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Abstract  

Pupils learn different calculating algorithms. The effective use of 

learned algorithms requires creativity in their application to 

solving diverse tasks. To achieve this goal, it is necessary to create 

a concept of the calculating algorithm for pupils. The present 

paper describes a method of creating a zero-point method. The 

teaching of this method is divided into two stages. In the first 

stage, the student masters the basic algorithm and becomes 

familiar with the main ideas of this method, while in the second 

stage a student learns how to apply this method with some 

modifications in other types of tasks. In our article, we present the 

application of a zero-point method in solving quadratic 

inequalities. 
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1 Introduction  
 

Recently the education at primary and secondary schools has undergone 

several reforms. One of the essential features of these reforms has been a 

reduction of the curriculum of individual subjects and reducing the number of 

lessons, especially science lessons. The main aim of reducing the curriculum 

and thus reducing the demands was monitoring the improvements in 

educational achievements of our students [1]. But PISA 2015 test results say 

otherwise. Slovak students achieved in 2015, on average, significantly worse 

results than the OECD average. It is worthy of reflection that our students 

achieve the best results-the results almost on an average of the best students 

in the OECD. Another feature of this educational reform is teaching a 

"playful" way. Pupils should acquire new knowledge and skills not by 

memorizing and practising, but above all by the playful way. PISA testing in 

2015 showed that, in terms of pupils' attitudes to learning, our students 

declare significantly lower endurance to solve complex problems, lower 

openness to solve tasks and less belief in their own abilities. It can also 

negatively be reflected on their results in mathematics. Compared to 2003, 

many of Slovak students' attitudes to learning significantly deteriorated. 2015 

PISA test results are in substantial agreement with the results of the external 

part of the school leaving examination (maturita). All Slovak students have to 

pass maturita from Slovak language and literature and a foreign language. 

Only those students have to pass maturita from mathematics, who choose 

math as a maturita subject. Nevertheless, over the past three years, the 

average percentage of school maturita exam in mathematics is always worse 

than the average percentage of school maturita exam in compulsory subjects. 

We think that the ideas of school reforms are correct, but it turns out that it is 

not right to use the same methods to achieve the goals for all subjects. 

Mathematics affects almost every area of human life. In the education of 

our youth, who should be, according to the reference of John Paul II., our 

hope for the future. Math is challenging in its own way but at the same time 

can also be beautiful. We think it is necessary to seek such forms and 

methods of teaching mathematics [2], that we make the beauty of math 

available to students [3].  In the following lines, we will outline one possible 

way of teaching mathematics. 

 

2  Two stages of mathematical education 

Mathematical education can be divided into two stages. The first, basic 

stage is the acquisition of basic calculating algorithms. These calculating 

algorithms are acquired by students, who practice them on the appropriate 

number of tasks. We can talk about math "drill", without which it is 
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impossible to be a successful solver of mathematical problems. The 

information-receptive didactic method with a combination of the reproductive 

method is mainly used in this stage. It is very important that the student 

acquires the necessary skill of how to use them by repeated use of basic 

calculating algorithms. The teacher, by the right choice of tasks, ensures that 

pupils acquire these calculating algorithms at least at the level of 

understanding, not only at the level of memorization. The second, application 

stage is the application of the acquired algorithms in different areas of 

mathematics and other disciplines or in practical everyday life. At this stage, 

the mathematical "drill" is replaced by mathematical thinking. Based on the 

assignment a student considers what math knowledge and skills he can use to 

solve the task. Unlike the first stage, he must learn that the first step of task 

solution is not to count but to think. Based on a detailed consideration and 

possible task mathematization the student chooses a suitable calculating 

algorithm. At this stage, the teacher becomes a moderator of solution and 

uses a heuristic didactic method. At this stage, in terms of the taxonomy of 

educational objectives, the level of acquirement of calculating algorithms will 

be increased for the minimum to the application level. If the teaching is 

correct, we can say, that at this stage, the students do not learn new 

calculating algorithms. At this stage, students gain new, mainly theoretical 

knowledge of mathematics, and also learn how to apply already gained 

calculating algorithms in a new context. The above-described stages are 

illustrated on the example of the method of zero points. 

   

3  Method of zero points 

Solving of the most mathematical problems includes solving of various 

equations and inequalities, or their systems. The tasks, where it is necessary 

to solve equations, inequalities and their systems belong to the declaratory 

mathematical tasks [4].  

 Declaratory mathematical tasks are historically the oldest mathematical 

tasks. When solving these tasks the mathematical concepts and methods.  

Those are the tasks that require finding, calculating, constructing etc. of all 

mathematical objects of a particular type, having the desired properties. In 

each declaratory task, we can define as the frame of considerations some non-

empty set M of mathematical objects, which is a carrier of a particular 

structure. Using the terms belonging to this structure, it is then possible to 

express the desired properties of those objects of the set M that we are 

looking for. To characterize the elements of the set M we use propositional 

form V (x) which verity domains then create subsets of the set M.  In each 

determinative task there is a subset K of set M, which elements have the 

characteristics required by task assignment. The task and the objective of the 

investigator are to determine the set P by naming of its elements or to operate 
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with already known subsets of the set M.  We can solve the mathematical 

declaratory task with the direct and indirect methods. 

The direct method of solving means a process by which we determine the 

set of solutions K so that we work exclusively with sets that belong to the 

chain of sets inclusions  

  …   𝑲  …   𝑴, 

where M is a non-empty set of mathematical objects, among which 

elements we are looking for the solving of the task.  Indirect methods consist 

in the fact that instead of solving the task that is defined we solve the other 

task or other tasks (using some direct method) and the results are used to 

obtain the results of the original task. One of the indirect methods is to switch 

to subtasks on the same set. We divide the set M to individual subsets and we 

investigate the specific location of each original task. We will obtain partial 

solutions to the original task on each of these subsets.  The overall result for 

the task will be obtained by the unification of partial results. Method of zero 

points can be included precisely into that category of indirect methods (in 

some literature this method is also called the method of intervals). 

The essential feature of the method of zero points is the attempt to divide 

tasks into several "sub-tasks", solving them on the corresponding subsets - 

intervals. To deal with this method it is necessary to learn the algorithms of 

expression modifying, polynomial factorization to the product of the root 

factors and solving various types of equations [5]. 

 

4 Teaching the method of zero points 

The teaching of this method is recommended to be realized in three levels. 

Level 1: Acquisition of the method 

The students meet the method of zero points for the first time when they 

solve inequalities with an unknown in the denominator. Its basic steps are 

learned through leading example. 

Example 1: On the set R solve the inequality 
2𝑥+3

𝑥−1
< 1  

Solution: Most students have the following knowledge on solving the 

inequalities: Inequalities are solved using the same equivalent adjustment as 

the equations. If the inequality is multiplied or divided by a negative number, 

the sign of inequality is changed to the opposite. On the basis of this 

knowledge the first step of solving is an attempt to remove a fraction of the 

assigned inequality, that is, they multiply the inequality by the expression (x-

1).  Already in the introduction of the model example, students learn another 

difference between solving the equations and inequalities. Inequalities, unlike 

equations, cannot be multiplied by the expression of which I cannot clearly 

decide whether it is positive or negative. If we want students to use the 
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proposed adjustment, it is first necessary to determine for which values of the 

variable the expression (𝑥 − 1) is positive and for which negative. 

Consequently, it is necessary to divide the solving of the inequalities to, in 

this case, two parts - when the expression (𝑥 − 1) is positive and the sign of 

inequality does not change after  multiplication, and when the expression 

(𝑥 − 1) is negative and the sign of inequality changes to opposite one after 

multiplication. Basically, the assigned inequality should be tackled twice. We 

recommend concentrating on the issue of "multiplying inequalities" and pay 

sufficient attention, because it is needed to change students fixed “definition” 

of solving the inequalities. The method of zero points does not require 

multiple solving of the same inequalities and therefore it, is considered to be 

mora effective method. It can be divided into the following steps: 

 

1. Annulling the right side of the equation: 

2𝑥 + 3

𝑥 − 1
− 1 < 0 

 

2. Simplifying the expression on the left side of the inequality: 

𝑥 + 4

𝑥 − 1
< 0         (1) 

After these adjustments, we draw the students’ attention to the 

intermediate target of our solutions. We compare the fraction to zero. 

Therefore, we only need to determine the sign of the expression 
𝑥+4

𝑥−1
. Our 

partial objective is to determine for what value of 𝑥 it is positive and for what 

value negative. 

3. Determining the zero points: 

Zero points are the values of variable x for which numerator and 

denominator separately on the left side of the inequality takes the zero value. 

Zero points can be determined based on solving the equation 𝑥 + 4 =
0;    𝑥 − 1 = 0. Zero points are NB: -4; 1. 

4. Adjusted numerical axis: 

We come to the core of the method. First, we explain the function of zero 

points. Zero points divided real numbers, in this case, into the three sets - 

intervals. For each interval is true: The expression 
𝑥+4

𝑥−1
  is positive or negative 

in the whole interval, in other words, it does not change the resulting sign. 

The adjacent intervals the expression 
𝑥+4

𝑥−1
  has different resulting signs. Based 

on the above it is sufficient, if we want to determine the final sign, to 

substitute any number belonging to this interval to the expression.  If we 

know the final sign in one of the intervals, we automatically recognize the 

resulting sign in all intervals as signs alternate. Using that knowledge, we can 

create a customized numerical axis (Fig. 1): 
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Figure 1. 

There are numbers under the axis to be substituted for variable x in the 

expression; above the axis are values of the expression after substitution. That 

is, if we substitute any number from the interval (-4, 1)   the resulting sign of 

the expression 
𝑥+4

𝑥−1
   is negative, after the substituting  𝑥 = −4, the resulting 

value of the expression is zero. Symbol ∅ means that for the value 𝑥 = 1 the 

expression is not defined.   

    The adjusted numerical axis can be created as follows. First, on the 

numerical axis (from the bottom), we mark zero points. (Students often 

automatically show zero even if it is not the zero point on the numerical axis. 

There should be only zero points on the numerical axis).  

    We substitute any number different from zero points to the expression 

on the left side of the inequality. If the zero point is not zero, we substitute 

number zero to the variable.  After substituting the number zero to the 

variable x, the expression  
𝑥+4

𝑥−1
  has the value of - 4.  Then we write a minus 

sign above the numerical axis in the part corresponding to the interval, from 

which we substituted the number zero. The signs in the other intervals will be 

completed without calculations, whilst complying with the principle of 

alternating signs. We complete 0 above the zero point “of the numerator“ and 

the sign ∅ above the zero point "of the denominator". 

5 Determination of results 

Those values of variable x for which the expression 
𝑥+4

𝑥−1
 acquire negative 

values will be the solution to the inequality (1). Based on the adjusted 

numbering axis, the search solution to the assigned inequality is the interval 

from -4 to 1. Finally, we determine the "brackets" of the final interval. Zero 

point, above which is symbol ∅, cannot be the solution, therefore it will be at 

zero point "of the denominator" always round bracket. If there is the symbol 

0 above the zero point, it means, that after its substituting, the resulting value 

of the expression is zero.  However, we are looking for negative values of the 

expression and therefore the number -4 has a round bracket. The ultimate 

solution is 𝑥∈ (-4.1). 

After solving the model example we recommend to discuss with students 

how the solution would change if we solve the inequality 

2𝑥+3

𝑥−1
> 1 and the inequality 

2𝑥+3

𝑥−1
≤ 1. 

Students should be aware, that in both cases, the first four steps will be 

identical with the model example.  In the fifth step, based on the same 

considerations, the solution of the inequality would be 
2𝑥+3

𝑥−1
> 1 𝑥 ∈
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(−∞; −4) ∪ (1; ∞). The solution of inethe quality 
2𝑥+3

𝑥−1
≤ 1  is 

 𝑥 ∈ ⟨−4; 1) 

Level 2: Understanding of the method  

The main idea behind the method of zero points can be considered 

a comparison of the fraction with zero. A student knows that if a numerator 

and a denominator have the same final sign, so the fraction is positive if they 

have different sign fraction is negative. The correct application of this idea 

leads to an understanding of the method of zero points and also to a more 

efficient using of this method. The correct application of the main idea it is 

essential to understand the "functioning" of zero points. The zero point for 

this expression, in principle, divides the set of real numbers (NA) into three 

subsets. On one of the subsets, it acquires only positive values,  on another 

one just negative. The third subset is only composed of zero point and the 

expression of the set acquires a value of 0. For example, the expression 𝑥 − 5 

has a zero point 5. Then, the expression acquires negative values on the set  

𝑀1 = (−∞; 5), on the set 𝑀2 = (5; ∞)  it acquires positive values and on the 

set 𝑀 = {5} it takes the value 0. Thus, we can simplistically say, that there is 

a different sign of the expression from the various sides of the zero point. If 

the expression is in productive form, the zero points of individual members of 

the product create the zero points of all expression. 

Example 2: On the set R solve the inequality 
(𝑥−9)(𝑥+1)2

(𝑥−4)(𝑥+5)
> 0   

Solution: Zero points -5; -1; 4; 9. 

 

At first, we draw attention to the expression (𝑥 + 1)2.   This expression 

acquires for all x ∈ R non-negative values. Therefore, it has no influence to 

the final sign of the expression 
(𝑥−9)(𝑥+1)2

(𝑥−4)(𝑥+5)
.  The zero point of the expression  

(𝑥 + 1)2 can be described as "unnecessary" zero point and it will not be 

showed on the adjusted numbering axis.  (If we showed it there, the theory of 

alternation marks would not apply.) 

    To obtain the solution of the inequality we only need to know the final 

sign of the expression 
(𝑥−9)(𝑥+1)2

(𝑥−4)(𝑥+5)
 . Therefore. after substituting, for example 

𝑥 = 0, it is not necessary to know the numerical value. At the same time, we 

know that it is not necessary to substitute to the expression  (𝑥 + 1)2. By 

applying the above mentioned ideas after substituting x = 0 we obtain "a 

signed" value of the expression: 
−

−.+
 . 

    We set the adjusted numbering axis (Fig. 2):  
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Figure 2. 

The solution of the assigned inequality based on the adjusted numbering 

line and the sign of inequality is 𝑥 ∈ (−5; 4) ∪ (9; ∞). To obtain the final 

solution, we must once again pay attention to "needless" zero point. We know 

that for = −1, the expression acquires the resulting value zero on the left 

side.  Therefore, the number −1 does not belong to the solution of our set of 

ithe nequality. The ultimate solution of the inequality 𝑥 ∈ (−5; −1) ∪
(−1; 4) ∪ (9; ∞). 

Level 3: Application of the method  

After mastering the basic algorithm and understanding the method of zero 

points we recommend to focus on the teaching of its application in other 

types of examples, such as those in which students can penetrate into its 

mysteries. The closest type of tasks is inequalities in the productive form. The 

student already knows that there are the same rules for comparison zero to the 

product as for the comparison of the quotient to zero. Therefore, in solving 

qualities in productive form, the method of zero points can be used 

identically as in solving the inequalities in productive form. Quadratic 

inequality can be seen as inequality in the productive form. In example 3 we 

show a sample solution. 

 

Example 3: On the set R solve the inequality  𝑥2 + 3𝑥 − 4 ≥ 0. 

Solution: Quadratic trinomial on the left side of the inequality must be 

adjusted to the product of the root factors, and therefore we obtain the 

inequality in the form of productive form 

(𝑥 − 1)(𝑥 + 4) ≥ 0 

Zero points are -4; 1. The quadratic trinomial, after substitution x = 0, 

acquires negative value. In fact, zero is not necessary to be substituted, 

because for x = 0 is the final "a signed" value of quadratic trinomial, identical 

to the sign in front of the absolute member. We set the adjusted numbering 

axis (Fig. 3): 

Figure 3. 

Based on the sign of inequality, in assigned inequality, we search for 

which values of unknown x the expression 𝑥2 + 3𝑥 − 4 acquires positive or 

zero values. Therefore, the solution is inequality is 

𝑥 ∈ (−∞; −4⟩ ∪ ⟨1; ∞). 

If the quadratic equation corresponding to the assigned inequality has less 

than two real roots, the method of zero points is modified. At this 
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modification, we primarily rely on understanding the "functioning" of zero 

points. 

 

Example 4: On the set R solve the inequality 𝑥2 − 4𝑥 + 4 ≥ 0. 

Solution: The inequality should be adjusted to productive form 

(𝑥 − 2)(𝑥 − 2) ≥ 0. 

The left side of inequality will not be left in this form, because the students 

would incorrectly use the principle of alternation marks around the zero 

points. The expression on the left side of the inequality will be written in 

simplified form, and we receive the inequality 

(𝑥 − 2)2 ≥ 0 

Zero point is 2. Since the expression (𝑥 − 2)2 is for all 𝑥 ∈ 𝑹 non-

negative, number 2 is “unnecessary" zero point. Number 2 is the only zero 

point and so it is not needed to set the adjusted numbering axis. The solution 

of the inequality is 𝑥 ∈ 𝑹 and it was discovered when we were considering 

the zero point. 

    After solving example 4 we suggest a discussion on solving 

inequalities: 

𝑥2 − 4𝑥 + 4 > 0,          𝑥2 − 4𝑥 + 4 ≤ 0 ,          𝑥2 − 4𝑥 + 4 < 0. 

Note: A common mistake at solving the inequality (𝑥 − 2)2 ≥ 0  is the 

extract of the root of both sides of the inequality, after which students have 

the wrong inequality 𝑥 − 2 ≥ 0. The following consideration can bring them 

to the fact, that the inequality is incorrect. Both sides of the inequality were 

non-negative before extracting the root and the left side can also takes 

negative values. If we want, even after extracting, both sides being non-

negative, we must put the left side of inequality to an absolute value(√𝑎2 =
|𝑎|). After correct extracting, we get the inequality with absolute value which 

can also be solved by the method of zero points. 

Example 5: On the set R solve the inequality 𝑥2 + 2𝑥 + 6 < 0. 

Solution: On the set R it is not possible to modify the quadratic trinomial 

to the product, as the appropriate quadratic equation 

𝑥2 + 2𝑥 + 6 = 0 

have no real roots. Based on the understanding of the function of zero 

points we know, that expression  𝑥2 + 2𝑥 + 6 has for all x ∈ R a signed 

value. It is identical with the sign in front of the absolute term. So the 

expression on the left side of the inequality is for all real numbers positive. 

The solution of the inequality is x = {}. Even after solving this inequality we 

recommend the discussion about solutions for different variants of the sign of 

inequality. 

    If we want to see if the students understand the method, they must be 

able to apply the basic ideas of the method to solving the task. In other words, 
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we understand the method of solving if it developed our mathematical 

thinking. The following example can be solved by applying the basic ideas of 

the method of zero points. 

 

Example 6: For which parameter values  𝑎 ∈ 𝑅 is each x ∈ R the solution 

of  inequality 

Solution: The expression 𝑥2 − 8𝑥 + 20  has no zero points and according 

to the sign in front of the absolute member we know, that it acquires positive 

values for all 𝑥 ∈ 𝑅. If all real numbers should be the  solution of the 

assigned inequality, the expression in the denominator of the inequality 

fraction must be negative for all 𝑥 ∈ 𝑅.  Using the basic ideas of the method 

of zero points, we consider the following. We need the expression  𝑎𝑥2 +
2(𝑎 + 1)𝑥 + 9𝑎 + 4 "still" negative, and that does not change the final sign, 

and therefore we cannot have the zero points. That is, the quadratic equation 

𝑎𝑥2 + 2(𝑎 + 1)𝑥 + 9𝑎 + 4 = 0 

has no solution. Thus, discriminant has to be negative. This way we get 

the inequality 

𝑥2 − 8𝑥 + 20

𝑎𝑥2 + 2(𝑎 + 1)𝑥 + 9𝑎 + 4
< 0 

The solution to this inequality that we solve using the method of zero 

points is  𝑎 ∈ (−∞; −
1

2
) ∪ (1; ∞). Now, we secure the final sign will be  

negative. We know from the method of zero points, that by substituting zero 

to quadratic trinomial, the final sign is identical with a sign in front of the 

absolute term. The denominator in the assigned inequality is a quadratic 

trinomial with parameter. For 𝑎1 ∈ (−∞; −
1

2
) ∪ (1; ∞)  has the constant sign 

for all x ∈ R. If the absolute member is negative, the resulting sign of 

trinomial will be negative. Therefore we solve the inequality 

9𝑎 + 4 < 0. 

Its solution is 𝑎2 ∈ (−∞; −
4

9
).  Based on the previous considerations, the 

parameter  𝑎 must meet both conditions. The ultimate solution is  𝑎 ∈ 𝑎1 ∩

𝑎2 = (−∞; −
1

2
).  

 

Conclusion 

The basis for the success of a student in solving mathematical tasks is 

acquiring the calculating algorithms [6], [7]. To achieve this goal it is 

necessary to solve, especially alone, the sufficient number of tasks, more or 

less, of the same type. We believe that the mastery of basic calculating 

algorithms is necessary but not sufficient condition for student success in 
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dealing with the tasks. It is not enough just to learn the calculating algorithm,  

it is necessary, after its acquisition, also think about its individual elements. 

This is the way when the basic ideas, used in the algorithm, occur. The 

discovering these main ideas of calculating algorithm lead to understanding, 

as well as acquiring the algorithm at a higher level. The understanding causes 

the method to be is a powerful tool in students dealing with tasks. It affects 

his mathematical thinking. The method of zero points is a method that should 

be understood and not only learned. If a student enters its secrets, it becomes 

flexible and he will be able to use it in different types of tasks and, as 

appropriate, be adapted. By understanding the method will become effective 

tool in the hands of the investigator. The students know that the method of 

zero points is mainly used to solve inequalities. If the students know the 

method, it heads their initial ideas, when solving inequality, to adjust the 

inequality to a productive or quotient form. This fact can be used in teaching 

solutions to quadratic inequalities. Using the method of zero points the 

student does not learn new calculating algorithm, but he learns how to apply 

already acquired knowledge and skills. We think that one of the possible 

ways to increase the efficiency in mathematical learning is the emphasis on 

understanding the calculating algorithms and their subsequent application in 

various areas of mathematics. While we make sure that we choose those 

tasks, where the main ideas can be applied. This way helps us to create the 

thought linking of mathematics as a whole and mathematics with other 

disciplines, e.g. those involving computers into the pedagogical process [8], 

in the mind of the students. Basically, there is no need to reduce the amount 

of subject matter, just to organize the mathematical knowledge better in the 

mind of the students. 
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