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Abstract  

In 1637 Descartes, in his famous Géométrie, gave the rule of the 

signs without a proof. Later many different proofs appeared of 

algebraic and analytic nature. Among them in 1828 the algebraic 

proof of Gauss. In this note, we present a proof of Descartes’ rule 

of signs that use the roots of the first derivative of a polynomial 

and that can be presented to the students of the last year of a 

secondary school. 
Keywords: roots of a polynomial; derivative of a polynomial. 

2010 AMS subject classification: 12D10; 26C10. 

 

1 Introduction  

Descartes’ Rule of signs first appeared in 1637 in Descartes’ famous 

Géométrie [1], where also analytic geometry was given for the first time. 

Descartes gave the rule without a proof. Later several discussions appear 

trying to understand which one was the first proof of  the Rule. It seems that a 

first proof of the Rule was given in Segner’s degree thesis in 1728 and it is 

contained in a letter that Segner sent to Hamberger [3].  In 1828 Gauss [2] 

gave a purely algebraic and very simple proof. Many other proofs, both 
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algebraic and analytic in nature have been given later. One of the possible 

statements giving Descartes’ Rule of signs is the following: 

Theorem 1.1 If a polynomial with real coefficients in one unknown has all of 

its roots being real number, then the number of positive roots, counted with 

their multiplicity, equals the number of variations of signs among the ordered 

sequence of his coefficients.   

A more general statement covers the case when one does not know if all roots 

are real and it is given in the following: 

Theorem 1.2 The number of variations of sign is the maximum number of 

positive roots of a polynomial with real coefficients. The number of positive 

roots equals either the maximum or the maximum minus an even number. 

The previous theorems do not give results on the number of negative roots. 

The negative roots of  p(x) are in number equal to the number of positive 

roots of p(-x) and hence in order to count the number of negative roots of 

p(x) one can count the number of positive roots of p(-x)by applying 

Descartes’  Rule of signs.  

Let p(x) be a polynomial whose monomials are given either in increasing or in 

decreasing order. Consider the sequence of its coefficients in the same order.  

One says that there is a  “change of sign” if two consecutive terms have 

opposite sign.  

For example if p(x) = x6 -3x5 + 4x3 + x2 -5x+9, then the sequence of its 

coefficients is:  

1, −3,4,1, −5,9 and the number of variations is 4. Hence the number of 

positive roots of p(x) is either  4 or 2 or 0.   

Observe that if the number of variations is even, then the Rule cannot say that 

the polynomial has a positive root. If the number of variations is odd, the Rule 

says that there is at least a positive root. 
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2  The Proof  

2.1 The Derivative of a Polynomial 

We first start with some results giving information between the roots of 

a polynomial p(x) and the roots of its derivative p '(x). 

Lemma 2.1 A roots of p(x) is also a root of p '(x) with multiplicity one less. 

Proof. Let p(x) = (x-a)kq(x) with (x-a) that does not divide q(x). Hence 

q(a) ¹ 0 .  Then k  is the multiplicity of 𝑎 as root of p(x). It is 

p '(x) = k(x-a)k-1q(x)+ (x-a)kq '(x) = 

= (𝑥 − 𝑎)𝑘−1[𝑘𝑞(𝑥) + (𝑥 − 𝑎)𝑞′(𝑥)] 

= (𝑥 − 𝑎)𝑘−1𝐹(𝑥). 

Since 𝐹(𝑎) = 𝑘𝑞(𝑎) ≠ 0, (𝑥 − 𝑎) does not divide the polynomial 𝐹(𝑥). 

Hence 𝑘 − 1 is the multiplicity of 𝑎  as root of 𝑝′(𝑥). 

 Next results follows from Rolle's theorem. 

Lemma 2.2 If all roots of a polynomial 𝑝(𝑥)  are real numbers, then also all 

roots of 𝑝′(𝑥) are real numbers. Moreover between to consecutive roots of 

𝑝(𝑥) there is a simple (multiplicity 1) root of 𝑝′(𝑥). 

Proof.  Let 𝑥1 < 𝑥2 <∙∙∙∙∙∙∙∙∙∙∙∙∙< 𝑥𝑘 be the roots of 𝑝(𝑥) with multiplicity 

𝑚1, 𝑚2, ……… ,𝑚𝑘, respectively. Since all roots are real numbers we have that  

𝑚1 +𝑚2 +∙∙∙∙∙∙∙∙ +𝑚𝑘 = 𝑛 = deg(𝑝(𝑥)). 

From the previous lemma 𝑝′(𝑥) has roots 𝑥1 < 𝑥2 <∙∙∙∙∙∙∙∙∙∙∙∙∙< 𝑥𝑘 with 

multiplicity 𝑚1 − 1,𝑚2 − 1,……… ,𝑚𝑘 − 1. Moreover, from Rolle's theorem 

between two real roots of 𝑝(𝑥) there is at least a real root of 𝑝′(𝑥). Hence 

𝑝′(𝑥) has at least other 𝑘 − 1 real roots.  From 

(𝑚1 − 1) + (𝑚2 − 1) +∙∙∙∙ +(𝑚𝑘 − 1) + 𝑘 − 1 = 𝑛 − 1 = deg(𝑝′(𝑥)), 

it follows that 𝑝′(𝑥) cannot have other roots. The assertion follows. 
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Lemma 2.3 If all roots of a polynomial 𝑝(𝑥)  are real numbers and 𝑘 of them 

are positive numbers, then 𝑝′(𝑥)   has either 𝑘 or 𝑘 − 1 positive roots. 

Proof. Let 𝑥1 < 𝑥2 <∙∙∙∙∙∙∙∙∙∙∙∙∙< 𝑥𝑠 be the positive roots of 𝑝(𝑥) with 

multiplicity 𝑚1, 𝑚2, ……… ,𝑚𝑠, respectively. From the hypothesis we have  

𝑚1 +𝑚2 +∙∙∙∙∙∙∙∙ +𝑚𝑠 = 𝑘. 

The derivate 𝑝′(𝑥) will have as positive roots 𝑥1 < 𝑥2 <∙∙∙∙∙∙∙∙∙∙∙∙∙< 𝑥𝑠 with 

multiplicity  

𝑚1 − 1,𝑚2 − 1,……… ,𝑚𝑠 − 1, 

the simple roots 𝑦1, 𝑦2, ……… , 𝑦𝑠−1 between consecutive positive roots and, 

possibly, another simple root 𝑦0 between the maximum negative root and 𝑥1. 

So the total number of positive roots of 𝑝′(𝑥) is either 

(𝑚1 − 1) + (𝑚2 − 1) +∙∙∙∙∙∙∙∙ +(𝑚𝑠 − 1) + 𝑠 − 1 = 𝑘 − 1 

if 𝑦0 is not a positive number or  

(𝑚1 − 1) + (𝑚2 − 1) +∙∙∙∙∙∙∙∙ +(𝑚𝑠 − 1) + 𝑠 − 1 + 1 = 𝑘 

if 𝑦0  a positive number. 

2.2 Proof of Theorem 1.1 

Let 𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ +𝑎0 be a degree 𝑛polynomial. 

Hence 𝑎𝑛 ≠ 0. We may assume that 𝑎𝑛 > 0. In what follows we assume that 

all roots of 𝑝(𝑥) are real numbers.   

Lemma 2.4 If 𝑝(𝑥) has 𝑘 positive roots, then the sign of the last non zero 

coefficient of 𝑝(𝑥)  is(−1)𝑘. 

Proof. Let 𝑎ℎ be the last non zero coefficient. Since all roots of 𝑝(𝑥)  are real 

numbers we can factorize the polynomial as  

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ +𝑎ℎ𝑥
ℎ = 

= 𝑎𝑛𝑥
ℎ(𝑥 − 𝑥1) ⋅⋅⋅⋅⋅ (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘+1) ⋅⋅⋅⋅⋅ (𝑥 − 𝑥𝑛−ℎ) 
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where 𝑥1, ……… , 𝑥𝑘  are the positive roots and 𝑥𝑘+1, ……… , 𝑥𝑛−𝑘are the 

negative roots. 

It follows that 𝑎ℎ = 𝑎𝑛 ⋅ (−1)
𝑘 ⋅ 𝑥1𝑥2 ⋅⋅⋅⋅ 𝑥𝑘 ⋅ (−𝑥𝑘+1) ⋅⋅⋅ (−𝑥𝑛−ℎ ) and since 

all numbers are positive the sign is  (−1)𝑘.  

We will now give the proof of the Theorem 1.1 by induction on 𝑛 =

deg(𝑝(𝑥)). 

If 𝑛 = 1, the assertion holds. Indeed 𝑝(𝑥) = 𝑎1𝑥 + 𝑎0 has a unique root 𝑥1 =

−𝑎0/𝑎1.  It is a positive root if and only if 𝑎1 and 𝑎0 have opposite sign, that 

is there is a variation.  

Suppose the assertion holds for all polynomials of degree 𝑛 − 1 with all real 

roots. Let  

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ +𝑎0 

be a polynomial of degree 𝑛. 

If 𝑎0 = 0, then 𝑝(𝑥) = 𝑥𝑞(𝑥) and the polynomials 𝑝(𝑥) and 𝑞(𝑥) have the 

same number of positive roots and the same number of variations of sign. 

Since deg(𝑞(𝑥)) = 𝑛 − 1 and the assertion holds for 𝑞(𝑥), then it also holds 

for  𝑝(𝑥). 

If 𝑎0 ≠ 0, then  

𝑝′(𝑥) = 𝑛𝑎𝑛𝑥
𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑥

𝑛−2 +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ +𝑎1. 

The last non zero coefficient in 𝑝′(𝑥) is the non zero coefficient consecutive to 

𝑎0 in 𝑝(𝑥). If the sign of  𝑎0 and the last non zero coefficient in 𝑝′(𝑥) 

coincide, then 𝑝(𝑥) and 𝑝′(𝑥) have the same number of variations of sign, 

otherwise 𝑝′(𝑥) has one less variations of sign compared with 𝑝(𝑥). Since the 

sign of the last non zero coefficient determines the parity of the number of  

positive roots (Lemma 2.4) in the first case the parity of the number of roots of 

𝑝(𝑥) and 𝑝′(𝑥) is the same in the second case it is different. 

On the other hand from Lemma 2.3 the number of roots of 𝑝(𝑥) and 𝑝′(𝑥) is 

different for at most 1. Hence either 𝑝(𝑥) and 𝑝′(𝑥) have the same number of 

positive roots or this number is different for 1. 
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From the inductive hypothesis 𝑝′(𝑥) has the same number of positive roots as 

the number of variations of sign. Since from 𝑝(𝑥) to 𝑝′(𝑥) the number of 

positive roots and the number of variations of sign either remains the same for 

both or it is 1 more for both, the assertion follows also for 𝑝(𝑥).  

 

3 Conclusions 

The proof of Descartes rule of signs is a good example of math reasoning 

and it should be taught to the students of last year of secondary schools. 

Contrary to this in many schools it is given the Rule without a proof. In 

particular it is a good example for understanding the relation between the roots 

of a polynomials and its first derivative. It also uses Rolle’s theorem, that is 

one of the most important result shown to the students of last year of 

secondary schools. Moreover Descartes’ rule of signs is one of the Math 

results that puts together analysis and algebra and it doesn’t happen so often in 

curricula of secondary school. In Math, except for axioms, everything should 

be demonstrated. 
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