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Abstract  

Euler's and Fermat's Little theorems have a great use in number theory. Euler's 

theorem is currently widely used in computer science and cryptography, as one 

of the current encryption methods is an exponential cipher based on the 

knowledge of number theory, including the use of Euler's theorem. Therefore, 

knowing the theorem well and using it in specific mathematical applications is 

important. The aim of our paper is to show the validity of Euler's theorem by 

means of linear congruences and to present several specific tasks which are 

suitable to be solved using Euler's or Fermat's Little theorems and on which the 

principle of these theorems can be learned. Some tasks combine various 

knowledge from the field of number theory, and are specific by the fact that the 

inclusion of Euler's or Fermat's Little theorems to solve the task is not 

immediately apparent from their assignment. 
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1 Introduction 
 

At present, mathematics provides apparatus for virtually all modern coding 

systems. The first coding system, with only two symbols - a dot and a comma, 

was Morse code which was used to send the first coding message by American 

inventor Samuel F. B. Morse in 1844 using an electric telegraph. Binary code 

encoding has become a better code for message encryption at a later time, in 

which each coded word consists of blocks of ones and zeroes, and this encoding 

is still used today [1]. Significant developments in coding occurred in the 20th 

century when Euler's theorem was used for coding and the coded text could be 

broadcasted publicly with the message kept secret. The principle of this coding 

is that the sender assigns a number to a coded word (e.g. 74) and encodes that 

word using two additional numbers (e.g. 247 and 5), which may be public in 

such a way that 745(mod 247) = 120 is calculated. This will give you 

a message “120” that will be sent to the recipient. Since numbers 247 and 5 are 

public keys, anyone can encode the message "74" to "120", but only the actual 

recipient can decode it correctly. The essence of the key to the cipher lies in the 

fact that only the recipient knows that number 247 was compiled as the product 

of primes  𝑝 = 13  and 𝑞 = 19 and using Euler's theorem searches for the value 

x for which the congruence is 5𝑥 ≡ 1(mod [(𝑝 − 1)(𝑞 − 1)]). The recipient 

can easily get the result 𝑥 = 173. Using this figure, the remainder by dividing 

120173 by number 247 is found, thereby obtaining the original coded word 74 

which can already be assigned to the message [2]. In practice, with this type of 

coding, the product of two very large primes is used, where the decomposition 

of the thus obtained number is very difficult, virtually impossible for someone 

who does not know the product of which two primes have been executed. 

Despite the fact that the principle of this coding was discovered and started to 

be used practically in the 20th century, it is actually derived from Euler's 

knowledge from the 18th century. 

Most of the results in mathematics in the 18th century stemmed from efforts to 

solve various separate problems discovered in the 17th century. In this period, 

the theory of numbers remained more or less in the background, and the only 

mathematician who dealt with the issues of number theory after 1730 to 

a greater extent was Euler. In 1736, he proved Fermat's Little theorem which 

claims that for any natural number a and prime p, 𝑎𝑝−1 ≡ 1(mod 𝑝). Later in 

1760, after the introduction of Euler's totient function 𝜑(𝑛) he demonstrated the 

validity of congruence 𝑎𝜑(𝑚) ≡ 1(mod 𝑚) which is a generalization of 

Fermat's Little theorem. Euler also dealt with many other Fermat's claims. He 

also achieved several accomplishments related to the decomposition of certain 

expressions with the powers of natural numbers and to perfect and friendly 

numbers. He was also interested in the problem of integer roots of Pell's 

equation, about which he published several articles, and presented his own 
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method of solution. Euler has introduced a number of concepts into number 

theory, such as the quadratic residue and the quadratic nonresidue in the law of 

quadratic reciprocity and his work and accomplishments, despite the lack of 

exact evidence in several areas, were generally accepted by respected 

mathematicians of the 18th and 19th centuries (e.g. Gauss or Legendre) [3]. We 

would like to mention there's also another principle of coding using Fibonacci 

numbers and can be seen in [4]. 

2 Euler's theorem, Fermat's Little theorem 

Let us consider two natural numbers a, m where (𝑎,𝑚) = 1. Euler's theorem [5] 

then states that 𝑚|𝑎𝜑(𝑚) − 1, or  that congruence 𝑎𝜑(𝑚) ≡ 1(mod 𝑚) applies. 

The symbol 𝜑(𝑛) denotes the number of natural numbers smaller than n and 

relatively prime to n and is called Euler's totient function [6]. 

To show the validity of Euler's theorem, we will use the basic properties of 

congruences and residue classes. Let's write all relatively prime numbers to 𝑚 

less than 𝑚. These are 𝑥1, 𝑥2, ⋯ , 𝑥𝜑(𝑚).  Let us further consider the sequence 

𝑎𝑥1, 𝑎𝑥2, ⋯ , 𝑎𝑥𝜑(𝑚) and indirectly show that all its members are relatively 

prime to 𝑚. If ∃𝑖: (𝑎𝑥𝑖 , 𝑚) = 𝑑 > 1, then 𝑑|𝑎𝑥𝑖 ∧ 𝑑|𝑚. Then (𝑑, 𝑎) = 1, 

because (𝑎,𝑚) = 1 ∧ 𝑑|𝑚.  In that 𝑑|𝑥𝑖  and numbers 𝑚, 𝑥𝑖 are commensurable 

which is a controversy. 

Furthermore, let us indirectly show that numbers 𝑎𝑥1, 𝑎𝑥2, ⋯ , 𝑎𝑥𝜑(𝑚) are non-

congruent modulo 𝑚. ∃𝑖, 𝑗: 𝑎𝑥𝑖 ≡ 𝑎𝑥𝑗(mod 𝑚). Then 𝑚|𝑎𝑥𝑖 − 𝑎𝑥𝑗 = 𝑎(𝑥𝑖 −

𝑥𝑗) ∧ (𝑎,𝑚) = 1, of which 𝑚|𝑥𝑖 − 𝑥𝑗 and then 𝑥𝑖 ≡ 𝑥𝑗(mod 𝑚), which is a 

controversy, because 𝑥𝑖 are differently lower from each other than 𝑚, and 

therefore cannot give the same remainder after division by 𝑚. 

Before completing the evidence, we recall, that based on the basic properties of 

congruences, [7] we know that integers 𝑎 and 𝑏 belong to the same class 𝑅𝑖 
modulo 𝑚 just when 𝑎 ≡ 𝑏 (mod 𝑚). If we first express the numbers a, b ∈  𝑅𝑖 
in the form 𝑎 = 𝑚 ∙ 𝑞 + 𝑖, 𝑏 = 𝑚 ⋅ 𝑝 + 𝑖, then 𝑎 − 𝑏 = 𝑚(𝑞 − 𝑝), which means 

𝑚|𝑎 − 𝑏, and thus 𝑎 ≡ 𝑏(mod 𝑚). On the other hand, let us assume that 𝑎 ≡
𝑏 (mod 𝑚) and 𝑎 = 𝑚𝑞 + 𝑖, 𝑏 = 𝑚𝑝 + 𝑗 (0 ≤ 𝑖, 𝑗 < 𝑚). For example, it is 

supposed that 𝑖 > 𝑗. Since 𝑎 ≡ 𝑏 (mod 𝑚), 𝑚|𝑎 − 𝑏. But then 𝑚 (𝑎 − 𝑏) =
[𝑚(𝑞 − 𝑝) + (𝑖 − 𝑗)], of which 𝑚 (𝑖 − 𝑗). This would be a controversy 

though, because 0 < 𝑖 − 𝑗 < 𝑚. Similarly, a controversy arises even with the 

assumption 𝑖 < 𝑗. Therefore 𝑖 = 𝑗 must hold, hence the numbers 𝑎 and 𝑏 belong 

to the same residual class modulo 𝑚 with 𝑎 ≡ 𝑏 (mod 𝑚). 
As the class representative does not matter, we can write  𝑎𝑥1 ∙ 𝑎𝑥2 ∙ ⋯ ∙
𝑎𝑥𝜑(𝑚) ≡ 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝜑(𝑚)(mod 𝑚). Then 𝑚|𝑎𝑥1 ∙ 𝑎𝑥2 ∙ ⋯ ∙ 𝑎𝑥𝜑(𝑚) − 𝑥1 ∙
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𝑥2 ∙ ⋯ ∙ 𝑥𝜑(𝑚) = (𝑎𝜑(𝑚) − 1)𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝜑(𝑚). Since (𝑚, 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙

𝑥𝜑(𝑚)) = 1, then  𝑚|𝑎𝜑(𝑚) − 1. 

If 𝑚 is a prime number and 𝑝 ∤ 𝑎, then 𝜑(𝑚) = 𝑚 − 1 and we get Fermat's Little 

theorem 𝑎𝑝−1 ≡ 1(mod 𝑝) directly from Euler's theorem. A variation of 

Fermat's Little theorem can be used to test primality [8]. If there exists 𝑎 ∈
{2,⋯ , 𝑛 − 1}, 𝑛 > 3, where 𝑎𝑛−1 ≢ 1(mod 𝑛), then n is a composite number 

and we call it Fermat's witness for the compositeness of number 𝑛 [9]. 

Fermat's primality test can be suitably algorithmically presented in a selected 

computational environment (e.g. Matlab). The algorithm consists of two steps: 

 

a) we randomly select number a for which 1 < 𝑎 < 𝑛 

b) it is tested whether congruence 𝑎𝑛−1 ≡ 1(mod 𝑛)  is satisfied 

 

If congruence 𝑎𝑛−1 ≡ 1(mod 𝑛) is satisfied, the number 𝑛 may or may not be 

a prime number. If congruence is not satisfied, the number 𝑛 is not a prime and 

number 𝑎 is the Fermat's witness for the compositeness of 𝑛. 

Fermat's primality test works well for numbers that are not products of prime 

numbers different from each other. It can be demonstrated that if we test the 

number 𝑛, which is not the product of different prime numbers, hence there is 

such a prime 𝑝 where 𝑝2|𝑛, then with a probability of at least 75% we can choose 

between numbers 2,⋯ , 𝑛 − 1 such a number which will be the Fermat's witness 

for the compositeness of 𝑛 [9]. 

First, in Matlab, we create a function that helps us test congruence 𝑎𝑛−1 ≡
1(mod 𝑛) generally for two given numbers 𝑎 and 𝑛. The function will calculate 

the value 𝑎𝑛−1 mod 𝑛 which we will compare with 1 within the residue classes. 

 
function res = test_congruence(a, n) 

  

expn = n - 1; 

res = 1; 

  

while expn ~= 0 

  if rem(expn, 2) == 1 

    res = rem(res * a, n); 

  end 

  expn = floor(expn / 2); 

  a = rem(a^2, n); 

end 

 

The second function randomly generates 𝑎 ∈ {2,⋯ , 𝑛 − 1} and we look for the 

Fermat's witness for the compositeness of 𝑛. 
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function test_fermat(n, cnt) 

  

fo = false; 

ii = 1; 

while (ii <= cnt) && (~fo) 

  a = 1 + unique(ceil((n - 2) * rand(1, 1))); 

  tc = test_congruence(a, n); 

  if(tc ~= 1) 

    fermat_witness = a; 

    fo = true; 

  else 

    ii = ii + 1; 

  end 

end 

  

if fo 

  disp(['Number ' num2str(n) ' is a composite 

number.']); 

  disp(['Number ' num2str(fermat_witness) ' is a 

Witness for the compositeness of ' 

num2str(n) '.']); 

else 

  disp(['Number ' num2str(n) ' can be a prime or a 

composite number.']); 

end 

 

 

The created test function is activated through the command line for any number 

𝑛. 

 
>> test_fermat(223, 1) 

Number 223 can be a prime or a composite number. 

 
>> test_fermat(273, 1) 

Number 273 is a composite number. 

Number 220 is a Witness for the compositeness of 

273. 

3 Euler's, Fermat's Little theorem applications 

In this section, we have selected and compiled a number of specific tasks [10], 

[11] that guide on how to solve certain types of tasks using Euler's or Fermat's 
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Little theorem. We remark that for a natural number 𝑛 greater than 1 in canonical 

decomposition 𝑛 = 𝑝1
𝛼1 …𝑝𝑘

𝛼𝑘 it holds that 

  

𝜑(𝑛) =  𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
)… (1 −

1

𝑝𝑘
) [6] 

 

Example 3.1. First, we demonstrate that if we divide number 1724 by number 

39, the remainder 1 is obtained. 

 

Solution. It is determined that 𝑎 = 17, 𝑚 = 39. (39,17) = 1 and Euler's 

theorem can be applied. Let us calculate 𝜑(𝑚) = 𝜑(39) = 39 (1 −
1

3
) (1 −

1

13
) = 24. Then according to Euler's theorem 39|1724 − 1, thus ∃𝑘 ∈ ℤ: 1724 −

1 = 39𝑘. Then we can write 1724 = 39𝑘 + 1, and 1 is obtained as a remainder. 

 

Example 3.2. It is demonstrated that 𝑝 and 8𝑝2 + 1 are simultaneously prime 

just when 𝑝 = 3. 

 

Solution. 1. First, 𝑝 = 3. Then 8𝑝2 + 1 = 8 ∙ 9 + 1 = 73, which is a prime. 

2. Now let 𝑝 and 8𝑝2 + 1 be prime numbers simultaneously.  8𝑝2 + 1 is 

adjusted as 8𝑝2 + 1 = 8𝑝2 − 8 + 9 = 8(𝑝2 − 1) + 9. Let 𝑝 be a prime number 

other than 3. Then (𝑝, 3) = 1 a 3|𝑝𝜑(3) − 1 = 𝑝2 − 1 . Since 3|𝑝2 − 1, then 

8(𝑝2 − 1) ∧ 3|9, then 3|8(𝑝2 − 1) + 9 = 8𝑝2 + 1 and 8𝑝2 + 1 would not be a 

prime number, which is a controversy, thus 𝑝 = 3. 

 

Example 3.3. We show if 𝑎 is not divisible by 5, then only one number from 

𝑎2– 1, 𝑎2 + 1 is divisible by 5. 

 

Solution. If 𝑎 is a multiple of 5, according to Euler's theorem 𝑎4 − 1 is a multiple 

of 5.  Then only one of numbers 𝑎2 − 1 and 𝑎2 + 1 is a multiple of 5. They both 

concurrently cannot be, otherwise their difference would also be divisible by 

number 5, which is not, since (𝑎2 + 1) − (𝑎2 − 1) = 2. 

 

Example 3.4. We find all primes 𝑝 for which 5𝑝
2
+ 1 ≡ 0(𝑚𝑜𝑑 𝑝2). 

 

Solution. The prime number 𝑝 =  5 does not satisfy the task and at the same 

time (𝑝, 5) = 1. Then according to Euler's theorem 5𝑝−1 ≡ 1 (mod 𝑝). By 

exponentiation to 𝑝 +  1 we get 5𝑝
2−1 ≡ 1 (mod 𝑝), of which 5𝑝

2
≡

5 (mod 𝑝). 

Next, the task assignment states that 5𝑝
2
+  1 ≡  0 (mod 𝑝2), that implies 

5𝑝
2
≡ −1 (mod 𝑝2) and also 5𝑝

2
≡ −1 (mod 𝑝). Then congruences 5𝑝

2
≡
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5 (mod 𝑝) and 5𝑝
2
≡ −1 (mod 𝑝) hold that 5 ≡ −1 (mod 𝑝). Then 𝑝|6. In 

that 𝑝 = 2 or 𝑝 = 3. For 𝑝 = 2 it holds that 54 +  1 ≡ 14 +  1 = 2 ≢
 0 (mod 4). For 𝑝 = 3 it holds that 59 +  1 = 56 ∙ 53 + 1 ≡ 53 + 1 = 126 ≡
 0 (mod 9). Then, the only prime number satisfying the task is 𝑝 = 3. 

 

Example 3.5. For the odd number 𝑚 >  1 we find the remainder after division 

of 2𝜑(𝑚)−1 by number 𝑚. 

 

Solution. Euler's theorem implies that 2𝜑(𝑚) ≡ 1 ≡ 1 +𝑚 = 2 ∙
1+𝑚

2
=

2𝑟(mod 𝑚) where 𝑟 is a natural number 0 ≤ 𝑟 < 𝑚. 

The basic properties of congruences [7] determine that if  𝑎 ≡ 𝑏(mod 𝑚) and 

𝑑 is an integer with properties 𝑑|𝑎, 𝑑|𝑏, (𝑑,𝑚) = 1, then 
𝑎

𝑑
≡

𝑏

𝑑
(mod 𝑚). 

Indeed 𝑎 = 𝑎1𝑑, 𝑏 = 𝑏1𝑑 and according to assumption 𝑚|(𝑎 − 𝑏), it holds that 

𝑚|𝑑(𝑎1 − 𝑏1). Since (𝑑,𝑚) = 1, it holds that 𝑚|(𝑎1 − 𝑏1). Then 𝑎1 ≡

𝑏1(mod 𝑚), thus 
𝑎

𝑑
≡

𝑏

𝑑
(mod 𝑚). 

Then, however, we can divide both sides of the congruence 2𝜑(𝑚) ≡
2𝑟(mod 𝑚) by their common divisor, number 2, which is relatively prime to 

the modulo. Then 2𝜑(𝑚)−1 ≡ 𝑟(mod 𝑚), and thus the remainder sought is  𝑟 =
1+𝑚

2
. 

 

Example 3.6. We find the last two digits of number 13742. 

 

Solution. The task leads to the search for the remainder when dividing number 

13742 by number 100. Since (137,100) = 1, according to Euler's theorem it 

holds that 137𝜑(100) − 1 is a multiply of 100 (100|137𝜑(100) − 1). Next 

𝜑(100) = 100 (1 −
1

2
) (1 −

1

5
) = 40. Then 13740 − 1 is a multiply of 100. 

Therefore 13742 = 137213740 − 1372 + 1372 = 1372(13740 − 1) + 
+1372 = 1372(13740 − 1) + (100 + 37)2 = 100𝑘 + (100 + 37)2. 

Next, we use the formula (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2. Then 13742 = 100𝑘 +
100𝑙 + 372 = 100𝑛 + 1369 = 100𝑛 + 1300 + 69 = 100𝑚 + 69. Thus, the 

remainder sought is 69. 

 

Example 3.7. We find the last 2 digits of number 𝑎 = 13747. 

 

Solution. The last 2 digits of number a are again obtained as the remainder after 

dividing the number 𝑎 by 100. (100,137) = 1 and Euler's theorem can be 

applied. Then 100|137𝜑(100) − 1, thus 100|13740 − 1. Then 13740 − 1 is a 

multiply of 100 and 13740 = 100𝑘 + 1. 
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Let us calculate 13747 = 13740 ∙ 1377 = (100𝑘 + 1) ∙ 1377 = 100𝑘 ∙
1377 + 1377 Number 100𝑘 ∙ 1377 cannot specify last 2 digits (ending with 2 

zeroes), and so just number 1377 has the last 2 digits of the given number 𝑎. 

Next, the binomial theorem is applied. 

1377 = (130 + 7)7 = (7
0
)1307 + (7

1
)1306 ∙ 7 + ⋯+ (7

6
)130 ∙ 76 + (7

7
)77. In 

this summation only the members (7
6
)130 ∙ 76 a (7

7
)77 decide the last two digits 

(other contribute zeroes in last two digits). 

Their summation is calculated as (7
6
)130 ∙ 76 + (7

7
)77 = 130 ∙ 77 + 77 = 131 ∙

77 = 107884133. Overall, we get the last 2 digits of the number 𝑎 = 13747 

which are 33. 

 

Example 3.8. We find the remainder when dividing (8570 + 1932)16 by 

number 21. 

 

Solution. According to the binomial theorem 8570 = (84 + 1)70 = (70
0
)8470 + 

+(70
1
)8469 ∙ 1 + ⋯+ (70

69
)84 ∙ 169 + (70

70
)170. We see that number 21 can be 

removed from every member except the last one. Then 8570 = (84 + 1)70 =
21𝑛 + 1. 

Because 𝜑(21) = 12, 1912 − 1 is a multiply of 21 (applying Euler's theorem), 

then 1932 = 198(1924 − 1) + 198 = 21𝑚 + 198. Therefore (8570 +
1932)16 = (21𝑛 + 1 + 21𝑚 + 198)16 = (21𝑘 + 1 + (21 − 2)8)16 = (21𝑞 +
1 + 28)16 = (21𝑟 + 5)16 = 21𝑡 + 516 = 21𝑡 + 54(512 − 1) + 54 = 21𝑡 +
21𝑟 + 625 = 21𝑢 + 16. The remainder sought is 16. 

 

Example 3.9. We demonstrate if 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝 where 𝑝 is a prime number, then 

𝑥 +  𝑦 –  𝑧 is a multiply of 𝑝. 

 

Solution. According to Fermat's Little theorem, if 𝑝 is a prime and 𝑝 ∤ 𝑥, then 

𝑥𝑝−1 ≡ 1(mod 𝑝), that means 𝑝|𝑥𝑝−1 − 1 and thus 𝑝|𝑥(𝑥𝑝−1 − 1) = 𝑥𝑝 − 𝑥. 

Similarly, 𝑝|𝑦𝑝 − 𝑦, 𝑝|𝑧𝑝 − 𝑧. Therefore we can write 𝑥𝑝 = 𝑝𝑡1 + 𝑥, 𝑦𝑝 =
𝑝𝑡2 + 𝑦 a 𝑧𝑝 = 𝑝𝑡3 + 𝑧. If we substitute in the equation 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝, we get 

𝑝(𝑡3 − 𝑡1 − 𝑡2) = 𝑥 + 𝑦 − 𝑧 after adjustment, thus 𝑥 +  𝑦 –  𝑧 is a multiply of  

𝑝. 

 

These examples are the basis for understanding the principle of working with 

large numbers using congruences through Euler's and Fermat's Little theorem. 

Congruences are a modern and irreplaceable security tool for protecting data by 

a public key. It is important to realize that the public key uses such large 

numbers for which there is no effective method of decomposing to primes even 

in today's modern computer age. That is why Euler's theorem plays its role in 

encryption even today, when encryption uses keys of up to 256 bits in length 
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and deciphering the word while trying out all the options would probably take 

more years than the age of the universe is. 

4 Conclusion 

The paper points out some specific applications suitable for presenting and 

understanding the basic principle of Euler's and Fermat's Little theorems which 

are currently used in cryptography. Leonhard Paul Euler was such a great 

mathematician that many of the principles he had known almost 300 years ago 

were actually used by contemporary society. Euler, nicknamed as a "magician" 

in his time, had a great influence not only on number theory, but also on 

mathematical analysis or graph theory. He introduced many mathematical 

symbols such as the letter sigma Σ to denote the sum, or introduced numbers 

such as 𝑒 and 𝑖, whereas 𝑒 is probably the most important number of the whole 

mathematics [12] and occurs in various areas. When Mathematical Intelligencer 

in 2004 asked readers to vote for "the most beautiful theorem of mathematics", 

Euler's Identity 𝑒𝑖𝜋 + 1 = 0 won by a large margin [13]. It is a formula that 

connects the five most important symbols of mathematics. Several 

mathematicians have marked this equation as so mystical that it can only be 

reproduced and its consequences continually explored. In addition to Euler's 

theorem itself and its evidence by means of linear congruences, we also wanted 

to highlight the work and the "size" of Leonhard Euler and his key contribution 

to number theory. 
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