        ∑ [vj]r
L
  s10

j=1 (xi wj + bj ) – xi - 0.01r + 0.01 ]2  

        +[xi∑ [vj]r
U
 wj s´

10
j=1 (xi wj + bj) + (1 + xi) 

        ∑ [vj]r
U
 s10  

j=1 (xi wj + bj)– xi + 0.04 r - 0.04 ]2 )                                     (58)       

Where s´ is first derivative of hyperbolic tangent activation function. 

Then we use (58) to update the weights and biases. 

 Analytical and trial(numerical) solutions for this problem can be found in 

table (1) and table (2). 

Example 2: Consider the following non-linear fuzzy initial value problem: 

   y´ = cos (x2 + y2),   with   x ∈ [0, 1]  

y(0) = [0.75 +  0.25r, 1.25 –  0.25r], where r ∈ [0, 1]. 

The trial solutions (According to the proposed method in this work)  for this 

problem are : 

   [yt(x)]r
L=  (0.75 + 0.25r) + x [N(x, p)]r

U  

   [yt(x)]r
U=  (1.25 − 0.25r) + x [N(x, p)]r

L 

The ANN trained using a grid of ten equidistant points in [0, 1].  

The error function that must be minimized for this problem will be E =

∑ ( [11
i=1 xi∑ [vj]r

L
 wj s´

10
j=1 (xi wj + bj)+ 

∑ [vj]r
L
  s10

j=1 ( xi wj + bj) – cos ( xi
2+(1.25 − 0.25r +

 xi∑ [vj]r
L
  s10

j=1 ( xi wj + bj))
2) ]2+[
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xi∑ [vj]r
U
 wj s´

10
j=1 (xi wj + bj)+ ∑ [vj]r

U
 s10

j=1 (xi wj + bj) –cos ( xi
2 +

(0.75 + 0.25r +  xi ∑ [vj]r
U
 s10

j=1 (xi wj + bj))
2) ]2 )                                      (59) 

Then we use (59) to update the weights and biases.  

Trial (numerical) solutions for this problem can be found in table (3). 

Table (1): Trial solutions for example (1), x = 2. 

Table (2): Trial  solutions for example (1), r = 0.5. 

 

 

  r  [yt(x)]r
L e (x, r) [yt(x)]r

U e (x, r) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.948579274 

1.967254967 

1.985930525 

2.004605986 

2.023282053 

2.041957703 

2.060632805 

2.079308402 

2.097984071 

2.116660365 

2.135335791 

0.000000422 

0.000000472 

0.000000387 

0.000000205 

0.000000629 

0.000000635 

0.000000094 

0.000000048 

0.000000074 

0.000000725 

0.000000508 

2.318032417 

2.299762662 

2.281492466 

2.263223455 

2.244953513 

2.226683566 

2.208413946 

2.190144557 

2.171875271 

2.153604974 

2.135336111 

0.000000761 

0.000000643 

0.000000085 

0.000000711 

0.000000406 

0.000000096 

0.000000114 

0.000000362 

0.000000713 

0.000000054 

0.000000828 

  x  [yt(x)]r
L e (x, r) [yt(x)]r

U e (x, r) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.98 

0.984236574 

0.997322850 

1.018388968 

1.046645251 

1.081372866 

1.121919133 

1.167689342 

1.218140638 

1.272775429 

1.331142019 

0 

0.000000074 

0.000000112 

0.000000119 

0.000000414 

0.000000202 

0.000000069 

0.000000337 

0.000000903 

0.000000081 

0.000000196 

1.005 

1.011865864 

1.027858634 

1.052136129 

1.083941124 

1.122591654 

1.167472118 

1.218032891 

1.273778484 

1.334265671 

1.399099381 

0 

0.000000090 

0.000000827 

0.000000810 

0.000000670 

0.000000958 

0.000000084 

0.000000068 

0.000000226 

0.000000245 

0.000000513 
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Table (3): Trial solutions for example (2), r = 0.25. 

 

6 Conclusion  

     In this paper, we have presented numerical method based on fuzzy neural 

network for solving first order fuzzy initial value problem under generalized 

H-derivation. we have demonstrated the ability of the fuzzy neural network to 

approximate the solution of the fuzzy differential equations. Therefore, we can 

conclude  that the method which we  proposed  can  handle effectively all 

types of the fuzzy differential equations and   provide   accurate  approximate  

solution  throughout  the whole domain and not only at the training set. As 

well, one can use the interpolation techniques to find the approximate solution 

at points between the training points or at points outside the training set. 

Further research is in progress to apply and extend this method to solve higher 

order fuzzy differential equations and partial fuzzy differential equations. 

 

 

 

 

  x  [yt(x)]r
L [yt(x)]r

U 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.8125 

0.814603338 

0.814821036 

0.812924175 

0.808261184 

0.799681021 

0.785827891 

0.765526122 

0.737875907 

0.702086306 

0.657325883 

1.1875 

1.216504331 

1.244468346 

1.270982832 

1.295659825 

1.318165427 

1.338238511 

1.355644313 

1.370043258 

1.380817214 

1.386926291 
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