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Abstract 

In this work, we have introduced a modified method for solving second-order 

fuzzy differential equations. This method based on the fully fuzzy neural 

network to find the numerical solution of the two-point fuzzy boundary value 

problems for the ordinary differential equations. The fuzzy trial solution of the 

two-point fuzzy boundary value problems is written based on the concepts of 

the fully fuzzy feed-forward neural networks which containing fuzzy 

adjustable parameters. In comparison with other numerical methods, the 

proposed method provides numerical solutions with high accuracy. 
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1. Introduction 

     Many methods have been developed so far for solving fuzzy differential 

equations (FDEs) since it is utilized widely for the purpose of modelling 

problems in science and engineering. Most of the practical problems require 

the solution of the FDE which satisfies fuzzy initial conditions or fuzzy 

boundary conditions, therefore, the FDE must be solved. Many FDE could not 

be solved exactly, thus considering their approximate solutions is becoming 

more important. 

     The theory of FDE was "first formulated by Kaleva and Seikkala..Kaleva 

was formulated FDE in terms of the "Hukuhara derivative" (H-derivative). 

Buckley and Feuring have given a very general formulation of a first order" 

fuzzy "initial value problem. They first find the crisp solution, make it fuzzy 

and then check if it satisfies the FDE. 

     In 1990 researchers began using the artificial neural network (ANN) for 

solving ordinary differential equation (ODE) and partial differential equation 

(PDE) such as: Lee and Kang in [1]; Meade and Fernandez in [2,3]; Lagaris 

and Likas in [4]; Liu and Jammes in [5]; Tawfiq in [6]; Malek and Shekari in 

[7]; Pattanaik and Mishra in [8]; Baymani and Kerayechian in [9]; and other 

researchers. 

     In 2010 researchers began using ANN for solving a fuzzy differential 

equation such as: Effati and Pakdaman in [10]; Mosleh and Otadi in [11]; 

Ezadi and Parandin in [12]. 

     In 2012 researchers began using partially (non-fully) fuzzy artificial neural 

network(FANN) for solving a fuzzy differential equation such as Mosleh and 

Otadi in [13,14,15]. In (2016) Suhhiem [16] developed and used partially 

FANN for solving fuzzy and non-fuzzy differential equations. 

     In this work, we have used fully feed forward fuzzy neural network to find 

the numerical solution of the two-point fuzzy boundary value problems for the 

ordinary differential equations. The fuzzy trial solution of the fuzzy boundary 

value problem is written as a sum of two parts. The first part satisfies the fuzzy 

boundary condition, it contains no fuzzy adjustable parameters. The second 

part involves fully fuzzy feed-forward neural networks which containing fuzzy 

adjustable parameters. 
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2 Basic definitions   

     In this section, the basic notations which are used in fuzzy calculus are 

introduced 

Definition(𝟏),[𝟏𝟔]: The r - level ( or r - cut ) set of a fuzzy set Ã  labeled by 

Ar is the crisp set of all x in X (universal set) such that :  µÃ(x) ≥ r  ; i. e. 

  Ar = {x ∈ X ∶ µÃ(x)  ≥ r , r ∈ [0,1] } .                    (1) 

Definition(𝟐), 𝐅𝐮𝐳𝐳𝐲 𝐍𝐮𝐦𝐛𝐞𝐫[𝟏𝟔]: A fuzzy number ũ is completely 

determined by an ordered pair of functions (u (r) , u (r)), 0 ≤ r ≤ 1, which 

satisfy the following requirements:    

 𝟏) u (r) is a bounded left continuous and non-decreasing function on [0,1]. 

 𝟐) u (r) is a bounded left continuous and non-increasing function on [0,1].  

 𝟑) u (r) ≤ u (r) , 0 ≤ r ≤ 1.                                                                            (2) 

     The crisp number (a) is simply represented by:  

u (r) = u (r) = a , 0 ≤ r ≤ 1 .  

     The set of all the fuzzy numbers is denoted by  E1. 

Remark(𝟏),[𝟏𝟎]: For arbitrary ũ = (u , u) , ṽ = (v , v) and K ∈ R, the addition 

and multiplication by K  For all r ∈ [0,1]  can be defined as:  

 𝟏) (u + v)  (r) = u (r) + v (r).                                                                                                                       

 𝟐) (u + v)  (r) = u (r) + v (r).                                                                   

 𝟑) (Ku) (r) = K u (r), (Ku) (r) = K u (r) , if  K ≥ 0.                             

 𝟒) (Ku) (r) = K u (r), (Ku) (r) = K u (r), if  K < 0.                                     (3)        

Remark(𝟐),[𝟏𝟔]: The distance between two arbitrary fuzzy numbers ũ = 

(u , u) and  ṽ = (v , v) is given as:                                                                                                                                                       

    D (ũ , ṽ) = [∫ ( u (r) - v (r)
1

0
)
2dr + ∫ ( u (r) - v (r)

1

0
)
2dr]

1

2
                         (4) 

Remark(𝟑),[𝟏𝟔]: (E1,D) is a complete metric space.                                                                                                                                                                                                                                  
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Definition (𝟑) , 𝐅𝐮𝐳𝐳𝐲 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 [𝟏𝟔] : The function F: R  ⟶ E1 is called a 

fuzzy function.   

We call every function defined in set Ã ⊆ E1  to B̃ ⊆ E1  a fuzzy function. 

Definition(𝟒),[𝟏𝟎]: The fuzzy function F: R ⟶ E1 is said to be continuous if:    

For an arbitrary t1 ∈ R  and ϵ > 0 there exists a  δ > 0 such that: 

 |t - t1| < δ ⇒ D (F (t), F(t1)) < ϵ, where D is the distance between two fuzzy 

numbers. 

Definition (5),[16]: Let  I  be a real interval. The  r-level set of the fuzzy 

function y: I → E1  can be denoted by: 

  [y(x)]r = [y1
r(x), y2

r(x)], x ∈ I , r ∈ [0,1]                                                             (5) 

The Seikkala derivative  yˊ(x) of the fuzzy function y(x) is defined by: 

 [yˊ(x)]r = [(y1
r)ˊ(x), (y2

r)ˊ(x)], x ∈ I, r ∈ [0,1]                                                   (6) 

Definition (6),[𝟏𝟎]: let u and v ∈ E1. If there exist w ∈ E1 such that: 

 u = v+w then w is called the H-difference (Hukuhara-difference) of u and v 

and it is denoted by w =  u ⊝ v.  

In this work, the ⊝ sign stands always for H-difference, and let us remark that 

u ⊝ v ≠ u + (-1) v . 

Definition (7), 𝐅𝐮𝐳𝐳𝐲 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞[𝟏𝟐]: Let F : (a,b) →  E1   and  t0  ∈  

(a,b).We  say  that  F is H-differential (Hukuhara-differential) at x0, if there 

exists an element  Fˊ(x0) ∈ E1 such that for all  h> 0  (sufficiently small), ∃ F 

(x0 +h)⊝F(x0), F(x0) ⊝ F (x0 - h) and the limits (in the metric D) 

lim
h→0

F(x0 + h) ⊝F(x0)

h
= lim

h→0

F(x0) ⊝ F(x0 − h) 

h
=  Fˊ(x0)                           (7) 

Then  Fˊ(x0)  is called fuzzy derivative (H-derivative) of  F at  x0. 

where D is the distance between two fuzzy numbers.    
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3 Fully fuzzy neural network [6,16] 

     Artificial neural networks are learning machines that can learn any arbitrary 

functional mapping between input and output. They are fast machines and can 

be implemented in parallel, either in software or in hardware. In fact, the 

computational complexity of ANN is polynomial in the number of neurons 

used in the network. Parallelism also brings with it the advantages of 

robustness and fault tolerance. (i.e.) ANN is a simplified mathematical model 

of the human brain. It can be implemented by both electric elements and 

computer software. It is a parallel distributed processor with large numbers of 

connections It is an information processing system that has certain 

performance characters in common with biological neural networks. 

     A fuzzy neural network or neuro-fuzzy system is a learning machine that 

finds the parameters of a fuzzy system (i.e., fuzzy set, fuzzy rules) by 

exploiting approximation techniques from neural networks. Combining fuzzy 

systems with neural networks. Both neural networks and fuzzy systems have 

some things in common. They can be used for solving problems (e. g. fuzzy 

differential equations, fuzzy integral equations, etc ).  

     If all the adjustable parameters (weights and biases) are fuzzy numbers, 

then the fuzzy neural network is called fully fuzzy neural network; otherwise it 

is called partially fuzzy neural network. 

 

4 Solution of FDEs by fully fuzzy neural network   

     To solve any fuzzy ordinary differential equation, we consider a three-

layered fully fuzzy neural network with one unit entry x, one hidden layer 

consisting of m activation functions and one unit output N(x). The activation 

function for the hidden units of our fully fuzzy neural network is the 

hyperbolic tangent function (s(∝) = tanh (∝)). Here the dimension of a fully 

fuzzy neural network is (1 × m × 1) (figure1). 
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Figure1: (1 × m × 1)  Fully fuzzy feed-forward neural network. 

     For every entry x (where x ≥ 0) the mathematical operations in the fully 

fuzzy neural network can be described as:  

Input unit: x = x,                                                                                        (8)     

Hidden units :                                              

    [zj]r = [[zj]r

L
 , [zj]r

U
] = [s ([netj]r

L
) , s ([netj]r

U
)]                                      (9)      

where 

    [netj]r

L
 = x [wj]r

L
 + [bj]r

L
                                                                            (10) 

    [netj]r

U
 = x [wj]r

U
 + [bj]r

U
                                                                           (11) 
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Output unit:   

    [N(x)]r = [[N(x)]r
L , [N(x)]r

U]                                                                   (12) 

 Where   

   [N(x)]r
L=∑ min {m

j=1  [vj]r

L
 [zj]r

L
 , [vj]r

L
 [zj]r

U
 , [vj]r

U
 [zj]r

L
 , [vj]r

U
 [zj]r

U
 }        (13)        

   [N(x)]r
U=∑ max {m

j=1  [vj]r

L
 [zj]r

L
 , [vj]r

L
 [zj]r

U
 , [vj]r

U
 [zj]r

L
 , [vj]r

U
 [zj]r

U
 }       (14) 

Where 

[zj]r

L
= s (x [wj]r

L
 +  [bj]r

L
)                                                                           (15) 

[zj]r

U
= s (x [wj]r

U
 +  [bj]r

U
)                                                                          (16) 

 

5 Description of the proposed method  

     For illustration the proposed method, we will consider the two points fuzzy 

boundary value problems:    

    y´´(x) = f (x, y(x) , y´(x) )  ,   x ∈ [a , b]                                                 (17) 

with the fuzzy boundary conditions: 

 y(a) = A  and  y(b) = B, where A and B are fuzzy numbers in E1 with r-level 

sets: 

 [A]r = [A , A] and [B]r = [B , B] .   

The fuzzy trial solution for this problem is: 

    [yt(x)]r = 
b − x

b − a
  [A]r + 

x − a

b − a
[B]r  +(x −  a) (x −  b) [N(x)]r                   (18)                                                        

This fuzzy trial solution by intention satisfies the fuzzy boundary conditions in 

(17).  

The error function that must be minimized for problem (17) is in the form: 

    E= ∑ (Eir
L +  Eir

U)
g
i=1                                                                                     (19) 

where   
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    Eir
L  = [ [

d2yt (xi)

dx2 ]
r

L

− [f (xi , yt (xi),
d yt (xi)

dx
)]

r

L

 ]
2

                                        (20)                                                       

    Eir
U = [ [

d2yt (xi)

dx2 ]
r

U

− [f (xi , yt (xi),
d yt (xi)

dx
)]

r

U

 ]
2

                                       (21)                                                                     

where {xi}i=1
g

 are discrete points belonging to the interval [a , b] (training set) 

and in the cost function (19), Er
L and Er

U can be viewed as the squared errors 

for the lower limits and the upper limits of the r – level sets, respectively.  

Now, to drive the minimized error function for problem (17): 

From (18) we can find: 

[yt(x)]r
L =

b − x

b − a
  [A]r

L + 
x − a

b − a
 [B]r

L  +( x2 − (a + b)x + ab)[N(x)]r
L             (22)  

[yt(x)]r
U =

b − x

b − a
  [A]r

U + 
x − a

b − a
 [B]r

U +( x2 − (a + b)x + ab)[N(x)]r
U            (23) 

Then we get: 

d[yt(x)]r
L

dx
=

−1

b − a
  [A]r

L + 
1

b − a
 [B]r

L +( x2 − (a + b)x + ab) 
d[N(x)]r

L

dx
+(2x−a −

b)[N(x)]r
L                                                                                                       (24) 

d[yt(x)]r
U

dx
=

−1

b − a
  [A]r

U + 
1

b − a
 [B]r

U +( x2 − (a + b)x + ab) 
d[N(x)]r

U

dx
+(2x−a −

b)[N(x)]r
U                                                                                                       (25) 

Therefore, we have: 

[
d2yt (x)

dx2 ]
r

L

= ( x2 − (a + b)x + ab) 
d2[N(x)]r

L

dx2  +2(2x − a − b ) 
d[N(x)]r

L

dx
 + 

2[N(x)]r
L                                                                                                         (26) 

[
d2yt (x)

dx2 ]
r

U

= ( x2 − (a + b)x + ab) 
d2[N(x)]r

U

dx2  +2(2x − a − b ) 
d[N(x)]r

U

dx
 + 

2[N(x)]r
U                                                                                                        (27) 

Then (20) and (21) can be rewritten as:   
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Eir
L = [( xi

2 − (a + b)xi + ab) 
d2[N(xi)]r

L

dx2  + 2(2xi − a − b ) 
d[N(xi)]r

L

dx
 +

 2[N(xi)]r
L – f(xi ,

b − xi

b − a
  [A]r

L  +  
xi − a

b − a
 [B]r

L   + ( xi
2 − (a + b)xi +

ab)[N(xi)]r
L  ,

−1

b − a
  [A]r

L+
1

b − a
 [B]r

L+( xi
2 − (a + b)xi + ab) 

d[N(xi)]r
L 

dx
+  (2xi −

a − b)[N(xi)]r
L) ]2                                                                      (28) 

Eir
U = [( xi

2 − (a + b)xi + ab) 
d2[N(xi)]r

U

dx2  + 2(2xi − a − b ) 
d[N(xi)]r

U

dx
 +

 2[N(xi)]r
U – f(xi ,

b − xi

b − a
  [A]r

U  +  
xi − a

b − a
 [B]r

U   + ( xi
2 − (a + b)xi +

ab)[N(xi)]r
U  ,

−1

b − a
  [A]r

U+
1

b − a
 [B]r

U+( xi
2 − (a + b)xi + ab) 

d[N(xi)]r
U 

dx
+  

(2xi − a − b)[N(xi)]r
U) ]2                                                                     (29)   

Where 

[N(xi)]r
L = ∑ min {m

j=1 [vj]r

L
 s (xi [wj]r

L
 +  [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 +  [bj]r

U
) }      (30) 

[N(xi)]r
L = ∑ max {m

j=1 [vj]r

L
 s (xi [wj]r

L
 +  [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 +  [bj]r

U
) }      (31) 

d[N(xi)]r
L

dx
= ∑ min {m

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 +  [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }                                                                                                   

(32) 

d[N(xi)]r
U

dx
= ∑ max {m

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 +  [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }                                                                                                 

(33) 

d2[N(xi)]r
L

dx2 =

∑ min{m
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

   [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }                                                                                                  (34)                                                              
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d2[N(xi)]r
U

dx2
=

∑ max{m
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

   [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }                                                                                                          (35)                                                                                           

where s´ and s ́ ́ are the first and second derivative of the hyperbolic tangent 

function. Then we substitute (28) and (29) in (19) to find the error function 

that must be minimized for problem (17). 

6. Numerical example 

     In this section, we will solve two problems about two-point fuzzy boundary 

value problem. We have used (1 × 10 × 1) fully fuzzy feed-forward neural 

network. The activation function of each hidden unit is the hyperbolic tangent 

activation function. The analytical solutions [ya(x)]r
L and [ya(x)]r

U  has been 

known in advance. Therefore, we test the accuracy of the obtained solutions by 

computing the deviation: 

e (x , r) = |[ya(x)]r
U − [yt (x)]r

U| , e (x , r)= |[ya(x)]r
L − [yt(x)]r

L|  

      To minimize the error function, we have used BFGS quasi-Newton method 

(For more details, see [16]). The computer programs which we have used in 

this work are coded in MATLAB 2015. 

Example (1): Consider the linear  fuzzy boundary value problem: 

    y´´ (x) − y´(x) = 1  .  with x ∈ [0, 0.5] 

    y(0) = [ 2 + r  , 4 − r ] , 

    y(0.5)= [5 + r  , 7 − r]    .    where     r ∈ [0, 1]. 

The analytical solutions for this problem are: 

    [ya(x)]r
L = ( 2 + r −

3

e0.5−1
 ) + ( 

3

e0.5−1
 )ex 

    [ya(x)]r
U= ( 4 − r −

3

e0.5−1
 ) + ( 

3

e0.5−1
 )ex 

The trial solutions for this problem are: 

 [yt(x)]r
L=  (1 − 2x) (2 + r)  +  2x (4 − r)+(x2 − 0.5 x ) [N(x)]r

L                                                                                                           
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 [yt(x)]r
U= (1 − 2x) (5 + r)   +   2x (7 − r) + (x2 − 0.5 x ) [N(x)]r

U                                                                                                            

The fully fuzzy feed forward neural network has been trained by using a grid 

of ten equidistant points in [0, 0.5].  

The error function that must be minimized for this problem will be: 

    E= ∑ (Eir
L +  Eir

U)11
i=1                                                                                     (36) 

where   

  Eir
L =[( xi

2 − 0.5xi)
d2[N(xi)]r

L

dx2
 + (4xi − 1)

d[N(xi)]r
L

dx
 +  2[N(xi)]r

L −

( xi
2 − 0.5xi)

d[N(xi)]r
L

dx
− (2xi − 0.5)[N(xi)]r

L + 4r − 5 ]2                            (37)                                                                                                                           

  Eir
U=[( xi

2 − 0.5xi)
d2[N(xi)]r

U

dx2  + (4xi − 1)
d[N(xi)]r

U

dx
 +  2[N(xi)]r

U −

( xi
2 − 0.5xi)

d[N(xi)]r
U

dx
− (2xi − 0.5)[N(xi)]r

U + 4r − 5 ]2                              (38) 

numerical solutions for this problem can be found in table (1). 

Table (1): Numerical result for example (1), x=1. 

r [yt(x)]r
L e (x , r) [yt(x)]r

U e (x , r) 

 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 9.946164141 

10.04616401 

10.14616481 

10.24616458 

10.34616447 

10.44616422 

10.54616396 

10.64616391 

10.74616385 

10.84616389 

10.94616389 

 3.29137e-7 

 1.96846e-7 

 9.95565e-7 

 7.63284e-7 

 6.60993e-7 

 4.09513e-7 

 1.47232e-7 

 9.75941e-8 

 3.39072e-8 

 7.52383e-8 

 7.39070e-8 

11.94616425 

11.84616411 

11.74616478 

11.64616385 

11.54616387 

11.44616389 

11.34616391 

11.24616382 

11.14616384 

11.04616386 

10.94616386 

4.33916e-7 

2.93475e-7 

9.70548e-7 

3.95104e-8 

5.67802e-8 

7.56011e-8 

9.53493e-8 

1.15291e-8 

2.63433e-8 

5.26859e-8 

4.56782e-8 
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Example (2): Consider the non-linear fuzzy boundary value problem: 

    y´´ (x) = - (y´(x))
2
 . with x ∈ [0 , 2] 

    y(0) = [ r , 2 − r ] , y(2) = [1 + r , 3 − r] and r ∈ [0 , 1]. 

The analytical solutions for this problem are: 

    [ya(x)]r
L = ln (x +  

2 

e−1
)  +  r −  ln  

2 

e−1
                                                                                          

    [ya(x)]r
U= ln (x + 

2 

e−1
) + 2 − r  − ln  

2 

e−1
  

The trial solutions for this problem are: 

   [yt(x)]r
L =  r 

2−x 

2
  + (1 + r)  

x

2
 + x (x − 2 ) [N(x)]r

L                                                                                                             

   [yt(x)]r
U=  (2 −  r) 

2−x 

2
 + (3 − r )  

x

2
 + x (x − 2 ) [N(x)]r

U                                                                                                             

The fully fuzzy feed forward neural network has been trained by using a grid 

of ten equidistant points in [0, 2].  

The error function that must be minimized for this problem will be: 

    E= ∑ (Eir
L +  Eir

U)11
i=1                                                                             (39) 

where   

  Eir
L =[( xi

2 − 2xi)
d2[N(xi)]r

L

dx2  + (4xi − 4 )
d[N(xi)]r

L

dx
 +  2[N(xi)]r

L +

(( xi
2 − 2xi)

d[N(xi)]r
L

dx
+ (2xi − 2 )[N(xi)]r

L + 0.5)2 ]2                         (40) 

  Eir
L =[( xi

2 − 2xi)
d2[N(xi)]r

U

dx2
 + (4xi − 4 )

d[N(xi)]r
U

dx
 +  2[N(xi)]r

U +

(( xi
2 − 2xi)

d[N(xi)]r
U

dx
+ (2xi − 2 )[N(xi)]r

U + 0.5)2 ]2                        (41) 

Then we use (39) to update the weights and biases. 

Numerical solution for this problem can be found in table (2). 
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Table (2): Numerical result for example (2), x=1. 

r [yt(x)]r
L e (x , r) [yt(x)]r

U e (x , r) 

 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 0.620114507 

0.720114507 

0.820114507 

0.920114507 

1.020114507 

1.120114507 

1.220114507 

1.320114516 

1.420114512 

1.520114507 

1.620114514 

 3.24734e-10 

 4.66221-10 

 2.03208e-10 

 3.80684e-10 

 4.09557e-10 

 3.50405e-10 

 4.59008e-10 

 9.46681e-9 

 5.06564e-9 

 8.21899e-10 

 7.88763e-9 

2.620114507 

2.520114507 

2.420114507 

2.320114513 

2.220114514 

2.120114508 

2.020114507 

1.920114507 

1.820114507 

1.720114514 

1.620114508 

8.46634e-10 

9.79602e-10 

6.85555e-10 

6.62032e-9 

7.59010e-9 

1.74006e-9 

9.00817e-10 

9.21604e-10 

4.99811e-10 

7.15955e-9 

1.02988e-9 

 

For the above two problems we have  

[N(xi)]r
L = ∑ min {10

j=1 [vj]r

L
 s (xi [wj]r

L
 +  [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 +  [bj]r

U
) }      

[N(xi)]r
L = ∑ max {10

j=1 [vj]r

L
 s (xi [wj]r

L
 +  [bj]r

L
) , [vj]r

L
 s (xi [wj]r

U
 +

 [bj]r

U
) , [vj]r

U
 s (xi [wj]r

L
 + [bj]r

L
) , [vj]r

U
 s (xi [wj]r

U
 +  [bj]r

U
) }     

d[N(xi)]r
L

dx
= ∑ min {10

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 +  [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }                                                                                                 
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d[N(xi)]r
U

dx
= ∑ max {10

j=1 [vj]r

L
 [wj]r

L
s´ (xi [wj]r

L
+

 [bj]r

L
) , [vj]r

L
[wj]r

U
 s´ (xi [wj]r

U
 +  [bj]r

U
) , [vj]r

U
 [wj]r

L
s´ (xi [wj]r

L
 +

 [bj]r

L
) , [vj]r

U
 [wj]r

U
s´ (xi [wj]r

U
 + [bj]r

U
) }                                                                                                  

d2[N(xi)]r
L

dx2
=

∑ min{10
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

   [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }                                                                                                                                                               

d2[N(xi)]r
U

dx2 =

∑ max{10
j=1 [vj]r

L
([wj]r

L
)2s ́ ́ (xi [wj]r

L
+[bj]r

L
) , [vj]r

L
([wj]r

U
)2 s ́ ́ (xi [wj]r

U
 +

   [bj]r

U
) , [vj]r

U
 ([wj]r

L
)2s ́ ́ (xi [wj]r

L
 +[bj]r

L
) , [vj]r

U
 ([wj]r

U
)2s ́ ́ (xi [wj]r

U
+

 [bj]r

U
) }                   

                                                                                                                                                                       

7 Conclusion  

     In this work, we have introduced a modified method to find the numerical 

solution of the two-point fuzzy boundary value problems for the ordinary 

differential equations. This method based on the fully fuzzy neural network to 

approximate the solution of the second-order fuzzy differential equations. For 

future studies, one can extend this method to find a numerical solution of the 

higher order fuzzy differential equations. Also, one may use this method for 

solving a fuzzy partial differential equation. 
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