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Abstract

This contribution is a follow-up to author’s papers [1], [2], [3], [4], [5], [6],
[7], and in particular [8] dealing with the sums of the series of reciprocals
of quadratic polynomials with different positive integer roots, with double
non-positive integer root, with different negative integer roots, with double
positive integer root, with one negative and one positive integer root, with
purely imaginary conjugate roots, with integer roots, and with the sum of the
finite series of reciprocals of the quadratic polynomials with integer purely
imaginary conjugate roots respectively. We deal with the sum of the series
of reciprocals of the quadratic polynomials with complex conjugate roots,
derive the formula for the sum of these series and verify it by some examples
evaluated using the basic programming language of the computer algebra
system Maple 16. This contribution can be an inspiration for teachers of
mathematics who are teaching the topic Infinite series or as a subject matter
for work with talented students.
Keywords: sum of the series, harmonic number, imaginary conjugate roots,
hyperbolic cotangent, computer algebra system Maple.
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1 Introduction
Let us recall the basic terms. For any sequence {ak} of numbers the associated

series is defined as the sum
∞∑
k=1

ak = a1 + a2 + a3 + · · · .

The sequence of partial sums {sn} associated to a series
∞∑
k=1

ak is defined for each

n as the sum

sn =
n∑
k=1

ak = a1 + a2 + · · ·+ an .

The series
∞∑
k=1

ak converges to a limit s if and only if the sequence of partial sums

{sn} converges to s, i.e. lim
n→∞

sn = s. We say that the series
∞∑
k=1

ak has a sum s

and write
∞∑
k=1

ak = s.

The sum of the reciprocals of some positive integers is generally the sum of
unit fractions. For example the sum of the reciprocals of the square numbers (the
Basel problem) is π2/6:

∞∑
k=1

1

k2
=

1

12
+

1

22
+

1

32
+ · · · = π2

6
.
= 1.644934 .

The nth harmonic number is the sum of the reciprocals of the first n natural
numbers:

Hn =
n∑
k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
,

H0 being defined as 0. The generalized harmonic numbers of order n in power r
is the sum

Hn,r =
n∑
k=1

1

kr
,

where Hn,1 = Hn are harmonic numbers.
Generalized harmonic number of order n in power 2 can be written as a func-

tion of harmonic numbers using formula (see [9])

Hn,2 =
n−1∑
k=1

Hk

k(k + 1)
+
Hn

n
.
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From formulas for Hn,r, where r = 1, 2 and n = 1, 2, . . . , 9, we get the
following table:

n 1 2 3 4 5 6 7 8 9

Hn 1
3

2

11

6

25

12

137

60

49

20

363

140

761

280

7129

2520

Hn,2 1
5

4

49

36

205

144

5269

3600

5369

3600

266681

176400

1077749

705600

771817

352800

Table 1: Nine first harmonic numbersHn and generalized harmonic numbersHn,2

The hyperbolic cotangent is defined as a ratio of hyperbolic cosine and hyper-
bolic sine

cothx =
coshx

sinhx
, x 6= 0 .

Because hyperbolic cosine and hyperbolic sine can be defined in terms of the
exponential function

coshx =
ex + e−x

2
=

e2x + 1

2ex
, sinhx =

ex − e−x

2
=

e2x − 1

2ex
,

we get

cothx =
coshx

sinhx
=

ex + e−x

ex − e−x
=

e2x + 1

e2x − 1
, x 6= 0 .

2 The sum of the series of reciprocals of the quadratic
polynomials with integer roots

As regards the sum of the series of reciprocals of the quadratic polynomials
with different positive integer roots a and b, a < b, i.e. of the series

∞∑
k=1
k 6=a,b

1

(k − a)(k − b)
,

in the paper [1] it was derived that the sum s(a, b)++ is given by the following
formula using the nth harmonic numbers Hn

s(a, b)++ =
1

b− a
(Ha−1 −Hb−1 + 2Hb−a − 2Hb−a−1) . (1)

In the paper [2] it was shown that the sum s(a, b)−− of the series of reciprocals
of the quadratic polynomials with different negative integer roots a and b, a < b,
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i.e. of the series
∞∑
k=1

1

(k − a)(k − b)
,

is given by the simple formula

s(a, b)−− =
1

b− a
(H−a −H−b) . (2)

The sum of the series
∞∑
k=1
k 6=b

1

(k − a)(k − b)
,

of reciprocals of the quadratic polynomials with integer roots a < 0, b > 0 was
derived in the paper [4]. This sum s(a, b)−+ is given by the formula

s(a, b)−+ =
(b− a) (H−a −Hb−1) + 1

(b− a)2
. (3)

In the paper [3] it was derived that the sum s(a, a)−− of the series of recipro-
cals of the quadratic polynomials with double non-positive integer root a, i.e. of
the series

∞∑
k=1

1

(k − a)2
,

is given by the following formula using the generalized harmonic number H−a,2
of order −a in power 2

s(a, a)−− =
π2

6
−H−a,2 . (4)

The sum of the series
∞∑
k=1
k 6=a

1

(k − a)2
,

of reciprocals of the quadratic polynomials with double positive integer root a,
was derived in the paper [5]. This sum s(a, a)++ is given by the formula with the
generalized harmonic number in power 2

s(a, a)++ =
π

2
+Ha−1,2 . (5)

The formula for the sum s(a, 0)−0 of the series

∞∑
k=1

1

k(k − a)
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of reciprocals of the quadratic polynomials with one zero and one negative integer
root a and also the formula for the sum s(0, b)0+ of the series

∞∑
k=1
k 6=b

1

k(k − b)

of reciprocals of the quadratic polynomials with one zero and one positive integer
root b were derived in the paper [7]. These sums are given by the simple formulas

s(a, 0)−0 =
H−a
−a

, (6)

s(0, b)0+ =
1− bHb−1

b2
. (7)

3 The sum of the series of reciprocals of the quadratic
polynomials with complex conjugate roots

We deal with the problem to determine the sum S(a, b), where a, b are non-
zero integers, of the infinite series of reciprocals of the quadratic polynomials with
complex conjugate roots a± bi, i.e. the series of the form

∞∑
k=1

1

(k − a)2 + b2
. (8)

The quadratic trinomial (k− a)2+ b2 = k2− 2ak+ a2+ b2 can be in the complex
domain written in the product form

[
k− (a+ bi)

]
·
[
k− (a− bi)

]
, so the quadratic

trinomial k2−2ak+a2+b2 has complex conjugate roots k1 = a+bi, k2 = a−bi.

The series (8) is convergent because
∞∑
k=1

1

(k − a)2 + b2
≤

∞∑
k=1

1

(k − a)2
. For

non-positive integer a we get by (4) an equality S(a, b) < π2/6
.
= 1.6449 and for

positive integer a we have by (5) S(a, b) < π/2 + π2/6
.
= 3.2157 (see [5]).

Because it obviously does not matter the sign of an imaginary part b, let us
deal further with two cases of the series (8) – with a positive real part a and with
a negative one. If the integer real part a > 0, then the sum S(a, b) has the form
∞∑
k=1

1

(k − a)2 + b2
=
∞∑
k=1

1

(a− k)2 + b2
=

=
1

(a− 1)2 + b2
+

1

(a− 2)2 + b2
+ · · ·+ 1

12 + b2
+

+
1

b2
+

1

12 + b2
+

1

22 + b2
+

1

32 + b2
+ · · · = s(a− 1, b) +

1

b2
+ s(b) ,
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where

s(b) =
∞∑
k=1

1

k2 + b2

is the sum that was derived in the paper [6] and which is given by the formula

s(b) =
π

2b
· e2πb + 1

e2πb − 1
− 1

2b2
=

π

2b
cothπb− 1

2b2
(9)

and where

s(a− 1, b) =
a−1∑
k=1

1

k2 + b2
(10)

is the sum of the finite series, which was in the paper [8] derived by means of the
trapezoidal rule and which is given by the approximate formula

s(a− 1, b)
.
=

1

b
arctan

a

b
− 1

2

(
1

b2
+

1

a2 + b2

)
. (11)

In this paper it was shown that this approximate formula is a suitable approxima-
tion of the sum s(a− 1, b), because one hundred results obtained by means of this
formula when modelling in Maple 16 have very small relative errors (in the range
of 0.60% to 0.05%). In total, we get

S(a, b) = s(a− 1, b) +
1

b2
+ s(b)

.
=

.
=

1

b
arctan

a

b
− 1

2

(
1

b2
+

1

a2 + b2

)
+

1

b2
+
π

2b
cothπb− 1

2b2
,

so after simple arrangement we have the following result:

S(a, b)
.
=

1

b
arctan

a

b
− 1

2(a2 + b2)
+
π

2b
cothπb, a > 0 .

If the integer real part a < 0, then the sum S(a, b) has for A = −a > 0 the
form
∞∑
k=1

1

(k − a)2 + b2
=
∞∑
k=1

1

(k + A)2 + b2
=

=
1

(1 + A)2 + b2
+

1

(2 + A)2 + b2
+

1

(3 + A)2 + b2
+ · · · =

=
1

12 + b2
+

1

22 + b2
+ · · ·+ 1

A2 + b2
+

1

(1 + A)2 + b2
+

1

(2 + A)2 + b2
+ · · ·

· · · −
( 1

12 + b2
+

1

22 + b2
+ · · ·+ 1

(A− 1)2 + b2

)
− 1

A2 + b2
=

= s(b)− s(A− 1, b)− 1

A2 + b2
= s(b)− s(−a− 1, b)− 1

a2 + b2
.
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So we have

S(a, b) = s(b)− s(−a− 1, b)− 1

a2 + b2
.
=

.
=

π

2b
cothπb− 1

2b2
−
[
1

b
arctan

−a
b
− 1

2

(
1

b2
+

1

a2 + b2

)]
− 1

a2 + b2

and after simple arrangement we get the same result as above for a > 0:

S(a, b)
.
=

1

b
arctan

a

b
− 1

2(a2 + b2)
+
π

2b
cothπb, a < 0 .

Therefore for every integer a including zero we get the main result

S(a, b)
.
=

1

b
arctan

a

b
− 1

2(a2 + b2)
+
π

2b
cothπb. (12)

4 Numerical verification
We solve the problem to determine the values of the sum S(a, b) of the series

∞∑
k=1

1

(k − a)2 + b2

for a = −5,−4, . . . , 5 and for b = 1, 2, . . . , 10. We use on the one hand an
approximative direct evaluation of the sum

s(a, b, t) =
t∑

k=1

1

(k − a)2 + b2
,

where t = 105, using the basic programming language of Maple 16, and on the
other hand the formula (12) for evaluation the sum S(a, b). We compare 110 pairs
of these two ways obtained sums s(a, b, 105) and S(a, b) to verify the formula (12).
We use following procedure sumsab and succeeding for-loop statement:

sumsab=proc(a,b,t)
local k,s,S; s:=0;
for k from 1 to t do

s:=s+1/((k-a)*(k-a)+b*b);
end do;
print("s(",a,b,t,")=",evalf[6](s);
S:=evalf[6]((1/b)*arctan(a/b)-1/(2*(a*a+b*b))

+(Pi/(2*b))*coth(Pi*b));
print("S(",a,b,")=",evalf[6](S));
print("relerr(S)=",evalf[10](100*abs(s-S)/s),"%");

end proc:
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for a from -5 to 5 do
for b from 1 to 10 do

sumsab(100000,a,b);
end do;

end do;

Forty of these one hundred and ten approximative values of the sums s(a, b, 105)
and S(a, b) rounded to four decimals obtained by these procedure and the relative
quantification accuracies

r(a, b) =
|s(a, b, 105)− S(a, b)|

s(a, b, 105)

of the sums s(a, b, 105) (expressed as a percentage) are written into Table 2 be-
low. Let us note that the computation of 110 values s(a, b, 105) (abbreviated in
Table 2 as s(a, b)) and S(a, b) took over 5 hours 24 minutes. The relative quantifi-
cation accuracies are approximately between 6.14% and 0.0006%, 96 of these 110
approximative values have the relative quantification accuracy smaller than 0.5%.

s |S | r a =−3 a =−2 a =−1 a = 0 a = 1 a = 2 a = 3 a = 4

s(a, 1) 0.2766 0.3767 0.5767 1.0767 2.0767 2.5767 2.7767 2.8767

S(a, 1) 0.2776 0.3695 0.5413 1.0767 2.1121 2.5838 2.7757 2.8731

r(a, 1) 0.34 1.90 6.14 0.0006 1.70 0.28 0.04 0.12

s(a, 2) 0.2585 0.3354 0.4604 0.6604 0.9104 1.1104 1.2354 1.3123

S(a, 2) 0.2555 0.3302 0.4536 0.6604 0.9172 1.1156 1.2383 1.3140

r(a, 2) 1.13 1.55 1.48 0.002 0.75 0.47 0.24 0.13

s(a, 3) 0.2356 0.2911 0.3680 0.4680 0.5791 0.6791 0.7561 0.8116

S(a, 3) 0.2340 0.2891 0.3663 0.4680 0.5808 0.6811 0.7576 0.8127

r(a, 3) 0.65 0.38 0.46 0.002 0.29 0.29 0.21 0.13

s(a, 4) 0.2126 0.2526 0.3026 0.3614 0.4239 0.4828 0.5328 0.5728

S(a, 4) 0.2118 0.2518 0.3020 0.3614 0.4245 0.4836 0.5335 0.5734

r(a, 4) 0.37 0.33 0.19 0.003 0.14 0.18 0.15 0.12

s(a, 5) 0.1918 0.2212 0.2557 0.2941 0.3341 0.3726 0.4071 0.4365

S(a, 5) 0.1914 0.2208 0.2554 0.2942 0.3344 0.3730 0.4075 0.4369

r(a, 5) 0.22 0.18 0.09 0.003 0.08 0.11 0.11 0.09

Table 2: Some approximate values of the sums s(a, b, 105), S(a, b) and the relative
quantification accuracies r(a, b) of the sums s(a, b, 105) for some values of a and b
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5 Conclusions

We dealt with the problem to determine the sum S(a, b), where a, b are non-
zero integers, of the series

∞∑
k=1

1

(k − a)2 + b2

of reciprocals of the quadratic polynomials with complex conjugate roots a± bi.
We derived that the sum S(a, b) is given by the approximate formula

S(a, b)
.
=

1

b
arctan

a

b
− 1

2(a2 + b2)
+
π

2b
cothπb.

We verified this result by computing 110 various sums by using the computer
algebra system Maple 16. This result also includes a special case, when b = a. In
this case we get the approximate formula

S(a, a)
.
=

π

4a
− 1

4a2
+

π

2a
cothπa.

Because for integer a ≥ 1 it holds cothπa → 1 (e.g. cothπ .
= 1.004, coth 2π .

=
1.000007, coth 3π .

= 1.00000001), we have the simple aproximate formula

S(a, a)
.
=

3πa− 1

4a2
.

Let us note that this consequence of the main result corresponds to the numeric
values in Table 2: S(1, 1) .

= (3π − 1)/4
.
= 2.1062, S(2, 2) .

= (6π − 1)/16
.
=

1.1156, S(3, 3) .= (9π − 1)/36
.
= 0.7576, S(4, 4) .= (12π − 1)/64

.
= 0.5734.

The series of the quadratic polynomials with complex conjugate roots a ± bi
so belong to special types of convergent infinite series, such as geometric and
telescoping series, which sum can be found analytically and also presented by
means of a simple numerical expression.
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