
Ratio Mathematica                                            Volume 37, 2019, pp. 69-84   

 

              
 

69 

 

A conceptual proposal on the 

undecidability of the distribution law of 

prime numbers and theoretical 

consequences 
 

 

 

Gianfranco Minati* 

 
In music and in mathematics  

there is the same perfume of eternity 

 

Abstract† 

Within the conceptual framework of number theory, we consider prime numbers 

and the classic still unsolved problem to find a complete law of their distribution. 

We ask ourselves if such persisting difficulties could be understood as due to 

theoretical incompatibilities. We consider the problem in the conceptual 

framework of computational theory. This article is a contribution to the 

philosophy of mathematics proposing different possible understandings of the 

supposed theoretical unavailability and indemonstrability of the existence of a 

law of distribution of prime numbers. Tentatively, we conceptually consider 

demonstrability as computability, in our case the conceptual availability of an 

algorithm able to compute the general properties of the presumed primes’ 

distribution law without computing such distribution. The link between the 

conceptual availability of a distribution law of primes and decidability is given 

by considering how to decide if a number is prime without computing. The 

supposed distribution law should allow for any given prime knowing the next 

prime without factorial computing. Factorial properties of numbers, such as 

their property of primality, require their factorisation (or equivalent, e.g., the 

sieves), i.e., effective computing. However, we have factorisation techniques 

available, but there are no (non-quantum) known algorithms which can 

effectively factor arbitrary large integers. Then factorisation is undecidable. We 

consider the theoretical unavailability of a distribution law for factorial 

properties, as being prime, equivalent to its non-computability, undecidability. 
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The availability and demonstrability of a hypothetical law of distribution of 

primes are inconsistent with its undecidability. The perspective is to transform 

this conjecture into a theorem. 

 

Keywords: algorithm; computation; decidability; incompleteness; 

indemonstrability; law of distribution; prime numbers; symbolic; 

undecidability. 

 

2010 AMS subject classification: 11N05; 00A30; 11A51. 

 

 

1  Introduction  

Number theory is an antique and fascinating discipline. Number theory 

considers endless properties of numbers such as perfect numbers, golden ratios, 

and Fibonacci numbers.  

An endless list of approaches, problems, properties, and results added one to 

the other over time deal with prime numbers and the possibility to find a suitable 

law of their distribution. 

With regards to prime numbers, mathematicians introduced several 

conjectures, and not definitive, proven partial results.  

To name a few, we recall properties and results relating to prime number 

generation such as the Fundamental theorem of Arithmetic (by Gauss in the 

1801), the Goldbach's conjecture (approximately 1742), the classic sieve of 

Eratosthenes (275–194 B.C.), the sieve of Sundaram (approximately 1934), the 

sieve of Atkin (approximately 2003), and the Mersenne prime (1536) - of the 

form Mn = 2n – 1 - for pseudorandom number generators, all used for 

applications such as cryptography. 

Throughout history, several important mathematicians have tentatively 

contributed to the identification of the asymptotic law of distribution of prime 

numbers and its proof. We just mention Legendre (approximately 1808), 

Dirichlet (approximately 1837), Gauss (approximately in 1849 reported the 

connection between prime numbers and logarithms), Riemann (in 1859) wrote 

his very famous article (Riemann, 1859), Euler's theorem (approximately 1763) 

as a generalisation of Fermat's little theorem, Chebyshev (approximately 1850), 

and Yitang Zhang’s contributions to the twin-prime conjecture (approximately 

2013). 

However, since providing a complete review of the literature is beyond the 

scope of this article, we leave it to the reader to familiarize themselves with the 

literature on this subject. 

The contribution to the philosophy of mathematics of the present article is to 

propose different possible understandings of the unavailability and 
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indemonstrability of the existence of the law of distribution of prime numbers. 

Further research is expected to allow suitable formalisations. 

In Section 2 we consider generic indemonstrability as a fact of 

incompleteness and platonic consistency of knowledge. This is further explored 

in Section 4, in a constructivist understanding, where we propose 

indemonstrability to prevent inevitably implicit inconsistencies because a 

paradigm shift is required instead. 

In Section 3 we propose to consider demonstrability as having symbolic 

nature and as decidability. Indemonstrability cannot be demonstrated and it can 

be intended as a fact of incompleteness, case of undecidability. The link between 

the conceptual availability of a distribution law of primes and decidability is 

given by considering how to decide if a number is prime without computing. 

The supposed distribution law should allow for any given prime knowing what 

the next prime with without computing such sequences. 

However, factorial properties of numbers, such as their property of being 

prime, require their factorisation (or equivalent, e.g., the sieves), i.e., effective 

computing.  

Because of that it is not possible to know in advance the properties of the 

factorisation, in the same way as it is not possible to solve the alt of a Turing 

Machine (TM) -the halting problem consists on determining if an arbitrary 

computer program and its input will finish running or continue to run forever 

(such as being in loop). A general algorithm to solve the halting problem for all 

possible program-input couples cannot exist-, it is not possible to know the 

result of the processing of a Neural Network without performing the entire 

processing, and to know the patterns generated by a Cellular Automata without 

performing the entire processing.  

In Section 4, regarding the research relating to a Prime’s Distribution Law 

(PDL), we present, for the general reader, a short, partial overview of the 

situation as it currently consists mainly of a list of conjectures. Such conjectures 

have been not falsified but, rather, computationally confirmed by considering 

numerically large cases. 

In Section 5 we tentatively conceptually consider demonstrability as 

computability, i.e., in our case the conceptual existence of an algorithm able to 

compute the general properties of the presumed primes’ distribution law without 

computing such distribution. We tentatively consider generic indemonstrability, 

unavailability as undecidability of the law of distribution and the probabilistic 

nature of the Prime Number Theorem (PNT) as an aspect of its undecidability. 

We consider then the usability of such undecidability, in the historical 

conceptual framework of the very effective usability of imaginary numbers. We 

ask ourselves if the non-demonstrability of existence of the PDL and its non-

discovery can be intended as a prototype of the non-distribution and of possible 

different non-equivalent non-distributions. Besides, such non-demonstrability 
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of existence and the persisting non-availability of the PDL may be considered 

as a prototype of the generic non-demonstrability, of theoretical incompleteness, 

and theoretical incomprehensibility. 

We conclude by mentioning how from the issues considered above it is 

possible to use such incompleteness in order to introduce paradigm shifts and 

non-equivalent, mutually irreducible, incommensurable approaches. 

 

2  Indemonstrability as a fact of consistency 

We consider here a kind of platonic consistency of the knowledge, as 

theoretical incompleteness [1, 2] which manifests when dealing with incomplete 

problems or indemonstrability of incomplete or wrong theses. In a constructivist 

understanding it is a kind of experiment having no reaction as a result, stating 

that the experiment is inadmissible, inconsistent, wrong. 

As a classic example, consider the unsuccessful attempts to demonstrate the 

fifth postulate in Euclidian geometry. The history of the attempts to demonstrate 

the fifth postulate reveals how the conclusion was obtained by appealing to a 

new proposition that was equivalent to the fifth postulate itself. 

The Italian mathematician Eugenio Beltrami discovered the Giovanni 

Girolamo Saccheri’s article Euclides ab omni naevo vindicatus (Euclid Freed of 

Every Flaw), published in 1733 in which he tried to prove the Euclid's postulate 

of parallel lines. By using a similar approach, Beltrami, among others, 

inadvertently introduced a paradigm shift towards the non-Euclidean geometries 

by reasoning per reductio ad absurdum, i.e., as a result of the impossibility of 

proving the absurdity of the negation of the fifth postulate [3, 4].  

An example of a relationship between theoretical incompleteness and 

indemonstrability is given by the two celebrated Gӧdel’s syntactic 

incompleteness theorems [5]. 

The meaning of the first theorem states that within any mathematical theory, 

having at least the power of arithmetic, there exists a formula that, neither the 

formula nor its negation is syntactically provable. In other words, it is possible 

to construct a formally correct proposition that, however, cannot be proven or 

disproved. This is logically equivalent to the construction of a logical formula 

that denies its provability. 

The meaning of the second theorem is that no coherent system is able to 

demonstrate its own syntactic coherence. The two theorems can be intended to 

prove the inexhaustibility in principle of pure mathematics [6-8].  “In other 

words, infinite-state logical theories when sufficiently complex are necessarily 

incomplete. Whether this result implies a sort of incompleteness of other kinds 

of theories (for instance, those of physics) is still an open question [9, p. 7]. 
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As for incompleteness in physics, it is closely related to the uncertainty 

principles. It relates to the well-known uncertainty principle, first introduced by 

Werner Heisenberg [10]. Furthermore, there is the principle of complementarity 

introduced by Neils Bohr [11] stating that the corpuscular and undulatory 

aspects of a physical phenomenon cannot be observed simultaneously. 

This is the case of the measurement of homologous components such as 

position and momentum.  

From now on we consider a tentative relationship among some generic 

concepts such as indemonstrability, incompleteness and undecidability: 

- theoretical incompleteness and indemonstrability; indemonstrability as a 

fact of incompleteness; 

- demonstrability of incompleteness; 

- the other issue is that of indemonstrability and (as?) undecidability. 

-  

3  Indemonstrability and undecidability 

A problem is considered as “undecidable” when there is no algorithm that 

produces the corresponding solution in a finite time for each instance of the 

input data. A typical example is the classic halting problem for the Turing 

Machine [12]. The set of decidable problems is incomplete. In this regard, 

Turing himself introduced an issue of ‘completion’ by inserting the concept of 

Oracle [13], representing another logic, possibly incommensurable, that, 

however, combines, interferes, superimposes, and acts on that in use. All this in 

the framework of a general theory of truth, e.g., Tarskian semantics, see, for 

instance [1].  

However, even in case of availability of effective computational algorithms, 

the finite precision or finite memory (in case for symbolic manipulation) implies 

theoretical incompleteness  [14-16].  

Moreover, another example is given by the non-explicit, non-symbolic 

computation, for instance, of Artificial Neural Networks (ANNs), see, for 

example [17, 18].  

The computational processing is represented and performed in a non-

analytical, non-symbolic way through weighted connections and levels. If we 

look instant per instant at the calculation performed, it is incomprehensible and 

we have to wait for the final result. This also applies to other computational 

processes such as Cellular Automata. The computation acquires properties not 

formally prescribed like learning [19, 20].  

Particular classes of ANNs, such as those with non-Turing computable 

weights, and Recurrent-ANNs [21, 22] show a non-Turing behaviour for which 

the principles of hypercomputation [23-25] and naturally-inspired computation 

[26] apply.  
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Indemonstrability cannot be symbolically demonstrated and is intended to be 

a fact of incompleteness, case of undecidability. Furthermore, it is possible to 

conceptually consider symbolic demonstrability as having logical equivalences 

with decidability. 

 

4  Prime numbers 

Please download the latex template and see the .pdf file to see how to format 

editing definitions, theorems, corollaries. 

At this point we may ask ourselves how to interpret the non-comprehension, 

the non-availability of the PDL, which is used in areas such as cryptography 

[27]? As incompleteness of the theory of numbers, undecidability, and 

indemonstrability [28]? 

The problem has been frequented by mathematicians for centuries, with 

important, but not definitive results. 

At this point we may consider two questions: 

- In a constructivist understanding, can we intend such barrier to 

prevent an inevitably, implicitly inconsistent demonstration because 

a paradigm shift is required instead? 

- In a platonic understanding, can we intend such a barrier to protect 

from an inevitably wrong demonstration contrasting with the general 

consistency and requiring different entry points? 

 

4.1 A brief summary of the current situation  
 

Attention to prime numbers first focused on the question whether they were 

infinite or not, and then turned to the understanding how they are distributed 

within natural numbers. It dates back to the 3rd century BC and to the Euclid’s 

first proof that infinitely many primes exist (see the Elements, Book IX, 

Proposition 20), see the Polignac’s conjecture below. In modern times Euler 

gave an alternative proof of this result by using, for the first time, concepts 

coming from infinitesimal mathematical analysis. Gauss understood the still 

fundamental key to the understanding of a crucial characteristic of the prime 

numbers: their density. 

Riemann introduced his conjecture, listed below, which concerns the 

distribution of the zeros of a particular complex function, known as the zeta 

function, which has a very close connection with the distribution of primes. In 

particular, the distribution of the zeros of the zeta function is linked to the 

possibility of accurately counting the prime numbers.  

In what follows, we propose a very short overview on the very large world 

of attempts to deal with the still unsolved problem of finding a PDL. This world 
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includes mainly conjectures and few theorems. We give approximate reference 

dates for the convenience of the general reader. 

 

4.2 An overview 

 

The overview [29-31] includes the following subjects. 

1) Goldbach’s conjecture 1742: every even integer greater than 2 can be 

expressed as the sum of two primes. 

2) Cramér’s conjecture, 1936: it gives an asymptotic estimate for the size 

of gaps between consecutive prime numbers 

 
where:  

- pn denotes the nth prime;  

- ln is the natural logarithm.  

This is based on a probabilistic model assuming that the probability that a 

natural number x is prime is 1/ ln x, from which it can be shown that the 

conjecture is true with probability 1. In other words, if the prime numbers follow 

a "random" distribution, it is very likely that the conjecture is true. In short, the 

Cramér's Conjecture states that the difference between two consecutive prime 

numbers always remains less than the square of the natural logarithm of the 

smaller of the first two.  

This conjecture implies the following:  

3) Opperman's conjecture, approximately 1882: the conjecture states that, 

for every integer x > 1, there is at least one prime number between 

x(x − 1) and x2. 

This conjecture in turn implies the next conjecture:  

4) Legendre’s (1752 – 1833) conjecture: it states that there exists at least 

one prime number between n2 and (n + 1)2 for all natural numbers. 

The previous conjectures are all more restrictive than the Bertrand Postulate 

(which has been proven and is now a theorem): 

5) Bertrand Postulate, approximately 1845: in its less restrictive formulation 

it states that for every n>1 there is always at least one prime p such that 

n<p<2n. 

6) Polignac’s Twin prime conjecture (approximately 1846 and previously 

considered by Euclid): it states that there are infinitely many twin primes, 

or pairs of primes that differ by 2. As numbers get larger, primes become 

less frequent and twin primes become rarer as well. In this regard in 1919 

Brun’s Theorem showed that the sum of the reciprocals of the twin 

primes converges to a sum, now known as Brun’s constant. In 2010, the 

value of Brun’s constant was approximately 1.902160583209 ± 
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0.000000000781 based on all twin primes less than 2 × 1016. Conversely, 

the sum of the reciprocals of all primes diverges to infinity [32]. 

7) Riemann Hypothesis, 1859: it deals with the distribution of the zeros of 

a particular complex function, now called "Riemann zeta function", 

which has a very close connection with the distribution of primes. In 

particular, the distribution of its zeros is linked to the possibility of 

accurately counting the prime numbers. The Riemann Hypothesis can be 

described geometrically by saying that the zeros of the Riemann zeta 

function are confined to two lines in the complex plane [33, 34]. 

8) The Prime Number Theorem (PNT) describes the asymptotic distribution 

of prime numbers: it states a general view of how primes are distributed 

among positive integers and also states that the primes become less 

common as they become larger. Let π(x) be the prime-counting 

function that gives the number of primes less than or equal to x, for any 

real number x. The PNT then states that x / log x is a good approximation 

to π(x), that is π(x) ∼ x log x. This notation means only that the quotient 

limit of the two functions π (x) and x / ln (x) for x which tends to infinity 

is 1, but not that the limit of the difference of the two functions, as x tends 

to infinity, is 0. This means that for large enough N, the probability that 

a random integer not greater than N is prime is very close to 1 / log(N). 

The PNT is based on several previous and subsequent, increasingly 

specifying contributions, such as Legendre’s conjecture stating 

that π(a) is approximated by the function a / (A log a + B), where 

A and B are unspecified constants; Gauss studied the problem; Dirichlet 

introduced a logarithmic integral li(x) as approximating function; the 

connection between the prime number theorem and the Riemann zeta 

function is very deep and allowed by the Euler product. 

The plausibility of such conjectures and approaches is supported by a large 

number of computational simulations which did not lead to falsifying cases.  
 

5  Indemonstrability as undecidability of the 

distribution? 

The main conclusions of the study may be presented in a short Conclusions 

section, which may stand alone or form a subsection of a Discussion or 

Results.  
We are tentatively proposing to consider here the incomplete, probabilistic 

or approximate nature of PNT not as much as a limit to be solved by more 

appropriated approaches, but as an unavoidable theoretical aspect, price to be 

paid for consistency within the theory of computation rather than within number 
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theory itself. We consider here that number theory and its properties and 

theorems may be not incompatible with the availability of regularities in the 

distribution of prime numbers, while such availability can be considered 

incompatible with other properties and theories, such as general forms of 

theoretical, structural incompleteness, such as the halting problem for the Turing 

Machine in theory of computation. 

We consider here, reasoning in proof by contradiction, that the computability 

of such distribution is possible.  

 

5.1 Demonstrability as computability 

 

The question relates to the conceptual availability of an algorithm able to 

compute general properties of the primes’ distribution. 

 Such properties are supposed to allow to know for any number the properties 

of the following sequence of prime numbers without computing each item of 

such sequences. 

We just mention that the case of the knowledge of properties of a function, 

e.g., continuity, differentiability, minimum and maximum points, asymptotes, is 

different. Properties of a function are known from its formal definition and not 

from the knowledge of the properties of the distribution of all the values 

assumed in its domain of validity, i.e., law of distribution.  

We may know the analytical properties of an exponential function without 

computing its values in any points on the abscissa axis. 

The same holds for sequences of numbers such as the Fibonacci sequence 

defined as Fn=Fn-1+Fn-2, with F1=F2=1 (two successive Fibonacci numbers are 

relatively prime).  

How do we decide if a number is prime without computing?   

When considering a number, we may take into account, for instance, some 

of its properties 1) will not require its factorisation –we consider here the case 

of factorization of an integer. We do not consider here the cases related to 

polynomial factorization and rings- or 2) will consider its factorisation.  

As stated by the fundamental theorem of arithmetic every integer > 1 either 

is prime itself or is the product of prime numbers. This product is unique 

regardless of the order of the factors. The first explicit proof of the theorem of 

arithmetic, namely that the set of integer numbers has a unique factorization, is 

due to Carl Friederich Gauss, who inserted it in the Disquisitiones Arithmeticae, 

published in 1798, but already introduced by Euclid. 

Examples of properties of the first kind (not requiring factorisation) are 

generic properties such as considering if a number is greater or less than another, 

the number of its digits, and if it is even or odd. Similarly, properties of values 

of a function are known from its formal definition and do not require the 
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effective computation of values. Positions within the sequence of natural 

numbers correspond to properties. 

Examples of properties of the second kind (requiring the factorisation of the 

number) relate the identification of the number as given by the exponentiation 

of a base and prime numbers. 

In the first case, it is possible to detect a property without computing and 

factorise. 

However, factorial properties of numbers, as their factorial breakdown, 

exponential factor values and their being prime, i.e., non-decomposability, 

require their factorisation (or equivalent, e.g., the sieves), i.e., effective 

computing.  

Properties of a distribution law, e.g., the graph of a function, its continuity, 

regularity, domains, and values of its derivatives, allow to know subsequent 

values moving along the graph without computing each value corresponding to 

the punctual abscissas. 

In the case of factorisations, each of them must be computed since not made 

available by any property of a distribution law. 

In the second case, factorisation is then necessary.  

For instance, each value of the function f=xn is available on its graph. Rather, 

each factorisation of an integer (factorisation is different from "combinatorial 

calculus" when factors are known) is in principle unknown and must be 

computed case by case, being not available from sequences or any graph.  

In the first case, we have available the complete computational procedure, 

i.e., an algorithm.   

In the second case, we have factorisation techniques available, but there are 

no known algorithms (can integer factorization be solved in polynomial time on 

a non-quantum computer [35]?) which can effectively factor arbitrary large 

integers, see, for instance, [36] and [37]. 

The adjective effectively refers to the definition of TM for which the 

algorithm should produce the solution in a finite time for each instance of the 

input data [12]. This also refers to tractable problems that can be solved by 

algorithms in polynomial time, i.e., for a problem of size n, the time or number 

of steps needed to find the solution is a polynomial function of n. Conversely, 

algorithms for solving intractable problems require times that are exponential 

functions of the problem size n.  

Then factorisation is undecidable. 

Furthermore, we mention that sieves, such as the Eratosthenes, Legendre (it 

is an extension of Eratosthenes' idea), Brun, Selberg, and Turán sieves [38], have 

an exponential time complexity with regard to input size, making them pseudo-

polynomial algorithms. 

We consider the theoretical unavailability of a distribution law for factorial 

properties, as being prime, equivalent to its non-computability, undecidability. 
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The availability and demonstrability of a hypothetical PDL are inconsistent with 

its undecidability. 

In the second case, factorisation is then necessary. Because of that it is not 

possible to know in advance the properties of the factorisations, in the same way 

as it is not possible to solve the alt of a TM (see the Introduction), it is not 

possible to know the result of the processing of a Neural Network without 

performing the entire processing, and to know the patterns generated by a 

Cellular Automata without performing the entire processing. Positions within 

the sequence of natural numbers do not correspond to the distributed property 

of being prime number. 

In light of that, we tentatively propose the speculative conjecture that the 

complete knowledge of the PDL, that allows the availability of a rule, is not 

possible since it would disprove the Alt Problem for a TM. We conclude that 

the PDL is undecidable. We may conclude the indemonstrability of the Riemann 

Hypothesis (Millennium Problem), the Riemann hypothesis is undecidable in 

arithmetic. 

Conceptual non-availability of an algorithm defines all undecidable problems 

as correspondent to the Alt Problem for a Turing Machine. 

The probabilistic nature of PNT should be considered an aspect of its 

undecidability. 

This will theoretically provide reassurance about the usage of prime numbers 

for a large variety of applications such as cryptography and pseudorandom 

number generation. 

 

5.2 Using the indemonstrability 

 

A theoretical incompletable list of non-equivalent models and approaches are 

necessary to deal with the endless acquisitions and modality of acquisition of 

properties in complexity and emergent phenomena. This is the case for 

uncertainty principles and theoretical incompleteness such as that of 

mathematics, of the Turing machines, and of the so-called Logical Openness in 

the Dynamic Usage of Models -DYSAM [39, pp. 64-88], based on established 

approaches in the literature, such as Ensemble learning [40, 41] and 

Evolutionary Game Theory [42, 43]. Other cases relate to the undecidability and 

irreducibility of emergence [17, 44], the usage of the non-computable and 

unknowable imaginary numbers, however very effective and used, and the non-

symbolic computation of ANN and CA. 

The non-demonstrability of the PDL primes’ distribution law is well used in 

cryptography in the same way as some pharmaceutical products are used for 

their side-effects.  
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This relates to the usage of the theoretically incomprehensible [45] which is 

suitable for introducing paradigm-shifts and non-equivalent, incommensurable, 

mutually irreducible approaches. 

Can the non-demonstrability of the primes’ distribution law become the 

prototype of the non-distribution(s) having some possible different levels of 

equivalence; the prototype of the non-demonstrability, of theoretical 

incompleteness, and of theoretical incomprehensibility? 

 

Conclusions 

We shortly considered the research about primes in mathematics and the 

theoretical, still elusive, results looking for a PDL.  
We considered as these endless difficulties may be interpreted as logical 

consistency, since the availability of such distribution law could be theoretically 

incompatible with other consolidated theories and properties. 

This is the case for the theoretical incompleteness of mathematics, the Turing 

machines, and of the so-called Logical Openness in the use of Dynamic Usage 

of Models (DYSAM).  

We considered the conceptual incompatibility of the availability of a PDL 

and the Alt Problem for a TM, i.e., implying that the PDL is undecidable. 

The link between the conceptual availability of a PDL and decidability is 

given by considering how to decide if a number is prime without its 

computation. The supposed PDL should allow to know the sequence of primes 

without their computation, but considering only their sequential positions which 

coincide, however, with the numbers in question.  

However, factorial properties of numbers, such as their primality, require 

their factorisation (or equivalent, e.g., the sieves), i.e., effective computing.  

Because of that it is not possible to know in advance the properties of the 

factorisation, in the same way as it is not possible to solve the alt of a TM, it is 

not possible to know the result of the processing of a Neural Network without 

performing the entire processing, and to know the patterns generated by a 

Cellular Automata without performing the entire processing. Positions within 

the sequence of natural numbers do not correspond to the distributed property 

of a prime number. 

We may conclude that the availability and demonstrability of a hypothetical 

PDL are inconsistent with its undecidability. 

The perspective is to transform this conjecture into a theorem. 

Furthermore, we considered the unavailability of a PDL as corresponding, 

representing incompleteness in mathematics and physics. However, such 

incompleteness can be used, e.g., for cryptography, imaginary numbers, and 
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non-symbolic computation, in order to introduce paradigm-shifts and non-

equivalent, mutually irreducible approaches.  
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