
Volume 36, 2019, pp. 27-42 Ratio Mathematica

27

 Solution of two-point fuzzy boundary

value problems by fuzzy neural networks

Mazin Hashim Suhhiem*

Basim Nasih Abood+

 Mohammed Hadi Lafta++

Abstract

In this work, we have introduced a modified method for solving second-order

fuzzy differential equations. This method based on the fully fuzzy neural

network to find the numerical solution of the two-point fuzzy boundary value

problems for the ordinary differential equations. The fuzzy trial solution of the

two-point fuzzy boundary value problems is written based on the concepts of

the fully fuzzy feed-forward neural networks which containing fuzzy

adjustable parameters. In comparison with other numerical methods, the

proposed method provides numerical solutions with high accuracy.

Keywords: Two-point fuzzy boundary value problem; fully fuzzy neural

network; fuzzy trial solution; minimized error function; hyperbolic tangent

activation function.

ـــ .ــ

* Department of Statistics, University of Sumer, Alrifaee, Iraq; mazin.suhhiem@yahoo.com

+ Department of Mathematics, University of Wasit, Alkut, Iraq; basimabood@yahoo.com

++ Department of Statistics, University of Sumer, Alrifaee, Iraq; mohamnedhadi@yahoo.com

Received on March 5th, 2019. Accepted on April 29rd, 2019. Published on June 30th, 2019.

doi:10.23755/rm.v36i1.455. ISSN: 1592-7415. eISSN: 2282-8214. ©Mazin Suhhiem et al.

This paper is published under the CC-BY licence agreement.

Mazin H. Suhhiem, Basim N. Abood, Mohammed H. Lafta

28

1. Introduction

 Many methods have been developed so far for solving fuzzy differential

equations (FDEs) since it is utilized widely for the purpose of modelling

problems in science and engineering. Most of the practical problems require

the solution of the FDE which satisfies fuzzy initial conditions or fuzzy

boundary conditions, therefore, the FDE must be solved. Many FDE could not

be solved exactly, thus considering their approximate solutions is becoming

more important.

 The theory of FDE was "first formulated by Kaleva and Seikkala..Kaleva

was formulated FDE in terms of the "Hukuhara derivative" (H-derivative).

Buckley and Feuring have given a very general formulation of a first order"

fuzzy "initial value problem. They first find the crisp solution, make it fuzzy

and then check if it satisfies the FDE.

 In 1990 researchers began using the artificial neural network (ANN) for

solving ordinary differential equation (ODE) and partial differential equation

(PDE) such as: Lee and Kang in [1]; Meade and Fernandez in [2,3]; Lagaris

and Likas in [4]; Liu and Jammes in [5]; Tawfiq in [6]; Malek and Shekari in

[7]; Pattanaik and Mishra in [8]; Baymani and Kerayechian in [9]; and other

researchers.

 In 2010 researchers began using ANN for solving a fuzzy differential

equation such as: Effati and Pakdaman in [10]; Mosleh and Otadi in [11];

Ezadi and Parandin in [12].

 In 2012 researchers began using partially (non-fully) fuzzy artificial neural

network(FANN) for solving a fuzzy differential equation such as Mosleh and

Otadi in [13,14,15]. In (2016) Suhhiem [16] developed and used partially

FANN for solving fuzzy and non-fuzzy differential equations.

 In this work, we have used fully feed forward fuzzy neural network to find

the numerical solution of the two-point fuzzy boundary value problems for the

ordinary differential equations. The fuzzy trial solution of the fuzzy boundary

value problem is written as a sum of two parts. The first part satisfies the fuzzy

boundary condition, it contains no fuzzy adjustable parameters. The second

part involves fully fuzzy feed-forward neural networks which containing fuzzy

adjustable parameters.

Solution of two-point fuzzy boundary value problems by fuzzy neural networks

29

2 Basic definitions

 In this section, the basic notations which are used in fuzzy calculus are

introduced

Definition(𝟏),[𝟏𝟔]: The r - level (or r - cut) set of a fuzzy set Ã labeled by

Ar is the crisp set of all x in X (universal set) such that : µÃ(x) ≥ r ; i. e.

 Ar = {x ∈ X ∶ µÃ(x) ≥ r , r ∈ [0,1] } . (1)

Definition(𝟐), 𝐅𝐮𝐳𝐳𝐲 𝐍𝐮𝐦𝐛𝐞𝐫[𝟏𝟔]: A fuzzy number ũ is completely

determined by an ordered pair of functions (u (r) , u (r)), 0 ≤ r ≤ 1, which

satisfy the following requirements:

 𝟏) u (r) is a bounded left continuous and non-decreasing function on [0,1].

 𝟐) u (r) is a bounded left continuous and non-increasing function on [0,1].

 𝟑) u (r) ≤ u (r) , 0 ≤ r ≤ 1. (2)

 The crisp number (a) is simply represented by:

u (r) = u (r) = a , 0 ≤ r ≤ 1 .

 The set of all the fuzzy numbers is denoted by E1.

Remark(𝟏),[𝟏𝟎]: For arbitrary ũ = (u , u) , ṽ = (v , v) and K ∈ R, the addition

and multiplication by K For all r ∈ [0,1] can be defined as:

 𝟏) (u + v) (r) = u (r) + v (r).

 𝟐) (u + v) (r) = u (r) + v (r).

 𝟑) (Ku) (r) = K u (r), (Ku) (r) = K u (r) , if K ≥ 0.

 𝟒) (Ku) (r) = K u (r), (Ku) (r) = K u (r), if K < 0. (3)

Remark(𝟐),[𝟏𝟔]: The distance between two arbitrary fuzzy numbers ũ =

(u , u) and ṽ = (v , v) is given as:

 D (ũ , ṽ) = [∫ (u (r) - v (r)
1

0
)
2dr + ∫ (u (r) - v (r)

1

0
)
2dr]

1

2
 (4)

Remark(𝟑),[𝟏𝟔]: (E1,D) is a complete metric space.

Mazin H. Suhhiem, Basim N. Abood, Mohammed H. Lafta

30

Definition (𝟑) , 𝐅𝐮𝐳𝐳𝐲 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 [𝟏𝟔] : The function F: R ⟶ E1 is called a

fuzzy function.

We call every function defined in set Ã ⊆ E1 to B̃ ⊆ E1 a fuzzy function.

Definition(𝟒),[𝟏𝟎]: The fuzzy function F: R ⟶ E1 is said to be continuous if:

For an arbitrary t1 ∈ R and ϵ > 0 there exists a δ > 0 such that:

 |t - t1| < δ ⇒ D (F (t), F(t1)) < ϵ, where D is the distance between two fuzzy

numbers.

Definition (5),[16]: Let I be a real interval. The r-level set of the fuzzy

function y: I → E1 can be denoted by:

 [y(x)]r = [y1
r(x), y2

r(x)], x ∈ I , r ∈ [0,1] (5)

The Seikkala derivative yˊ(x) of the fuzzy function y(x) is defined by:

 [yˊ(x)]r = [(y1
r)ˊ(x), (y2

r)ˊ(x)], x ∈ I, r ∈ [0,1] (6)

Definition (6),[𝟏𝟎]: let u and v ∈ E1. If there exist w ∈ E1 such that:

 u = v+w then w is called the H-difference (Hukuhara-difference) of u and v

and it is denoted by w = u ⊝ v.

In this work, the ⊝ sign stands always for H-difference, and let us remark that

u ⊝ v ≠ u + (-1) v .

Definition (7), 𝐅𝐮𝐳𝐳𝐲 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞[𝟏𝟐]: Let F : (a,b) → E1 and t0 ∈

(a,b).We say that F is H-differential (Hukuhara-differential) at x0, if there

exists an element Fˊ(x0) ∈ E1 such that for all h> 0 (sufficiently small), ∃ F

(x0 +h)⊝F(x0), F(x0) ⊝ F (x0 - h) and the limits (in the metric D)

lim
h→0

F(x0 + h) ⊝F(x0)

h
= lim

h→0

F(x0) ⊝ F(x0 − h)

h
= Fˊ(x0) (7)

Then Fˊ(x0) is called fuzzy derivative (H-derivative) of F at x0.

where D is the distance between two fuzzy numbers.

Solution of two-point fuzzy boundary value problems by fuzzy neural networks

31

3 Fully fuzzy neural network [6,16]

 Artificial neural networks are learning machines that can learn any arbitrary

functional mapping between input and output. They are fast machines and can

be implemented in parallel, either in software or in hardware. In fact, the

computational complexity of ANN is polynomial in the number of neurons

used in the network. Parallelism also brings with it the advantages of

robustness and fault tolerance. (i.e.) ANN is a simplified mathematical model

of the human brain. It can be implemented by both electric elements and

computer software. It is a parallel distributed processor with large numbers of

connections It is an information processing system that has certain

performance characters in common with biological neural networks.

 A fuzzy neural network or neuro-fuzzy system is a learning machine that

finds the parameters of a fuzzy system (i.e., fuzzy set, fuzzy rules) by

exploiting approximation techniques from neural networks. Combining fuzzy

systems with neural networks. Both neural networks and fuzzy systems have

some things in common. They can be used for solving problems (e. g. fuzzy

differential equations, fuzzy integral equations, etc).

 If all the adjustable parameters (weights and biases) are fuzzy numbers,

then the fuzzy neural network is called fully fuzzy neural network; otherwise it

is called partially fuzzy neural network.

4 Solution of FDEs by fully fuzzy neural network

 To solve any fuzzy ordinary differential equation, we consider a three-

layered fully fuzzy neural network with one unit entry x, one hidden layer

consisting of m activation functions and one unit output N(x). The activation

function for the hidden units of our fully fuzzy neural network is the

hyperbolic tangent function (s(∝) = tanh (∝)). Here the dimension of a fully

fuzzy neural network is (1 × m × 1) (figure1).

Mazin H. Suhhiem, Basim N. Abood, Mohammed H. Lafta

32

Figure1: (1 × m × 1) Fully fuzzy feed-forward neural network.

 For every entry x (where x ≥ 0) the mathematical operations in the fully

fuzzy neural network can be described as:

Input unit: x = x, (8)

Hidden units :

 [zj]r = [[zj]r

L
 , [zj]r

U
] = [s ([netj]r

L
) , s ([netj]r

U
)] (9)

where

 [netj]r

L
 = x [wj]r

L
 + [bj]r

L
 (10)

 [netj]r

U
 = x [wj]r

U
 + [bj]r

U
 (11)

Solution of two-point fuzzy boundary value problems by fuzzy neural networks

33

Output unit:

 [N(x)]r = [[N(x)]r
L , [N(x)]r

U] (12)

 Where

 [N(x)]r
L=∑ min {m

j=1 [vj]r

L
 [zj]r

L
 , [vj]r

L
 [zj]r

U
 , [vj]r

U
 [zj]r

L
 , [vj]r

U
 [zj]r

U
 } (13)

 [N(x)]r
U=∑ max {m

j=1 [vj]r

L
 [zj]r

L
 , [vj]r

L
 [zj]r

U
 , [vj]r

U
 [zj]r

L
 , [vj]r

U
 [zj]r

U
 } (14)

Where

[zj]r

L
= s (x [wj]r

L
 + [bj]r

L
) (15)

[zj]r

U
= s (x [wj]r

U
 + [bj]r

U
) (16)

5 Description of the proposed method

 For illustration the proposed method, we will consider the two points fuzzy

boundary value problems:

 y´´(x) = f (x, y(x) , y´(x)) , x ∈ [a , b] (17)

with the fuzzy boundary conditions:

 y(a) = A and y(b) = B, where A and B are fuzzy numbers in E1 with r-level

sets:

 [A]r = [A , A] and [B]r = [B , B] .

The fuzzy trial solution for this problem is:

 [yt(x)]r =
b − x

b − a
 [A]r +

x − a

b − a
[B]r +(x − a) (x − b) [N(x)]r (18)

This fuzzy trial solution by intention satisfies the fuzzy boundary conditions in

(17).

The error function that must be minimized for problem (17) is in the form:

 E= ∑ (Eir
L + Eir

U)
g
i=1 (19)

where

Mazin H. Suhhiem, Basim N. Abood, Mohammed H. Lafta

34

 Eir
L = [[

d2yt (xi)

dx2]
r

L

− [f (xi , yt (xi),
d yt (xi)

dx
)]

r

L

]
2

 (20)

 Eir
U = [[

d2yt (xi)

dx2]
r

U

− [f (xi , yt (xi),
d yt (xi)

dx
)]

r

U

]
2

 (21)

where {xi}i=1
g

 are discrete points belonging to the interval [a , b] (training set)

and in the cost function (19), Er
L and Er

U can be viewed as the squared errors

for the lower limits and the upper limits of the r – level sets, respectively.

Now, to drive the minimized error function for problem (17):

From (18) we can find:

[yt(x)]r
L =

b − x

b − a
 [A]r

L +
x − a

b − a
 [B]r

L +(x2 − (a + b)x + ab)[N(x)]r
L (22)

[yt(x)]r
U =

b − x

b − a
 [A]r

U +
x − a

b − a
 [B]r

U +(x2 − (a + b)x + ab)[N(x)]r
U (23)

Then we get:

d[yt(x)]r
L

dx
=

−1

b − a
 [A]r

L +
1

b − a
 [B]r

L +(x2 − (a + b)x + ab)
d[N(x)]r

L

dx
+(2x−a −

b)[N(x)]r
L (24)

d[yt(x)]r
U

dx
=

−1

b − a
 [A]r

U +
1

b − a
 [B]r

U +(x2 − (a + b)x + ab)
d[N(x)]r

U

dx
+(2x−a −

b)[N(x)]r
U (25)

Therefore, we have:

[
d2yt (x)

dx2]
r

L

= (x2 − (a + b)x + ab)
d2[N(x)]r

L

dx2 +2(2x − a − b)
d[N(x)]r

L

dx
 +

2[N(x)]r
L (26)

[
d2yt (x)

dx2]
r

U

= (x2 − (a + b)x + ab)
d2[N(x)]r

U

dx2 +2(2x − a − b)
d[N(x)]r

U

dx
 +

2[N(x)]r
U (27)

Then (20) and (21) can be rewritten as:

Solution of two-point fuzzy boundary value problems by fuzzy neural networks

35

Eir
L = [(xi

2 − (a + b)xi + ab)
d2[N(xi)]r

L

dx2 + 2(2xi − a − b)
d[N(xi)]r

L

dx
 +

 2[N(xi)]r
L – f(xi ,

b − xi

b − a
 [A]r

L +
xi − a

b − a
 [B]r

L + (xi
2 − (a + b)xi +

ab)[N(xi)]r
L ,

−1

b − a
 [A]r

L+
1

b − a
 [B]r

L+(xi
2 − (a + b)xi + ab)

d[N(xi)]r
L

dx
+ (2xi −

a − b)[N(xi)]r
L)]2 (28)

Eir
U = [(xi

2 − (a + b)xi + ab)
d2[N(xi)]r

U

dx2 + 2(2xi − a − b)
d[N(xi)]r

U

dx
 +

 2[N(xi)]r
U – f(xi ,

b − xi

b − a
 [A]r

U +
xi − a

b − a
 [B]r

U + (xi
2 − (a + b)xi +

ab)[N(xi)]r
U ,

−1

b − a
 [A]r

U+
1

b − a
 [B]r

U+(xi
2 − (a + b)xi + ab)

d[N(xi)]r
U

dx
+

(2xi − a − b)[N(xi)]r
U)]2 (29)

Where

[N(xi)]r
L = ∑ min {m

j=1 [vj]r

L
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 + [bj]r

U
) } (30)

[N(xi)]r
L = ∑ max {m

j=1 [vj]r

L
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 + [bj]r

U
) } (31)

d[N(xi)]r
L

dx
= ∑ min {m

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 + [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }

(32)

d[N(xi)]r
U

dx
= ∑ max {m

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 + [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }

(33)

d2[N(xi)]r
L

dx2 =

∑ min{m
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) } (34)

Mazin H. Suhhiem, Basim N. Abood, Mohammed H. Lafta

36

d2[N(xi)]r
U

dx2
=

∑ max{m
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) } (35)

where s´ and s ́ ́ are the first and second derivative of the hyperbolic tangent

function. Then we substitute (28) and (29) in (19) to find the error function

that must be minimized for problem (17).

6. Numerical example

 In this section, we will solve two problems about two-point fuzzy boundary

value problem. We have used (1 × 10 × 1) fully fuzzy feed-forward neural

network. The activation function of each hidden unit is the hyperbolic tangent

activation function. The analytical solutions [ya(x)]r
L and [ya(x)]r

U has been

known in advance. Therefore, we test the accuracy of the obtained solutions by

computing the deviation:

e (x , r) = |[ya(x)]r
U − [yt (x)]r

U| , e (x , r)= |[ya(x)]r
L − [yt(x)]r

L|

 To minimize the error function, we have used BFGS quasi-Newton method

(For more details, see [16]). The computer programs which we have used in

this work are coded in MATLAB 2015.

Example (1): Consider the linear fuzzy boundary value problem:

 y´´ (x) − y´(x) = 1 . with x ∈ [0, 0.5]

 y(0) = [2 + r , 4 − r] ,

 y(0.5)= [5 + r , 7 − r] . where r ∈ [0, 1].

The analytical solutions for this problem are:

 [ya(x)]r
L = (2 + r −

3

e0.5−1
) + (

3

e0.5−1
)ex

 [ya(x)]r
U= (4 − r −

3

e0.5−1
) + (

3

e0.5−1
)ex

The trial solutions for this problem are:

 [yt(x)]r
L= (1 − 2x) (2 + r) + 2x (4 − r)+(x2 − 0.5 x) [N(x)]r

L

Solution of two-point fuzzy boundary value problems by fuzzy neural networks

37

 [yt(x)]r
U= (1 − 2x) (5 + r) + 2x (7 − r) + (x2 − 0.5 x) [N(x)]r

U

The fully fuzzy feed forward neural network has been trained by using a grid

of ten equidistant points in [0, 0.5].

The error function that must be minimized for this problem will be:

 E= ∑ (Eir
L + Eir

U)11
i=1 (36)

where

 Eir
L =[(xi

2 − 0.5xi)
d2[N(xi)]r

L

dx2
 + (4xi − 1)

d[N(xi)]r
L

dx
 + 2[N(xi)]r

L −

(xi
2 − 0.5xi)

d[N(xi)]r
L

dx
− (2xi − 0.5)[N(xi)]r

L + 4r − 5]2 (37)

 Eir
U=[(xi

2 − 0.5xi)
d2[N(xi)]r

U

dx2 + (4xi − 1)
d[N(xi)]r

U

dx
 + 2[N(xi)]r

U −

(xi
2 − 0.5xi)

d[N(xi)]r
U

dx
− (2xi − 0.5)[N(xi)]r

U + 4r − 5]2 (38)

numerical solutions for this problem can be found in table (1).

Table (1): Numerical result for example (1), x=1.

r [yt(x)]r
L e (x , r) [yt(x)]r

U e (x , r)

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 9.946164141

10.04616401

10.14616481

10.24616458

10.34616447

10.44616422

10.54616396

10.64616391

10.74616385

10.84616389

10.94616389

 3.29137e-7

 1.96846e-7

 9.95565e-7

 7.63284e-7

 6.60993e-7

 4.09513e-7

 1.47232e-7

 9.75941e-8

 3.39072e-8

 7.52383e-8

 7.39070e-8

11.94616425

11.84616411

11.74616478

11.64616385

11.54616387

11.44616389

11.34616391

11.24616382

11.14616384

11.04616386

10.94616386

4.33916e-7

2.93475e-7

9.70548e-7

3.95104e-8

5.67802e-8

7.56011e-8

9.53493e-8

1.15291e-8

2.63433e-8

5.26859e-8

4.56782e-8

Mazin H. Suhhiem, Basim N. Abood, Mohammed H. Lafta

38

Example (2): Consider the non-linear fuzzy boundary value problem:

 y´´ (x) = - (y´(x))
2
 . with x ∈ [0 , 2]

 y(0) = [r , 2 − r] , y(2) = [1 + r , 3 − r] and r ∈ [0 , 1].

The analytical solutions for this problem are:

 [ya(x)]r
L = ln (x +

2

e−1
) + r − ln

2

e−1

 [ya(x)]r
U= ln (x +

2

e−1
) + 2 − r − ln

2

e−1

The trial solutions for this problem are:

 [yt(x)]r
L = r

2−x

2
 + (1 + r)

x

2
 + x (x − 2) [N(x)]r

L

 [yt(x)]r
U= (2 − r)

2−x

2
 + (3 − r)

x

2
 + x (x − 2) [N(x)]r

U

The fully fuzzy feed forward neural network has been trained by using a grid

of ten equidistant points in [0, 2].

The error function that must be minimized for this problem will be:

 E= ∑ (Eir
L + Eir

U)11
i=1 (39)

where

 Eir
L =[(xi

2 − 2xi)
d2[N(xi)]r

L

dx2 + (4xi − 4)
d[N(xi)]r

L

dx
 + 2[N(xi)]r

L +

((xi
2 − 2xi)

d[N(xi)]r
L

dx
+ (2xi − 2)[N(xi)]r

L + 0.5)2]2 (40)

 Eir
L =[(xi

2 − 2xi)
d2[N(xi)]r

U

dx2
 + (4xi − 4)

d[N(xi)]r
U

dx
 + 2[N(xi)]r

U +

((xi
2 − 2xi)

d[N(xi)]r
U

dx
+ (2xi − 2)[N(xi)]r

U + 0.5)2]2 (41)

Then we use (39) to update the weights and biases.

Numerical solution for this problem can be found in table (2).

Solution of two-point fuzzy boundary value problems by fuzzy neural networks

39

Table (2): Numerical result for example (2), x=1.

r [yt(x)]r
L e (x , r) [yt(x)]r

U e (x , r)

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.620114507

0.720114507

0.820114507

0.920114507

1.020114507

1.120114507

1.220114507

1.320114516

1.420114512

1.520114507

1.620114514

 3.24734e-10

 4.66221-10

 2.03208e-10

 3.80684e-10

 4.09557e-10

 3.50405e-10

 4.59008e-10

 9.46681e-9

 5.06564e-9

 8.21899e-10

 7.88763e-9

2.620114507

2.520114507

2.420114507

2.320114513

2.220114514

2.120114508

2.020114507

1.920114507

1.820114507

1.720114514

1.620114508

8.46634e-10

9.79602e-10

6.85555e-10

6.62032e-9

7.59010e-9

1.74006e-9

9.00817e-10

9.21604e-10

4.99811e-10

7.15955e-9

1.02988e-9

For the above two problems we have

[N(xi)]r
L = ∑ min {10

j=1 [vj]r

L
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 + [bj]r

U
) }

[N(xi)]r
L = ∑ max {10

j=1 [vj]r

L
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 + [bj]r

U
) }

d[N(xi)]r
L

dx
= ∑ min {10

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 + [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }

Mazin H. Suhhiem, Basim N. Abood, Mohammed H. Lafta

40

d[N(xi)]r
U

dx
= ∑ max {10

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 + [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }

d2[N(xi)]r
L

dx2
=

∑ min{10
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }

d2[N(xi)]r
U

dx2 =

∑ max{10
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }

7 Conclusion

 In this work, we have introduced a modified method to find the numerical

solution of the two-point fuzzy boundary value problems for the ordinary

differential equations. This method based on the fully fuzzy neural network to

approximate the solution of the second-order fuzzy differential equations. For

future studies, one can extend this method to find a numerical solution of the

higher order fuzzy differential equations. Also, one may use this method for

solving a fuzzy partial differential equation.

Solution of two-point fuzzy boundary value problems by fuzzy neural networks

41

References

[1] H. Lee, I.S. Kang. Neural Algorithms for Solving Differential Equations.

Journal of Computational Physics, 91, 110-131. 1990.

[2] A.J. Meade, A.A. Fernandes. The Numerical Solution of Linear Ordinary

Differential Equations by Feed-Forward Neural Networks. Mathematical and

Computer Modeling, 19(12), 1-25. 1994.

[3] A.J. Meade, A.A. Fernandes. Solution of Nonlinear Ordinary Differential

Equations by Feed-Forward Neural Networks. Mathematical and Computer

Modeling, 20(9), 19-44. 1994.

 [4] I.E. Lagaris, A. Likas. Artificial Neural Networks for Solving Ordinary

and Partial Differential Equations. Journal of Computational Physics, 104, 1-

26. 1997.

[5] Liu, Jammes. Solving Ordinary Differential Equations by Neural

Networks. Warsaw, Poland. 1999.

[6] Tawfiq. On Design and Training of Artificial Neural Network for Solving

Differential Equations. Ph.D. Thesis, College of Education, University of

Baghdad, Iraq. 2004.

[7] A. Malek, R. Shekari. Numerical Solution for High Order Differential

Equations by Using a Hybrid Neural Network Optimization Method. Applied

Mathematics and Computation, 183, 260-271. 2006.

[8] S. Pattanaik, R.K. Mishra. Application of ANN for Solution of PDE in RF

Engineering. International Journal on Information Sciences and Computing,

2(1), 74-79. 2008.

[9] M. Baymani, A. Kerayechian. Artificial Neural Networks Approach for

Solving Stokes Problem, Applied Mathematics, 1, 288-292. 2010.

 [10] S. Effati, M. Pakdaman. Artificial Neural Network Approach for Solving

Fuzzy Differential Equations. Information Sciences, 180, 1434-1457. 2010.

[11] M. Mosleh, M. Otadi. Fuzzy Fredholm Integro-Differential Equations

with Artificial Neural Networks. Communications in Numerical Analysis,

Article ID cna-00128, 1-13. 2012.

[12] S Ezadi, N. Parandin. Numerical Solution of Fuzzy Differential Equations

Based on Semi-Taylor by Using Neural Network. Journal of Basic and

Applied Scientific Research, 3(1s), 477-482. 2013.

Mazin H. Suhhiem, Basim N. Abood, Mohammed H. Lafta

42

[13] M. Mosleh, M. Otadi. Simulation and Evaluation of Fuzzy Differential

Equations by Fuzzy Neural Network. Applied Soft Computing, 12, 2817-2827.

2012.

[14] M. Mosleh. Fuzzy Neural Network For Solving a System of Fuzzy

Differential Equations. Applied Soft Computing, 13, 3597-3607. 2013.

[15] M. Mosleh, M. Otadi. Solving the Second Order Fuzzy Differential

Equations by Fuzzy Neural Network. Journal of Mathematical Extension, 8(1),

11-27. 2014.

[16] Suhhiem. Fuzzy Artificial Neural Network for Solving Fuzzy and Non-

Fuzzy Differential Equations. Ph.D. Thesis, College of Sciences, AL-

Mustansiriyah University, Iraq. 2016.

