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Abstract  

The inclusion and exclusion (connection and disconnection) principle is 

mainly known from combinatorics in solving the combinatorial problem 

of calculating all permutations of a finite set or other combinatorial 

problems. Finite sets and Venn diagrams are the standard methods of 

teaching this principle. The paper presents an alternative approach to 

teaching the inclusion and exclusion principle from the number theory 

point of view, while presenting several selected application tasks and 

possible principle implementation into the Matlab computing 

environment. 
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1 Introduction 

 
In traditional secondary school mathematics (in combinatorics, number theory 

or even in probability theory), the notion of factorial and combinatorial numbers 

is introduced [1]. If n and k are two natural numbers with 𝑛 ≥ 𝑘, then we call a 

combinatorial number the following notation 

 

(
𝑛

𝑘
) =

𝑛!

(𝑛 − 𝑘)! 𝑘!
=

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

1 ∙ 2 ∙ … ∙ 𝑘
 

 

while (factorial of the number n) 𝑛! = 1 ∙ 2 ∙ ⋯ ∙ 𝑛, where 𝑛 > 1, 0! = 1,  

1! = 1. 

 

For combinatorial numbers, the basic properties apply: 

 

(
𝑛
1

) = 𝑛 (
𝑛
0

) = 1 (
0
0

) = 1 (
𝑛
𝑘

) = (
𝑛

𝑛 − 𝑘
) (

𝑛
𝑘

) + (
𝑛

𝑘 + 1
) = (

𝑛 + 1
𝑘 + 1

) 

 

The relation (
𝑛
𝑘

) + (
𝑛

𝑘 + 1
) = (

𝑛 + 1
𝑘 + 1

) is the basis for placing combinatorial 

numbers in the plane in the shape of a triangle (a so-called Pascal’s triangle) 

[2], in which combinatorial numbers can be gradually calculated using the fact 

that (
𝑛
0

) = (
𝑛
𝑛

) = 1 for each n. 

 

(
0
0

) 

(
1
0

) (
1
1

) 

(
2
0

) (
2
1

) (
2
2

) 

(
3
0

) (
3
1

) (
3
2

) (
3
3

) 

⋯ 

 

If n is a natural number, and if a, b are arbitrary complex numbers, then the 

binomial theorem can be applied by using the form: 

 

(𝑎 + 𝑏)𝑛 = (
𝑛

0
) 𝑎𝑛 + (

𝑛

1
) 𝑎𝑛−1𝑏 + ⋯ + (

𝑛

𝑛 − 1
) 𝑎𝑏𝑛−1 + (

𝑛

𝑛
) 𝑏𝑛 

 

The special cases of the binomial theorem are as follows: 
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a) if 𝑎 = 1, 𝑏 = −1: 

 

1 − (
𝑛

1
) + ⋯ + (−1)𝑛−1 (

𝑛

𝑛 − 1
) + (−1)𝑛 = 0 

 

b) if 𝑎 = 1, 𝑏 = 1: 

 

(1 + 1)𝑛 = (
𝑛

0
) + (

𝑛

1
) + ⋯ + (

𝑛

𝑛 − 1
) + (

𝑛

𝑛
) = 2𝑛 

 

Let us consider now N given objects and K properties 𝑎1, … , 𝑎𝐾. Let us denote 

𝑁(0) as the number of objects that do not have either of these properties, 𝑁(𝑎𝑖) 

as the number of those that have the property 𝑎𝑖,  𝑁(𝑎𝑖𝑎𝑗) as the number of those 

that have the property 𝑎𝑖 as well as 𝑎𝑗 etc. Then 

 

𝑁(0) = 𝑁 − ∑ 𝑁(𝑎𝑖) + ∑ 𝑁(𝑎𝑖𝑎𝑗) − ∑ 𝑁(𝑎𝑖𝑎𝑗𝑎𝑠) + ⋯ +

(−1)𝐾𝑁(𝑎1𝑎2 … 𝑎𝐾), 

 

where, in the first addition, we sum up using numbers 𝑖 = 1, 2, … , 𝐾, in the 

second addition, using all pairs of these numbers, in the third addition, using all 

threesomes of these numbers, etc. We call this relationship the inclusion and 

exclusion principle [3]. 

The validity of the inclusion and exclusion principle can be shown from the 

number theory point of view the way that if an object has no property from the 

properties 𝑎𝑖, 𝑖 = 1, ⋯ , 𝐾, so it contributes by the unit value to the left equality, 

though contributing at the same time to the right side, that is, to the number N 

(in the following additions it does not reappear). Let an object now have t 

properties (𝑡 ≥ 1). Then, it does not contribute to the left side as there is a 

number of objects on the left side that do not have any of the properties. Let us 

calculate the contribution of this object to the right side. In the first addition, it 

appears t-times. In the second addition, it appears (𝑡
2
)–times because from t 

properties it is possible to choose pairs of the properties in (𝑡
2
) ways. In the third 

addition, it appears (𝑡
3
)–times, etc., so the total contribution to the right side is 

as follows: 

 

1 − 𝑡 + (𝑡
2
)-(𝑡

3
)+...+(−1)𝑡−1( 𝑡

𝑡−1
) + (−1)𝑡 = 0, 

 

which is a special case of the binomial theorem. Thus, the total contribution of 

such an object to both sides is zero and the right side is actually equal to the 

number of objects that do not have any of the given properties. 
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2  Selected examples of the inclusion and exclusion 

principle 

The first example requires some mathematical concepts to be recalled. By the 

Cartesian product of sets A, B we mean set 𝐴 × 𝐵 = {[𝑥, 𝑦]: 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}, 

with the symbol |𝐴| we denote the number of elements (so-called cardinality) 

of the finite set A. If |𝐴| = 𝑎, |𝐵| = 𝑏, the Cartesian product then contains 𝑎 ∙ 𝑏 

of ordered pairs. Since the Cartesian product contains ordered pairs, 𝐴 × 𝐵 is 

not the same set as 𝐵 × 𝐴. [4] 

The relation f of set A to set B is called a function of set A to set B if ∀𝑥 ∈ 𝐴∃𝑦 ∈
𝐵: [𝑥, 𝑦] ∈ 𝑓 and simultaneously if [𝑥, 𝑦] ∈ 𝑓 ∧ [𝑥, 𝑧] ∈ 𝑓, so 𝑦 = 𝑧. The 

symbol 𝐵𝐴 denotes a set of all functions 𝐴 → 𝐵. 

If f is a function of set A into set B and ∀𝑥1, 𝑥2 ∈ 𝐴: 𝑥1 ≠ 𝑥2 ⇒ 𝑓(𝑥1) ≠ 𝑓(𝑥2), 

the function f is called an injective function of set A into set B (or simply an 

injection; we also say that the function f is ordinary). 

Let us now consider two finite sets A, B, where |𝐴| = 𝑛 and |𝐵| = 𝑚. Then the 

number of all injective functions from A into B is 𝑚 ∙ (𝑚 − 1) ∙ ⋯ ∙
(𝑚 − 𝑛 + 1) = ∏ (𝑚 − 𝑖)𝑛−1

𝑖=0 . Injections from set 𝐴 = {1,2, ⋯ , 𝑛} into set B, 

where |𝐵| = 𝑚, are called variations without repetition (or simply variations) 

of the n-th class from m elements (of the set B). For these functions, the term 

𝑉𝑛(𝑚) is used in practice. It is easier to write the expression 𝑚 ∙ (𝑚 − 1) ∙ ⋯ ∙

(𝑚 − 𝑛 + 1) with the following factorial notation 𝑉𝑛(𝑚) =
𝑚!

(𝑚−𝑛)!
. 

Variations of the n-th class from n elements of the set B are bijective functions 

𝐴 → 𝐵 and their number is 𝑛 ∙ (𝑛 − 1) ∙ ⋯ ∙ 2 ∙ 1 = 𝑛!. They are called 

permutations (of set B) and denote 𝑃(𝑛) = 𝑛!. 
Let us now consider basic set A with the cardinality |𝐴| = 𝑛. Combinations 

(without repetition) of the k-th class (or k-combinations) from n elements are k-

element subsets of set A. We denote them as 𝐶𝑘(𝑛). If A is a finite set, with 
|𝐴| = 𝑛, then, the number of k-combinations of elements of set A is 𝐶𝑘(𝑛) =

(
𝑛
𝑘

) =
𝑛!

(𝑛−𝑘)!𝑘!
=

𝑛(𝑛−1)⋯(𝑛−𝑘+1)

𝑘(𝑘−1)⋯1
. [5] 

 

Example 2.1. A group of N men is to take part in a chess tournament. Before 

entering the room, they place their coats in the locker room. However, when 

they are about to leave, they are unable to recognize their coats. What is the 

probability that none of them will take their own coat? 

 

Solution. Let us denote the coats 1,2, ⋯ , 𝑁. Then the distribution of the coats on 

the chess players can be made 𝑁!, since these are the permutations of the set 
{1,2, ⋯ , 𝑁}. First, we determine the number 𝑁(0) of permutations, for which 

there is no coat on the right player. The number of permutations that do not leave 



The Inclusion and Exclusion Principle in View of Number Theory 
 

47 

 

in place the k-element set of coats is (𝑁 − 𝑘)! The number of k-sets can be 

chosen in (
𝑁
𝑘

) ways. 

 

Then, based on the inclusion and exclusion principle, there applies 

 

𝑁(0) = 𝑁 − (
𝑁
1

) (𝑁 − 1)! + (
𝑁
2

) (𝑁 − 2)! − ⋯ + (−1)𝑁 (
𝑁
𝑁

) (𝑁 − 𝑁)! 

𝑁(0) = ∑(−1)𝑘 (
𝑁
𝑘

) (𝑁 − 𝑘)!

𝑁

𝑘=0

 

Next, we get 

𝑁(0) = ∑(−1)𝑘
𝑁!

𝑘! (𝑁 − 𝑘)!
(𝑁 − 𝑘)! =

𝑁

𝑘=0

𝑁! ∑
(−1)𝑘

𝑘!

𝑁

𝑘=0

 

 

All permutations of N elements is N!, hence the likelihood that no chess player 

is wearing his coat when leaving the tournament is  

 

𝑁! ∑
(−1)𝑘

𝑘!
𝑁
𝑘=0

𝑁!
= ∑

(−1)𝑘

𝑘!

𝑁

𝑘=0

 

 

Example 2.2. A tennis centre has a certain number of players and 4 groups A, 

B, C, D. Each player trains in at least one group, while some players train in 

multiple groups at once according to the table. 

 

A.............26 AC...........18 ABC...........5 

B.............17 AD...........3 ABD...........0 

C.............58 BC...........9 ACD...........2 

D.............19 BD...........0 BCD...........0 

AB...........7 CD...........5 ABCD........0 

 

We will show how many players have a tennis centre. 

  

Solution. Let us denote 𝑀1 as the set of all players in group A, 𝑀2 as the set of 

all players in group B, 𝑀3 as the set of all players in group C and 𝑀4 as the set 

of all players in group D. Then, set 𝑁 = 𝑀1 ∪ 𝑀2 ∪ 𝑀3 ∪ 𝑀4 is a set of all 

players in the centre. 
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Based on the inclusion and exclusion principle, there applies: 

 

0 = |𝑀1 ∪ 𝑀2 ∪ 𝑀3 ∪ 𝑀4| − (26 + 17 + 59 + 19) + (7 + 18 + 3 + 9 + 5)
− (5 + 2) + 0 

 

From which |𝑀1 ∪ 𝑀2 ∪ 𝑀3 ∪ 𝑀4| = 26 + 17 + 59 + 19 − 7 − 18 − 3 −
9 − 5 + 5 + 2 = 85. As a result, the tennis centre has 85 players. 

 

Example 2.3. Let 𝑛 > 1 be a natural number. In number theory, the symbol 

𝜑(𝑛) denotes the number of natural numbers smaller than n and relatively prime 

s n, where 𝜑(𝑛) is called Euler’s function [3]. Let 𝑛 = 𝑝1
𝛼1 … 𝑝𝑘

𝛼𝑘 be a canonical 

decomposition of the number n. We will show that the following relation 

applies: 

 

𝜑(𝑛) =  𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) … (1 −

1

𝑝𝑘
) 

 

Solution. Once more, we will use the inclusion and exclusion principle. Let 𝑛 =
𝑝1

𝛼1𝑝2
𝛼2 … 𝑝𝑘

𝛼𝑘  is a canonical decomposition of the number n. The natural 

numbers that are relatively prime with the number n are those that are not 

divisible by either of the prime numbers 𝑝1, 𝑝2, … , 𝑝𝑘. So, let 𝑎𝑖 mean the 

property that “the number m is divisible by the prime number 𝑝𝑖, 𝑖 = 1, … , 𝑘“. 

The number of numbers that are smaller or equal to the number n and 

are divisible by the number 𝑝𝑖 is 𝑁(𝑎𝑖) =
𝑛

𝑝𝑖
. It is an integer since 𝑝𝑖⃓𝑛. Next, 

we get 𝑁(𝑎𝑖𝑎𝑗) =
𝑛

𝑝𝑖𝑝𝑗
 and other members of the notation. 

 

Then: 

 

𝜑(𝑛) = 𝑛 − ∑
𝑛

𝑝𝑖
+ ∑

𝑛

𝑝𝑖𝑝𝑗
− ∑

𝑛

𝑝𝑖𝑝𝑗𝑝𝑠
+ ⋯ + (−1)𝑘

𝑛

𝑝1𝑝2 … 𝑝𝑘
 

 

This expression can be simplified to the form: 

 

𝜑(𝑛) = 𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) … (1 −

1

𝑝𝑘
) 

 

Several other interesting tasks and applications of the inclusion and exclusion 

principle can be found e.g. in the resources [6], [7]. 
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3  Implementation of the inclusion and exclusion 

principle in the Matlab computing environment 

When solving various practical tasks with pupils, it is possible and appropriate 

to use some computing environment, e.g. Matlab. We will now solve a simple 

task of divisibility. 

 

Example 3.1. We will show how many numbers there are up to 1000 that are 

not divisible by three, five, or seven. 

 

Solution. Before proceeding to the solution of the task, we will use divisibility 

relations to determine the number of all natural numbers smaller than 1000, each 

of which can be divided simultaneously by three, five, and seven. 

 

First, we will generally show that if 3|𝑎, 5|𝑎, then 3 ∙ 5 = 15|𝑎, being valid if 

3|𝑎, so 𝑎 = 3𝑏, if 5|𝑎, so 𝑎 = 5𝑐. The left sides are equal, so the right sides 

must be equal, too. Then 

 

3𝑏 = 5𝑐 

 

Since (3,5) = 1 ⇒ 3|c ⇒ 𝑐 = 3𝑑. Then 𝑎 = 5𝑐 = 15𝑑 ⇒ 15|𝑎. 

 

Now, we will show that if 15|𝑎, 7|𝑎, then 15 ∙ 7 = 105|𝑎 is valid if 15|𝑎, so 

𝑎 = 15𝑒, if 7|𝑎, so 𝑎 = 7𝑓. Since 𝑎 = 𝑎, it holds true that 

 

15𝑒 = 7𝑓 

 

From the relation (15,7) = 1 ⇒ 15|f ⇒ 𝑓 = 15𝑔. Then 𝑎 = 7𝑓 = 105𝑔 ⇒
105|𝑎. 

 

We will do the division 
1000

105
= 9 +

55

105
 and we see that there exist 9 numbers 

with the required property. 

 

Let us get back to our basic task. There, we have 𝑁 = 1000. Let 𝑎1 be the 

property that “the number n is divisible by three“, property 𝑎2 stand for “the 

number n is divisible by five“, property 𝑎3 stand for “the number n is divisible 

by seven“. At the same time, 𝑁(0) is the number of searched numbers not 

divisible by any of the numbers 3, 5, 7. 

Every third natural number is divisible by three since 1000 = 3 ∙ 333 + 1. We 

have the number 𝑁(𝑎1) = 333, that is 333 numbers up to 1000 are divisible by 

three. By similar consideration, we determine 𝑁(𝑎2) = 200, 𝑁(𝑎3) = 142. 
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Based on the previous considerations, we determine the number 𝑁(𝑎1𝑎2). It 

holds true that if a number is divisible by three and five, it is also divisible by 

its product, i.e. by the number 15 (inasmuch as the numbers 3 and 5 are relatively 

prime). Hence, 𝑁(𝑎1𝑎2) equals the number of numbers up to 1000 divisible by 

15 and 𝑁(𝑎1𝑎2) = 66. Similarly, we determine 𝑁(𝑎2𝑎3) = 28 and 𝑁(𝑎1𝑎3) =
47. For the number 𝑁(𝑎1𝑎2𝑎3) it is valid that it will be equal to the number of 

numbers up to 1000 that are divisible by the product 3 ∙ 5 ∙ 7 = 105, hence 

𝑁(𝑎1𝑎2𝑎3) = 9.  

 

Then, based on the inclusion and exclusion principle, we have in total 

 

𝑁(0) = 1000 − (333 + 200 + 142) + (66 + 28 + 47) − 9 = 457 

 

Now we implement the given task into the Matlab computing environment to 

verify the result. First we create the function “count_the_divisors”, 

which is the application of the inclusion and exclusion principle: 

 
function cnt = count_the_divisors(N, a, b, c) 

cnt_3 = floor(N / a); %counts of numbers 

divisible by a 

cnt_5 = floor(N / b); %counts of numbers 

divisible by b 

cnt_7 = floor(N / c); %counts of numbers 

divisible by c 

  

cnt_3_5 = floor(N / (a * b)); %counts of numbers 

divisible by a and b 

cnt_5_7 = floor(N / (b * c)); %counts of numbers 

divisible by b and c 

cnt_3_7 = floor(N / (a * c)); %counts of numbers 

divisible by a and c 

  

cnt_3_5_7 = floor(N / (a * b * c)); %counts of 

numbers divisible by a, b and c 

  

%and now inclusion-exclusion principle applied 

cnt = N - (cnt_3 + cnt_5 + cnt_7) + (cnt_3_5 + 

cnt_5_7 + cnt_3_7) - cnt_3_5_7; 

 

We will call the function from the command line: 

 
>> N = 1000; 

>> count_the_divisors(N, 3, 5, 7) 
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ans = 

 

   457 

 

When creating functions or scripts solving various problems based on the 

inclusion and exclusion principle, it is possible to use various set operations 

(functions) built directly in Matlab without the need to create one’s own 

structures. [8] 

 

4  Conclusion 

The principle of inclusion and exclusion is a “set problem“ that falls within the 

field of discrete mathematics with different applications in combinatorics. 

However, this principle also plays a significant role in number theory when 

defining the so-called Euler’s function or Fermat’s theorem, or in clarifying and 

exploring the fundamental problems of number theory, such as expressing the 

distribution of prime numbers among natural numbers on the numerical axis and 

many other questions still open today. 

The paper offered something different than just a set view of the inclusion and 

exclusion principle and its definition using number theory knowledge and the 

properties of combinatorial numbers. Our work is a guideline for solving 

selected practical tasks in which the involvement of the principle might not be 

expected at first sight. We also showed the possible application of ICT and the 

Matlab computing environment in solving computational problems in the field 

of number theory, which can be concurrently involved in mathematics teaching. 

In conclusion, the inclusion and exclusion principle has much more application 

than we allege in our short contribution and can be used to solve more difficult 

tasks, e.g. in algebra to solve specific systems of equations or to solve various 

problems in combination with the Dirichlet principle. Some research shows that 

the ability to solve problems also depends on the substitution thinking, which 

makes possible to use mathematical knowledge effectively in various areas of 

number theory [9]. 
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