Ratio Mathematica Vol. 35, 2018, pp. 5-27

Quasi-Uniformity on *BL*-algebras

R.A. Borzooei ^{*}, N. Kouhestani [†]

Received: 05-06-2018 Accepted: 15-10-2018. Published: 18-12-2018

doi:10.23755/rm.v35i0.423

©Borzooei, Kouhestani

Abstract

In this paper, by using the notation of filter in a BL-algebra A, we introduce the quasi-uniformity Q and uniformity Q^* on A. Then we make the topologies T(Q) and $T(Q^*)$ on A and show that $(A, \land, \lor, \odot, T(Q))$ is a compact connected topological BL-algebra and $(A, T(Q^*))$ is a topological BL-algebra. Also we study Q^* -cauchy filters and minimal Q^* -filters on BL-algebra A and prove that the bicompletion $(\widetilde{A}, \widetilde{Q})$ of quasi-uniform BL-algebra (A, Q) is a topological BL-algebra.

2010 MSC: 06B10, 03G10.

Keywords : BL-algebra, (semi)topological BL-algebra, filter, Quasiuniforme space, Bicompletion

1 Introduction

BL-algebras have been introduced by Hájek [11] in order to investigate manyvalued logic by algebraic means. His motivations for introducing BL-algebras

^{*}Department of Mathematics, Shahid Beheshti University, Tehran, Iran; borzoo
ei@sbu.ac.ir

 $^{^\}dagger \rm Department$ of Mathematics, Sistan and Balouchestan University, Zahedan, Iran; Kouhestani@math.usb.ac.ir

R. A. Borzooei, N. Kouhestan

were of two kinds. The first one was providing an algebraic counterpart of a propositional logic, called Basic Logic, which embodies a fragment common to some of the most important many-valued logics, namely Lukasiewicz Logic, Gödel Logic and Product Logic. This Basic Logic (BL for short) is proposed as "the most general" many-valued logic with truth values in [0,1]and BL-algebras are the corresponding Lindenbaum-tarski algebras. The second one was to provide an algebraic mean for the study of continuous t-norms (or triangular norms) on [0,1]. In 1973, André Weil [24] introduced the concept of a uniform space as a generalization of the concept of a metric space in which many non-topological invariant can be defined. This concept of uniformity fits naturally in the study of topological groups. The study of quasi-uniformities started in 1948 with Nachbin's investigations on uniform preordered spaces. In 1960, A. Csaszar introduced quasi-uniform spaces and showed that every topological space is quasi-uniformizable. This result established an interesting analogy between metrizable spaces and general topological spaces. Just as a metrizable space can be studied with reference to particular compatible metric(s), a topological space can be studied with reference to particular compatible quasi-uniformity (ies). In this and some other respects, a quasi-uniformity is a more natural generalization of a metric than is a uniformity. Quasi-uniform structures were also studied in algebraic structures. In particular the study of paratopological groups and asymmetrically normed linear spaces with the help of quasi-uniformities is well known. See for example, [17], [18], [19], [20]. In the last ten years many mathematicians have studied properties of BL-algebras endowed with a topology. For example A. Di Nola and L. Leustean [9] studied compact representations of BL-algebras, L. C. Ciungu [7] investigated some concepts of convergence in the class of perfect BL-algebras, J. Mi Ko and Y. C. Kim [21] studied relationships between closure operators and BL-algebras.

In [2] and [4] we study (semi)topological BL-algebras and metrizability on BL-algebras. We showed that continuity the operations \odot and \rightarrow imply continuity \wedge and \vee . Also, we found some conditions under which a locally compact topological BL-algebra become metrizable. But in there we can not answer some questions, for example:

(i) Is there a topology \mathcal{U} on BL-algebra A such that (A, \mathcal{U}) be a (semi)topological BL-algebra?

(*ii*) Is there a topology \mathcal{U} on a BL-algebra A such that (A, \mathcal{U}) be a compact connected topological BL-algebra?

(*iii*) Is there a topological BL-algebra (A, \mathcal{U}) such that T_0, T_1 and T_2 spaces be equivalent?

(*iv*) If $(A, \rightarrow, \mathcal{U})$ is a semitopological BL-algebra, is there a topology \mathcal{V} coarsere than \mathcal{U} or finer than \mathcal{U} such that (A, \mathcal{V}) be a (semi)topological

BL-algebra?

Now in this paper, we answer to some above questions and get some interesting results as mentioned in abstract.

2 Preliminary

Recall that a set X with a family $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in I}$ of its subsets is called a topological space, denoted by (X, \mathcal{U}) , if $X, \emptyset \in \mathcal{U}$, the intersection of any finite numbers of members of \mathcal{U} is in \mathcal{U} and the arbitrary union of members of \mathcal{U} is in \mathcal{U} . The members of \mathcal{U} are called *open sets* of X and the complement of $X \in \mathcal{U}$, that is $X \setminus U$, is said to be a *closed set*. If B is a subset of X, the smallest closed set containing B is called the *closure* of B and denoted by B(or $cl_u B$). A subset P of X is said to be a *neighborhood* of $x \in X$, if there exists an open set U such that $x \in U \subseteq P$. A subfamily $\{U_{\alpha} : \alpha \in J\}$ of \mathcal{U} is said to be a *base* of \mathcal{U} if for each $x \in U \in \mathcal{U}$ there exists an $\alpha \in J$ such that $x \in U_{\alpha} \subseteq U$, or equivalently, each U in \mathcal{U} is a union of members of $\{U_{\alpha}\}$. Let \mathcal{U}_x denote the totality of all neighborhoods of x in X. Then a subfamily \mathcal{V}_x of \mathcal{U}_x is said to form a *fundamental system* of neighborhoods of x, if for each U_x in \mathcal{U}_x , there exists a V_x in \mathcal{V}_x such that $V_x \subseteq U_x$. (X, \mathcal{U}) is said to be *compact*, if each open covering of X is reducible to a finite open covering. Also (X, \mathcal{U}) is said to be *disconnected* if there are two nonempty, disjoint, open subsets $U, V \subseteq X$ such that $X = U \cup V$, and connected otherwise. The maximal connected subset containing a point of X is called the *component* of that point. Topological space (X, \mathcal{U}) is said to be:

(i) T_0 if for each $x \neq y \in X$, there is one in an open set excluding the other, (ii) T_1 if for each $x \neq y \in X$, each are in an open set not containing the other,

(*iii*) T_2 if for each $x \neq y \in X$, both are in two disjoint open set.(See [1])

Definition 2.1. [1] Let (A, *) be an algebra of type 2 and \mathcal{U} be a topology on A. Then $\mathcal{A} = (A, *, \mathcal{U})$ is called a

(i) left (right) topological algebra if for all $a \in A$, the map $*_a : A \to A$ is defined by $x \to a * x$ ($x \to x * a$) is continuous, or equivalently, for any x in A and any open set U of a * x (x * a), there exists an open set V of x such that $a * V \subseteq U$ ($V * a \subseteq U$).

(ii) semitopological algebra if \mathcal{A} is a right and left topological algebra.

(*iii*) topological algebra if the operation * is continuous, or equivalently, if for any x, y in A and any open set (neighborhood) W of x * y, there exist two open sets (neighborhoods) U and V of x and y, respectively, such that $U * V \subseteq W$. **Proposition 2.2.** [1] Let (A, *) be a commutative algebra of type 2 and \mathcal{U} be a topology on A. Then right and left topological algebras are equivalent. Moreover, $(A, *, \mathcal{U})$ is a semitopological algebra if and only if it is right or left topological algebra.

Definition 2.3. [1] Let A be a nonempty set and $\{*_i\}_{i \in I}$ be a family of operations of type 2 on A and \mathcal{U} be a topology on A. Then

(i) $(A, \{*_i\}_{i \in I}, \mathcal{U})$ is a right(left) topological algebra if for any $i \in I, (A, *_i, \mathcal{U})$ is a right (left) topological algebra.

(*ii*) $(A, \{*_i\}_{i \in I}, \mathcal{U})$ is a semitopological (topological) algebra if for all $i \in I$, $(A, *_i, \mathcal{U})$ is a semitopological (topological) algebra.

Definition 2.4. [11] A *BL*-algebra is an algebra $\mathcal{A} = (A, \land, \lor, \odot, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) such that $(A, \land, \lor, 0, 1)$ is a bounded lattice, $(A, \odot, 1)$ is a commutative monoid and for any $a, b, c \in A$,

$$c \leq a \rightarrow b \Leftrightarrow a \odot c \leq b, \ a \wedge b = a \odot (a \rightarrow b), \ (a \rightarrow b) \lor (b \rightarrow a) = 1.$$

Let A be a *BL*-algebra. We define $a' = a \to 0$ and denote (a')' by a''. The map $c: A \to A$ by c(a) = a', for any $a \in A$, is called the *negation map*. Also, we define $a^0 = 1$ and $a^n = a^{n-1} \odot a$, for all natural numbers n.

Example 2.5. [11] (i) Let " \odot " and " \rightarrow " on the real unit interval I = [0, 1] be defined as follows:

$$x \odot y = \min\{x, y\}$$
 $x \to y = \begin{cases} 1 & , x \le y, \\ y & , otherwise. \end{cases}$

Then $\mathcal{I} = (I, \min, \max, \odot, \rightarrow, 0, 1)$ is a *BL*-algebra.

(ii) Let \odot be the usual multiplication of real numbers on the unit interval I = [0,1] and $x \to y = 1$ iff, $x \leq y$ and y/x otherwise. Then $\mathcal{I} = (I, \min, \max, \odot, \rightarrow, 0, 1)$ is a BL-algebra.

Proposition 2.6. [11] Let A be a BL-algebra. The following properties hold.

Definition 2.7. [11] A *filter* of a BL-algebra A is a nonempty set $F \subseteq A$ such that $x, y \in F$ implies $x \odot y \in F$ and if $x \in F$ and $x \leq y$ imply $y \in F$, for any $x, y \in A$.

It is easy to prove that if F is a filter of a *BL*-algebra A, then for each $x, y \in F, x \land y, x \lor y$ and $x \to y$ are in F

Proposition 2.8. [11] Let F be a subset of BL-algebra A such that $1 \in F$. Then the following conditions are equivalent. (i) F is a filter. (ii) $x \in F$ and $x \to y \in F$ imply $y \in F$.

(*iii*) $x \to y \in F$ and $y \to z \in F$ imply $x \to z \in F$.

Proposition 2.9. [11] Let F be a filter of a BL-algebra A. Define $x \equiv^F y \Leftrightarrow x \to y, y \to x \in F$. Then \equiv^F is a congruence relation on A. Moreover, if $x/F = \{y \in A : y \equiv^F x\}$, then (i) $x/F = y/F \Leftrightarrow y \equiv^F x$, (ii) $x/F = 1/F \Leftrightarrow x \in F$.

Definition 2.10. [2] (*i*) Let A be a BL-algebra and $(A, \{*_i\}, \mathcal{U})$ be a semitopological (topological) algebra, where $\{*_i\} \subseteq \{\land, \lor, \odot, \rightarrow\}$, then $(A, \{*_i\}, \mathcal{U})$ is called a semitopological (topological) *BL*-algebra.

Remark 2.11. If $\{*_i\} = \{\land, \lor, \odot, \rightarrow\}$, we consider $\mathcal{A} = (\mathcal{A}, \mathcal{U})$ instead of $(\mathcal{A}, \{\land, \lor, \odot, \rightarrow\}, \mathcal{U})$, for simplicity.

Proposition 2.12. [2] Let $(A, \{\odot, \rightarrow\}, \mathcal{U})$ be a topological BL-algebra. Then (A, \mathcal{U}) is a topological BL-algebra.

Notation. From now on, in this paper, we use of BL-filter instead of filter in BL-algebras.

R. A. Borzooei, N. Kouhestan

Definition 2.13. [10] Let X be a non-empty set. A family \mathcal{F} of nonempty subsets of X is called a *filter* on X if (i) $X \in \mathcal{F}$, (ii) for each F_1, F_2 of elements of $\mathcal{F}, F_1 \cap F_2 \in \mathcal{F}$ and, (iii) if $F \in \mathcal{F}$ and $F \subseteq G$, then $G \in \mathcal{F}$.

A subset \mathcal{B} of a filter \mathcal{F} on X is said to be a *base* of \mathcal{F} if every set of \mathcal{F} contains a set of \mathcal{B} .

If \mathcal{F} is a family of nonempty subsets of X, then there exists the smallest filter on X containing \mathcal{F} , denoted with $fil(\mathcal{F})$ and called generated filter by \mathcal{F} .

Definition 2.14. [10] A quasi-uniformity on a set X is a filter Q on X such that

 $(i) \ \triangle = \{(x, x) \in X \times X : x \in A\} \subseteq q, \text{ for each } q \in Q,$

(*ii*) for each $q \in Q$, there is a $p \in Q$ such that $p \circ p \subseteq q$, where

$$p \circ p = \{(x, y) \in X \times X : \exists z \in A \ s.t \ (x, z), (z, y) \in p\}.$$

The pair (X, Q) is called a *quasi-uniform space*.

If Q is a quasi-uniformity on a set X, $q \in Q$ and $q^{-1} = \{(x, y) : (y, x) \in q\}$, then $Q^{-1} = \{q^{-1} : q \in Q\}$ is also a quasi-uniformity on X called the *conjugate* of Q. It is well-known that if Q satisfies condition: $q \in Q$ implies $q^{-1} \in Q$, then Q is a *uniformity*. Furthermore, $Q^* = Q \vee Q^{-1}$ is a uniformity on X. If Q and R are quasi-uniformities on X and $Q \subseteq R$, then Q is called *coarser* than R. A subfamily \mathcal{B} of quasi-uniformity Q is said to be a base for Q if each $q \in Q$ contains some member of \mathcal{B} .(See [10])

Proposition 2.15. [22] Let \mathcal{B} be a family of subsetes of $X \times X$ such that (*i*) $\Delta \subseteq q$, for each $q \in \mathcal{B}$,

(*ii*) for $q_1, q_2 \in \mathcal{B}$, there exists a $q_3 \in \mathcal{B}$ such that $q_3 \subseteq q_1 \cap q_2$,

(*iii*) for each $q \in \mathcal{B}$, there is a $p \in \mathcal{B}$ such that $p \circ p \subseteq q$.

Then, there is the unique quasiuniformity $Q = \{q \subseteq X \times X : for some p \in \mathcal{B}, p \subseteq q\}$ on X for which \mathcal{B} is a base.

The topology $T(Q) = \{G \subseteq X : \forall x \in G \exists q \in Q \text{ s.t } q(x) \subseteq G\}$ is called the topology induced by the quasi-uniformity Q.

Definition 2.16. [10] (i) A filter \mathcal{G} on quasi-uniform space (X, Q) is called Q^* -cauchy filter if for each $U \in Q$, there is a $G \in \mathcal{G}$ such that $G \times G \subseteq U$. (ii) A quasi-uniform space (X, Q) is called *bicomplete* if each Q^* -cauchy filter converges with respect to the topology $T(Q^*)$.

(*iii*) A bicompletion of a quasi-uniform space (X, Q) is a bicomplete quasiuniform space (Y, \mathcal{V}) that has a $T(\mathcal{V}^*)$ -dense subspace quasi-unimorphic to (X,Q).

(*iv*) A Q^* -cauchy filter on a quasi-uniform space (X, Q) is *minimal* provided that it contains no Q^* -cauchy filter other than itself.

Lemma 2.17. [10] Let \mathcal{G} be a Q^* -cauchy filter on a quasi-uniform space (X, Q). Then, there is exactly one minimal Q^* -cauchy filter coarser than \mathcal{G} . Furthermore, if \mathcal{B} is a base for \mathcal{G} , then $\{q(B) : B \in \mathcal{B} \text{ and } q \text{ is a symetric member of } Q^*\}$ is a base for the minimal Q^* -cauchy filter coarser than \mathcal{G} .

Lemma 2.18. [10] Let (X, Q) be a T_0 quasi-uniform space and \widetilde{X} be the family of all minimal Q^* -cauchy filters on (A, Q). For each $q \in Q$, let

$$\widetilde{q} = \{ (\mathcal{G}, \mathcal{H}) \in X \times X : \exists G \in \mathcal{G} and H \in \mathcal{H} s.t G \times H \subseteq q \},\$$

and $\widetilde{Q} = fil\{\widetilde{q} : q \in Q\}$. Then the following statements hold: (i) $(\widetilde{X}, \widetilde{Q})$ is a T_0 bicomplete quasi-uniform space and (X, Q) is a quasiuniformly embedded as a $T((\widetilde{Q^*}))$ -dense subspace of $(\widetilde{X}, \widetilde{Q})$ by the map $i : X \to \widetilde{X}$ such that, for each $x \in X$, i(x) is the $T(Q^*)$ -neighborhood filter at x. Furthermore, the uniformities \widetilde{Q}^* and $(\widetilde{Q^*})$ coincide.

Notation. From now on, in this paper we let A be a BL-algebra and \mathcal{F} be a family of BL-filters in A which is closed under intersection , unless otherwise state.

3 Quasi-uniformity on *BL*-algebras

In this section, by using of BL-filters we introduce a quasi-uniformity Q on BL-algebra A and stay some properties it. We show that (A, Q) is not a T_1 and T_2 quasi-uniform space but it is a T_0 quasi-uniform space. Also we study Q^* -cauchy filters, minimal Q^* -cauchy filters and we make a quasi-uniform space $(\widetilde{A}, \widetilde{Q})$ of minimal Q^* -cauchy filters of (A, Q) which admits the structure of a BL-algebra.

Lemma 3.1. Let F be a BL-filter of BL-algebra A and $F_{\star}(x) = \{y : y \to x \in F\}$, for each $x \in A$. Then for each $x, y \in A$, the following properties hold. (i) $x \leq y$ implies $F_{\star}(x) \subseteq F_{\star}(y)$, (ii) $F_{\star}(x) \wedge F_{\star}(y) = F_{\star}(x \wedge y) = F_{\star}(x) \cap F_{\star}(y)$, (iii) $F_{\star}(x) \vee F_{\star}(y) \subseteq F_{\star}(x \vee y)$, (iv) $F_{\star}(x) \odot F_{\star}(y) \subseteq F_{\star}(x \odot y)$,

(v) If for each $a \in A$, $a \odot a = a$, then $F_{\star}(x) \odot F_{\star}(y) = F_{\star}(x \odot y)$,

(vi) $x \in F \Leftrightarrow 1 \in F_{\star}(x) \Leftrightarrow F_{\star}(x) = A$, (vii) For $a, b \in A$, if $a \lor b \in F_{\star}(x)$, then $a, b \in F_{\star}(x)$, (viii) If $y \in F_{\star}(x)$, then $F_{\star}(y) \subseteq F_{\star}(x)$.

Proof. (i) Let $x, y \in A$, such that $x \leq y$ and $z \in F_{\star}(x)$. Then by (B_8) , $z \to x \leq z \to y$. Since F is a BL-filter and $z \to x \in F$, $z \to y$ is in F and so $z \in F_{\star}(y)$.

(*ii*) Let $x, y \in A$, such that $a \in F_{\star}(x)$ and $b \in F_{\star}(y)$. Then $a \to x \in F$ and $b \to y \in F$ and so $(a \to x) \odot (b \to y) \in F$. Since by (B_{17}) , $(a \to x) \odot (b \to y) \leq (a \wedge b) \to (x \wedge y)$, we get $(a \wedge b) \to (x \wedge y) \in F$. Thus, $a \wedge b \in F_{\star}(x \wedge y)$. Now, if $a \in F_{\star}(x \wedge y)$, since $a \to (x \wedge y) \in F$ and by $(B_{11}), a \to (x \wedge y) = (a \to x) \wedge (a \to y)$, we conclude that $a \to x \in F$ and $a \to y \in F$. Hence $a \in F_{\star}(x) \cap F_{\star}(y)$. Finally, let $a \in F_{\star}(x) \cap F_{\star}(y)$. Since $a = a \wedge a$, then $a \in F_{\star}(x) \wedge F_{\star}(y)$.

(iii), (iv) The proof is similar to the proof of (ii), by some modification.

(v) Let $x, y \in A$ such that $z \in F_{\star}(x \odot y)$. Then $z \to (x \odot y) \in F$. By (B_8) , $z \to (x \odot y) \leq z \to x$ and $z \to (x \odot y) \leq z \to y$ which imply that $z \to x, z \to y \in F$. Hence z is in both $F_{\star}(x)$ and $F_{\star}(y)$ and so $z = z \odot z \in F_{\star}(x) \odot F_{\star}(y)$. (vi) The proof is clear.

(vii), (viii) The proof come from by (B_{13}) and (B_{15}) .

Lemma 3.2. Let *F* be a *BL*-filter of *BL*-algebra *A*. Define $F_{\star} = \{(x, y) \in A \times A : y \in F_{\star}(x)\}$ and $F_{\star}^{*} = F_{\star} \cap F_{\star}^{-1}$. Then (*i*) $F_{\star}^{-1} = \{(x, y) \in A \times A : x \to y \in F\},$ (*ii*) $F_{\star}^{*} = \{(x, y) \in A \times A : x \equiv^{F} y\} = F_{\star}^{*^{-1}},$ (*iii*) $F_{\star}^{*}(x) = \{y : x \equiv^{F} y\},$ (*iv*) $F_{\star}^{-1}(x) \to y \subseteq F_{\star}(x \to y),$ (*v*) If $\bullet \in \{\land, \lor, \odot, \to\},$ then $F_{\star}^{*}(x) \bullet F_{\star}^{*}(y) \subseteq F_{\star}^{*}(x \bullet y).$

Proof. The proof of (i), (ii) and (iii) are clear. (iv) Let $a \in F_{\star}^{-1}(x) \to y$. Then there exists a $z \in F_{\star}^{-1}(x)$ such that $a = z \to y$ and $x \to z \in F$. By (B_{10}) , $(z \to y) \to (x \to y) \ge x \to z$. Since F is a filter, $(z \to y) \to (x \to y) \in F$. Hence $a = z \to y \in F_{\star}(x \to y)$. (v) Let $a \in F_{\star}^{*}(x)$ and $b \in F_{\star}^{*}(y)$. Then by (iii), $a \equiv^{F} x$ and $b \equiv^{F} y$. By Proposition 2.9, $a \bullet b \equiv^{F} x \bullet y$. Therefore, $a \bullet b \in F_{\star}^{*}(x \bullet y)$.

Theorem 3.3. Let \mathcal{F} be a family of BL-filters of BL-algebra A which is closed under finite intersection. Then the set $\mathcal{B} = \{F_{\star} : F \in \mathcal{F}\}$ is a base for the unique quasi-uniformity $Q = \{q \subseteq A \times A : \exists F \in \mathcal{F} \text{ s.t } F_{\star} \subseteq q\}$. Moreover, $Q^* = \{q \subseteq A \times A : \exists F \in \mathcal{F} \text{ s.t } F_{\star}^* \subseteq q\}$.

Proof. We prove that \mathcal{B} satisfies in conditions (i), (ii) and (iii) of Proposition 2.15. For (i), it is easy to see that for each $F \in \mathcal{F}, \Delta \subseteq F_{\star}$. Let $F_1, F_2 \in \mathcal{F}$

and $F = F_1 \cap F_2$. If $(x, y) \in F_*$, then $y \to x \in F = F_1 \cap F_2$. Hence $(x, y) \in F_{1*} \cap F_{2*}$. This concludes that $F_* \subseteq F_{1*} \cap F_{2*}$ and so (ii) is true. Finally for (iii), let $F \in \mathcal{F}$ and $(x, y) \in F_* \circ F_*$. Then there is a $z \in A$ such that (x, z) and (z, y) are both in F_* . Hence $z \to x$ and $y \to z$ are in F. Since F is a filter and by $(B_{15}), (y \to z) \odot (z \to x) \leq y \to x$, we conclude that $y \to x \in F$. Hence $F_* \circ F_* \subseteq F_*$ and so (iii) is true. Therefore, by Proposition 2.15, Q is a unique quasi-uniformity on A for which \mathcal{B} is a base.

Now, we prove that

$$Q^* = \{ q \subseteq A \times A : \exists F \in \mathcal{F} \ s.t \ F_* \subseteq q \}.$$

First we prove that $\mathcal{P} = \{q \subseteq A \times A : \exists F \in \mathcal{F} \text{ s.t } F_{\star}^* \subseteq q\}$ is a uniformity on A. With a similar argument as above, we get $\{F_{\star}^* : F \in \mathcal{F}\}$ is a base for the quasi-uniformity $\mathcal{P} = \{q \subseteq A \times A : \exists F \in \mathcal{F} \text{ s.t } F_{\star}^* \subseteq q\}$. To prove that \mathcal{P} is a uniformity we have to show that for each $q \in \mathcal{P}, q^{-1}$ is in \mathcal{P} . Suppose $q \in \mathcal{P}$. Then there exists a $F \in \mathcal{F}$, such that $F_{\star}^* \subseteq q$. By Lemma 3.2(*ii*), $F_{\star}^* = F_{\star}^{*^{-1}}$. Hence $F_{\star}^* \subseteq q^{-1}$ and so $q^{-1} \in \mathcal{P}$. Thus \mathcal{P} is a uniformity on Awhich contains Q. Since $Q^* = Q \vee Q^{-1}$, then $Q^* \subseteq \mathcal{P}$. On the other hand, if $q \in \mathcal{P}$, then there is a $F \in \mathcal{F}$ such that $F_{\star}^* \subseteq q$. Since $F_{\star}^* = F_{\star} \cap F_{\star}^{-1} \in Q^*$, we get that $q \in Q^*$. Therefore, $Q^* = \mathcal{P}$.

In Theorem 3.3, we call Q is quasi-uniformity induced by \mathcal{F} , the pair (A, Q) is quasi-uniform BL-algebra and the pair (A, Q^*) is uniform BL-algebra.

Notation. From now on, \mathcal{F} , Q and Q^* are as in Theorem 3.3.

Example 3.4. Let \mathcal{I} be the BL-algebra in Example 2.5 (i), and for each $a \in [0,1)$, $F_a = (a,1]$. Then F_a is a BL-filter in \mathcal{I} and easily proved that for each $a, b \in [0,1)$, $F_a \cap F_b = F_{a \wedge b}$. Hence $\mathcal{F} = \{F_a\}_{a \in [0,1)}$ is a family of BL-filters which is closed under intersection. For each $a \in [0,1)$,

$$F_{a\star} = (a,1] \times [0,1], \ F_{a\star}^{-1} = [0,1] \times (a,1] \ and \ F_{a\star}^* = (a,1] \times (a,1].$$

By Theorem 3.3, $Q = \{q : \exists a \in [0,1) \ s.t \ (a,1] \times [0,1] \subseteq q\}$ and $Q^* = \{q : \exists a \in [0,1) \ s.t \ (a,1] \times (a,1] \subseteq q\}.$

Recall that a map f from a (quasi)uniform space (X, Q) into a (quasi)uniform space (Y, R) is (quasi) uniformly continuous, if for each $V \in R$, there exists a $U \in Q$ such that $(x, y) \in U$ implies $(f(x), f(y)) \in V$. If $f : (X, Q) \hookrightarrow (Y, R)$ is a quasi-uniform continuous map between quasi-uniform spaces, then f : $(X, Q^*) \hookrightarrow (Y, R^*)$ is a uniform continuous map. (See [10]) **Proposition 3.5.** In BL-algebra A, for each $a \in A$, the mappings $t_a(x) = a \wedge x$, $r_a(x) = a \vee x$, $l_a(x) = a \odot x$ and $L_a(x) = a \to x$ of quasi-uniform BL-algebra (A, Q) into quasi-uniform BL-algebra (A, Q) are quasi-uniformly continuous. Moreover, they are uniformly continuous mappings of uniform BL-algebra (A, Q^*) into uniform BL-algebra (A, Q^*) .

Proof. Let $q \in Q$. Then, there is a $F \in \mathcal{F}$ such that $F_{\star} \subseteq q$. If $(x, y) \in F_{\star}$, then $y \to x \in F$. By (B_{10}) $(a \land y) \to (a \land x) \ge y \to x$ which implies that $(a \land y) \to (a \land x) \in F \subseteq q$. Hence t_a is quasi-uniform continuous. Moreover, $t_a : (A, Q^*) \hookrightarrow (A, Q^*)$ is uniform continuous. In a similar fashion and by use of (B_{16}) , (B_{14}) and (B_9) , we can prove that, respectively, r_a , l_a and L_a are quasi-uniform continuous of $(A, Q) \hookrightarrow (A, Q)$ and are uniform continuous of $(A, Q^*) \hookrightarrow (A, Q^*)$.

Let (X, Q) be a (quasi)uniform space and \mathcal{B} be a base for it. Recall (X, Q) is

(i) T_0 quasi-uniform if (x, y) and (y, x) are in $\bigcap_{U \in \mathcal{B}} U$, then x = y, for each $x, y \in X$,

(*ii*) T_1 quasi-uniform if $\triangle = \bigcap_{U \in \mathcal{B}} U$,

(*iii*) T_2 quasi-uniform if $\triangle = \bigcap_{U \in \mathcal{B}} U^{-1} \circ U$. (See [10])

Theorem 3.6. Quasi-uniform BL-algebra (A, Q) is not T_1 and T_2 quasiuniform. If $\{1\} \in \mathcal{F}$, then (A, Q) is a T_0 quasi-uniform space and uniform BL-algebra (A, Q^*) is T_0 , T_1 and T_2 quasi-uniform space.

Proof. Let $x, y \in A$ and $F \in \mathcal{F}$. Since $y \to 1 = 1 \in F$, we get that $(1, y) \in \bigcap_{F \in \mathcal{F}} F_{\star}$. Hence (A, Q) is not T_0 quasi-uniform. Also since $x \to 1 = y \to 1 \in F$, we conclude that $(1, x), (1, y) \in F_{\star}$. Hence $(x, y) \in F_{\star}^{-1} \circ F_{\star}$ which implies that $\Delta \neq \bigcap_{F \in \mathcal{F}} F_{\star}^{-1} \circ F_{\star}$. So (A, Q) is not T_2 quasi-uniform

Let $\{1\} \in \mathcal{F}$ and (x, y) and (y, x) be in $\bigcap_{F \in \mathcal{F}} F_{\star}$. Then for each $F \in \mathcal{F}$, $x \to y$ and $y \to x$ are in F. Hence $x \equiv^{\{1\}} y$, which implies that x = y. Therefore, (A, Q) is T_0 quasi-uniform. With a similar argument as above, we can prove that (A, Q^*) is a T_0 and T_1 quasi-uniform space. To verify T_2 quasi-uniformity, let $(x, y) \in \bigcap_{F \in \mathcal{F}} F_{\star}^{*^{-1}} \circ F_{\star}^*$. Then for each $F \in \mathcal{F}$ there is a $z \in A$ such that $(x, z) \in F_{\star}^{*^{-1}}$ and $(z, y) \in F_{\star}^*$. By Lemma 3.2(*ii*), $x \equiv^F y$. Since $\{1\} \in \mathcal{F}$, we get that x = y. Therefore, (A, Q^*) is a T_2 quasi-uniform space.

Proposition 3.7. Let \mathcal{B} be a base for a Q^* -cauchy filter \mathcal{G} on quasi-uniform BL-algebra (A, Q). Then the set $\{F^*_{\star}(B) : F \in \mathcal{F}, B \in \mathcal{B}\}$ is a base for the unique minimal Q^* -cauchy filter coarser than \mathcal{G} .

Proof. By Lemma 2.17, the set $\{q(B) : B \in \mathcal{B}, q^{-1} = q \in Q^*\}$ is a base for the unique minimal Q^* -cauchy filter \mathcal{G}_0 coarser than \mathcal{G} . Let $q^{-1} = q \in Q^*$ and $B \in \mathcal{B}$. Then for some $F \in \mathcal{F}, F^*_\star \subseteq q$. So, $F^*_\star(B) \subseteq q(B)$. Now, it is easy to prove that the set $\{F^*_\star(B) : F \in \mathcal{F}, B \in \mathcal{B}\}$ is a base for \mathcal{G}_0 . \Box

Proposition 3.8. \mathcal{F} is a base for a minimal Q^* -cauchy filter on quasiuniform BL-algebra (A, Q).

Proof. Let $C = \{S \subseteq A : \exists F \in \mathcal{F} \text{ s.t } F \subseteq S\}$. It is easy to prove that C is a filter and \mathcal{F} is a base for it. We prove that C is a Q^* -cauchy filter. For this, let $q \in Q$. There is a $F \in \mathcal{F}$ such that $F_\star \subseteq q$. Since F is a filter, clearly $F \times F \subseteq F_\star \subseteq q$. Hence C is a Q^* -cauchy filter. Now, by Proposition 3.7, the set $\{F_\star^*(F_1) : F, F_1 \in \mathcal{F}\}$ is a base for the unique minimal Q^* -cauchy filter \mathcal{F}_0 coarser than C. To complete proof we show that for each $F, F_1 \in \mathcal{F}$, $F_\star^*(F_1) = F_1$. Let $F, F_1 \in \mathcal{F}$. If $y \in F_\star^*(F_1)$, then for some $x \in F_1, x \equiv^F y$. By Proposition 2.9, $y \in F_1$. Hence $F_\star^*(F_1) \subseteq F_1$. Clearly, $F_1 \subseteq F_\star^*(F_1)$. Therefore, $F_1 = F_\star^*(F_1)$. Thus proved that \mathcal{F} is a base for \mathcal{F}_0 .

Proposition 3.9. The set $\mathcal{B} = \{F^*_{\star}(0) : F \in \mathcal{F}\}$ is a base for a minimal Q^* -cauchy filter on quasi-uniform BL-algebra (A, Q).

Proof. Let $\mathcal{C} = \{S \subseteq A : \exists F \in \mathcal{F} \text{ s.t } F_{\star}^*(0) \subseteq S\}$. It is easy to prove that \mathcal{C} is a filter and the set $\mathcal{B} = \{F_{\star}^*(0) : F \in \mathcal{F}\}$ is a base for it. To prove that \mathcal{C} is a Q^* -cauchy filter, let $q \in Q$. There is a $F \in \mathcal{F}$ such that $F_{\star} \subseteq q$. If $x, y \in F_{\star}^*(0)$, then $x \equiv^F y$ and so $(x, y) \in F_{\star}^* \subseteq F_{\star} \subseteq q$. This prove that $F_{\star}^*(0) \times F_{\star}^*(0) \subseteq q$. Hence \mathcal{C} is a Q^* -cauchy filter. By Proposition 3.7, the set $\{F_{\star}^*(F_{\star}^*(0)) : F \in \mathcal{F}\}$ is a base for the unique minimal Q^* -cauchy filter \mathcal{I} coarser than \mathcal{C} . But it is easy to pove that fo each $F \in \mathcal{F}, F_{\star}^*(F_{\star}^*(0)) = F_{\star}^*(0)$. Therefore, \mathcal{B} is a base for \mathcal{I} .

Lemma 3.10. Let \mathcal{G} and \mathcal{H} be Q^* -cauchy filters on quasi-uniform BL-algebra (A, Q). If $\bullet \in \{\land, \lor, \odot, \rightarrow\}$, then $\mathcal{G} \bullet \mathcal{H} = \{G \bullet H : G \in \mathcal{G}, H \in \mathcal{H}\}$ is a Q^* -cauchy filter base on quasi-uniform BL-algebra (A, Q).

Proof. Let $C = \{S \subseteq A : \exists G, H \text{ s.t } G \in \mathcal{G}, H \in \mathcal{H}, G \bullet H \subseteq S\}$. It is easy to prove that C is a filter and the set $\mathcal{B} = \{G \bullet H : G \in \mathcal{G}, H \in \mathcal{H}\}$ is a base for it. We prove that C is a Q^* -cauchy filter. For this, let $q \in Q$. Then for some a $F \in \mathcal{F}, F_* \subseteq q$. Since \mathcal{G}, \mathcal{H} are Q^* -cauchy filters, there are $G \in \mathcal{G}$ and $H \in \mathcal{H}$ such that $G \times G \subseteq F_*$ and $H \times H \subseteq F_*$. We show that $G \bullet H \times G \bullet H \subseteq F_* \subseteq q$. Let $g_1, g_2 \in G$ and $h_1, h_2 \in H$. Then $(g_1, g_2), (g_2, g_1), (h_1, h_2), (h_2, h_1)$ are in F_* . So $g_1 \equiv^F g_2$ and $h_1 \equiv^F h_2$. By Proposition 2.9, $g_1 \bullet h_1 \equiv^F g_2 \bullet h_2$, which implies that $(g_1 \bullet h_1, g_2 \bullet h_2) \in F_*$.

R. A. Borzooei, N. Kouhestan

Theorem 3.11. There is a quasi-uniform space $(\widetilde{A}, \widetilde{Q})$ of minimal Q^* -cauchy filters of quasi-uniform BL-algebra (A, Q) that admits a BL-algebra structure.

Proof. Let A be the family of all minimal Q^* -cauchy filters on (A, Q). Let for each $q \in Q$,

$$\widetilde{q} = \{ (\mathcal{G}, \mathcal{H}) \in A \times A : \exists G \in \mathcal{G}, H \in \mathcal{H} \ s.t \ G \times H \subseteq q \}.$$

If $\widetilde{Q} = fil\{\widetilde{q} : q \in Q\}$, then $(\widetilde{A}, \widetilde{Q})$ is a quasi-uniform space of minimal Q^* -cauchy filters of (A, Q). Let $\mathcal{G}, \mathcal{H} \in \widetilde{A}$. Since \mathcal{G}, \mathcal{H} are minimal Q^* -cauchy filters on A, then by Lemma 3.10, $\mathcal{G} \wedge \mathcal{H}, \mathcal{G} \vee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \to \mathcal{H}$ are Q^* -cauchy filter bases on A. Now, we define $\mathcal{G} \land \mathcal{H}, \mathcal{G} \vee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \hookrightarrow \mathcal{H}$ as the minimal Q^* -cauchy filters contained $\mathcal{G} \wedge \mathcal{H}, \mathcal{G} \vee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \to \mathcal{H}$, respectively. Thus, $\mathcal{G} \land \mathcal{H}, \mathcal{G} \vee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \to \mathcal{H}$, respectively. Thus, $\mathcal{G} \land \mathcal{H}, \mathcal{G} \vee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \to \mathcal{H}$, respectively. Thus, $\mathcal{G} \land \mathcal{H}, \mathcal{G} \vee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \to \mathcal{H}$ are in \widetilde{A} . Now, we will prove that $(\widetilde{A}, \Lambda, \gamma, \odot, \hookrightarrow, \mathcal{I}, \mathcal{F}_0)$ is a BL-algebra, where \mathcal{I} is minimal Q^* -cauchy filter in Proposition 3.9 and \mathcal{F}_0 is minimal Q^* -cauchy filter in Proposition 3.8. For this, we consider the following steps:

(1) (A, λ, γ) is a bounded lattice.

Let $\mathcal{G}, \mathcal{H}, \mathcal{K} \in A$. We consider the following cases: Case 1.1: $\mathcal{G} \land \mathcal{G} = \mathcal{G}, \mathcal{G} \lor \mathcal{G} = \mathcal{G}$

By Proposition 3.7, $S_1 = \{F_*^*(G) : G \in \mathcal{G}, F \in \mathcal{F}\}$ and $S_2 = \{F_*^*(G_1 \wedge G_2) : G_1, G_2 \in \mathcal{G}, F \in \mathcal{F}\}$ are bases of the minimal Q^* -cauchy filters \mathcal{G} and $\mathcal{G} \wedge \mathcal{G}_2$) : respectively. First, we show that $S_2 \subseteq S_1$. Let $F_*^*(G_1 \wedge G_2) \in S_2$. Put $G = G_1 \cap G_2$, then $G \in \mathcal{G}$. Let $y \in F_*^*(G)$. Then there is a $x \in G$ such that $(x, y) \in F_*^*$. Since $x \wedge x = x$, it follows that $(x \wedge x, y) \in F_*^*$ and so $y \in F_*^*(G_1 \wedge G_2)$. Hence $S_2 \subseteq S_1$. Therefore, $\mathcal{G} \wedge \mathcal{G} \subseteq \mathcal{G}$. By the minimality of $\mathcal{G}, \mathcal{G} \wedge \mathcal{G} = \mathcal{G}$. The proof of the other case is similar.

 $\textbf{Case 1.2: } \mathcal{G} \land \mathcal{H} = \mathcal{H} \land \mathcal{G}, \, \mathcal{G} \curlyvee \mathcal{H} = \mathcal{H} \curlyvee \mathcal{G}$

By Proposition 3.7, $S_1 = \{F_*^*(G \land H) : G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\}$ and $S_2 = \{F_*^*(H \land G) : G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\}$ are bases of $\mathcal{G} \land \mathcal{H}$ and $\mathcal{H} \land \mathcal{G}$, respectively. For each $G \in \mathcal{G}$ and $H \in \mathcal{H}$, since $G \land H = H \land G$, for each $F \in \mathcal{F}, F_*^*(G \land H) = F_*^*(H \land G)$. Hence $\mathcal{G} \land \mathcal{H} = \mathcal{H} \land \mathcal{G}$. The proof of the other case is similar.

Case 1.3: $\mathcal{G} \land (\mathcal{H} \land \mathcal{K}) = (\mathcal{G} \land \mathcal{H}) \land \mathcal{K}, \ \mathcal{G} \curlyvee (\mathcal{H} \curlyvee \mathcal{K}) = (\mathcal{G} \curlyvee \mathcal{H}) \curlyvee \mathcal{K}$ By Proposition 3.7, the families

$$S_{1} = \{F_{1\star}^{*}(F_{2\star}^{*}(G \wedge H) \wedge K) : G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_{1}, F_{2} \in \mathcal{F}\},\$$
$$S_{2} = \{F_{1\star}^{*}(G \wedge F_{2\star}^{*}(H \wedge K) : G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_{1}, F_{2} \in \mathcal{F}\}$$

are bases for the minimal Q^* -cauchy filters $(\mathcal{G} \land \mathcal{H}) \land \mathcal{K}$ and $\mathcal{G} \land (\mathcal{H} \land \mathcal{K})$, respectively. Let $F_{1\star}^*(F_{2\star}^*G \land (\mathcal{H} \land \mathcal{K}) \in S_2$ and $F = F_1 \cap F_2$. Then $F \in \mathcal{F}$. Now, we show that $F_{\star}^*(F_{\star}^*(G \wedge H) \wedge K) \subseteq F_{1\star}^*(G \wedge F_{2\star}^*(H \wedge K))$. Let $y \in F_{\star}^*(F_{\star}^*(G \wedge H) \wedge K)$. Then there are $x \in F_{\star}^*(G \wedge H)$, $k \in K$, $g \in G$ and $h \in H$ such that $y \equiv^F x \wedge k$ and $x \equiv^F g \wedge h$. Hence $y \equiv^F (g \wedge h) \wedge k = g \wedge (h \wedge k)$, which implies that $y \in F_{\star}^*(G \wedge F_{\star}^*(H \wedge K)) \subseteq F_{1\star}^*(G \wedge F_{2\star}^*(H \wedge K))$. Therefore, $\mathcal{G} \wedge (\mathcal{H} \wedge \mathcal{K}) \subseteq (\mathcal{G} \wedge \mathcal{H}) \wedge \mathcal{K}$. By the minimality of $(\mathcal{G} \wedge \mathcal{H}) \wedge \mathcal{K}$, $\mathcal{G} \wedge (\mathcal{H} \wedge \mathcal{K}) = (\mathcal{G} \wedge \mathcal{H}) \wedge \mathcal{K}$. The proof of the other case is similar.

Case 1.4: $\mathcal{G} \land (\mathcal{G} \lor \mathcal{H}) = \mathcal{G}, \, \mathcal{G} \lor (\mathcal{G} \land \mathcal{H}) = \mathcal{G}$

It is enough to prove that $\mathcal{G} \land (\mathcal{G} \curlyvee \mathcal{H}) = \mathcal{G}$. The proof of the other case is similar. By Proposition 3.7, the families $S_1 = \{F^*_{\star}(G) : G \in \mathcal{G}, F \in \mathcal{F}\}$ and $S_2 = \{F^*_{1\star}(G_1 \land F^*_{2\star}(G_2 \lor H) : G_1, G_2 \in \mathcal{G}, H \in \mathcal{H}, F_1, F_2 \in \mathcal{F}\}$ are bases for the minimal Q^* -cauchy filters \mathcal{G} and $\mathcal{G} \land (\mathcal{G} \curlyvee \mathcal{H})$, respectively. Let $F^*_{1\star}(G_1 \land F^*_{2\star}(G_2 \lor H) \in S_2$. Put $G = G_1 \cap G_2$ and $F = F_1 \cap F_2$. We prove that $F^*_{\star}(G) \subseteq F^*_{1\star}(G_1 \land F^*_{2\star}(G_2 \lor H))$. Let $y \in F^*_{\star}(G)$. Then there is a $g \in G$ such that $y \equiv^F g$. If $h \in H$, since $g = g \land (g \lor h)$, then $y \equiv^F g \land (g \lor h)$ and so $y \in F^*_{1\star}(G_1 \land F^*_{2\star}(G_2 \lor H))$. Hence $\mathcal{G} \land (\mathcal{G} \curlyvee \mathcal{H}) \subseteq \mathcal{G}$. By the minimality of \mathcal{G} , we conclude that $\mathcal{G} \land (\mathcal{G} \curlyvee \mathcal{H}) = \mathcal{G}$.

Now the cases 1.1, 1.2, 1.3, 1.4 imply that (A, λ, Υ) is a lattice.

Case 1.5: The lattice $(\widetilde{A}, \lambda, \gamma)$ is bounded.

For this, for each $\mathcal{G}, \mathcal{H} \in \widetilde{A}$, define $\mathcal{G} \leq \mathcal{H} \Leftrightarrow \mathcal{G} \land \mathcal{H} = \mathcal{G}$. It is clear that (\widetilde{A}, \leq) is a partial ordered. Now, we prove that for each $\mathcal{G} \in \widetilde{A}, \mathcal{I} \leq \mathcal{G} \leq \mathcal{F}_0$. First, we show that $\mathcal{I} \leq \mathcal{G}$. Let $S \in \mathcal{I}$. Then for some a $F \in \mathcal{F}, F_*^*(0) \subseteq S$. Since \mathcal{G} is a minimal Q^* -cauchy filter, there is a $G \in \mathcal{G}$ such that $G \times G \subseteq F_*$. We show that $F_*^*(G \land F_*^*(0)) \subseteq S$. Let $y \in F_*^*(G \land F_*^*(0))$. Then there are $g \in G$ and $x \in F_*^*(0)$ such that $y \equiv^F g \land x$. On the other hand, since $x \equiv^F 0$, we get $g \land x \equiv^F 0$. Hence $y \equiv^F 0$ which implies that $y \in F_*^*(0) \subseteq S$. Since $F_*^*(G \land F_*^*(0)) \in \mathcal{G} \land \mathcal{I}$, then $S \in \mathcal{G} \land \mathcal{I}$. By the minimality of $\mathcal{G} \land \mathcal{I}, \mathcal{G} \land \mathcal{I} = \mathcal{I}$. Now, we prove that $\mathcal{G} \leq \mathcal{F}_0$. By Proposition 3.7, the set $S_1 = \{F_*^*(G \land F_1) : G \in \mathcal{G}, F, F_1 \in \mathcal{F}\}$ is a base for $\mathcal{G} \land \mathcal{F}_0$. Let $F_*^*(G \land F_1) \in S_1$. We prove that $F_*^*(G) \subseteq F_*^*(G \land F_1)$. Let $y \in F_*^*(G)$. Then, there is a $g \in G$ such that $y \equiv^F g = g \land 1$. Hence $y \in F_*^*(G \land F_1)$. By the minimality of $\mathcal{G}, \mathcal{G} \land \mathcal{F}_0 = \mathcal{G}$. (2) (\widetilde{A}, \odot) is a commutative monoid

Case 2.1: (\widetilde{A}, \odot) is a commutative semigroup.

We will prove that $\mathcal{G} \odot (\mathcal{H} \odot \mathcal{K}) = (\mathcal{G} \odot \mathcal{H}) \odot \mathcal{K}$. By Proposition 3.7, the sets

$$S_1 = \{ F_{1\star}^* (G \odot F_{2\star}^* (H \odot K)) : G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_1, F_2 \in \mathcal{F} \},\$$

$$S_2 = \{F_{1\star}^*(F_{2\star}^*(G \odot H) \odot K)) : G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_1, F_2 \in \mathcal{F}\}$$

are bases from $\mathcal{G} \odot (\mathcal{H} \odot \mathcal{K})$ and $(\mathcal{G} \odot \mathcal{H}) \odot \mathcal{K}$, respectively. Let $F_{1\star}^*(F_{2\star}^*(G \odot H) \odot K)) \in S_2$, $F = F_1 \cap F_2$ and $y \in F_{\star}^*(G \odot F_{\star}^*(H \odot K))$. Then there are $g \in G$, $x \in F_{\star}^*(H \odot K)$, $h \in H$ and $k \in K$ such that $y \stackrel{F}{=} g \odot x$ and $x \stackrel{F}{=} h \odot k$. Hence

 $y \stackrel{F}{\equiv} g \odot (h \odot k) = (g \odot h) \odot k \text{ and so } y \in F_{\star}^{*}(F_{\star}^{*}(G \odot H) \odot K) \subseteq F_{1\star}^{*}(F_{2\star}^{*}(G \odot H) \odot K)$ K)). Therefore, $S_{2} \subseteq S_{1}$ which implies that $(\mathcal{G} \odot \mathcal{H}) \odot \mathcal{K} \subseteq \mathcal{G} \odot (\mathcal{H} \odot \mathcal{K})$. Now, by the minimality of $\mathcal{G} \odot (\mathcal{H} \odot \mathcal{K}), \ \mathcal{G} \odot (\mathcal{H} \odot \mathcal{K}) = (\mathcal{G} \odot \mathcal{H}) \odot \mathcal{K}$. Finally, it is easy to prove that $\mathcal{G} \odot \mathcal{H} = \mathcal{H} \odot \mathcal{G}$.

Case 2.2: (A, \odot) is a monoid

We prove that $\mathcal{G} \odot \mathcal{F}_0 = \mathcal{G}$. By Proposition 3.7, the set $S_2 = \{F^*_{\star}(G \odot F_1) : G \in \mathcal{G}, F, F_1 \in \mathcal{F}\}$ is a base for $\mathcal{G} \odot \mathcal{F}_0$. It is clear that for each $F^*_{\star}(G \odot F_1) \in S_2$, $F^*_{\star}(G) \subseteq F^*_{\star}(G \odot F_1)$ and this implies that $\mathcal{G} \odot \mathcal{F}_0 \subseteq \mathcal{G}$. By the minimality of $\mathcal{G}, \mathcal{G} \odot \mathcal{F}_0 = \mathcal{G}$.

 $\textbf{(3)} \ \mathcal{G} \odot (\mathcal{G} \hookrightarrow \mathcal{H}) = \mathcal{G} \land \mathcal{H}$

By Proposition 3.7, the families

$$S_1 = \{ F^*_{\star}(G \wedge H) : G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F} \},\$$

$$S_2 = \{F_{1\star}^*(G_1 \odot F_{2\star}^*(G_2 \to H)) : G_1, G_2 \in \mathcal{G}, H \in \mathcal{H}, F_1, F_2 \in \mathcal{F}\}$$

are bases for $\mathcal{G} \wedge \mathcal{H}$ and $\mathcal{G} \odot (\mathcal{G} \hookrightarrow \mathcal{H})$, respectively. Let $F_{1\star}^*(G_1 \odot F_{2\star}^*(G_2 \to H)) \in S_2$, $G = G_1 \cap G_2$ and $F = F_1 \cap F_2$. We will prove that $F_{\star}^*(G \wedge H) \subseteq F_{1\star}^*(G_1 \odot F_{2\star}^*(G_2 \to H))$. Let $y \in F_{\star}^*(G \wedge H)$. Then there are $g \in G$ and $h \in H$ such that $y \equiv^F g \wedge h$. It follows from $g \wedge h = g \odot (g \to h)$ which $y \in F_{1\star}^*(G_1 \odot F_{2\star}^*(G_2 \to H))$. Hence $F_{\star}^*(G \wedge H) \subseteq F_{1\star}^*(G_1 \odot F_{2\star}^*(G_2 \to H))$ which implies that $\mathcal{G} \odot (\mathcal{G} \hookrightarrow \mathcal{H}) \subseteq \mathcal{G} \wedge \mathcal{H}$. Now, by the minimality of $\mathcal{G} \wedge \mathcal{H}$, we get $\mathcal{G} \odot (\mathcal{G} \hookrightarrow \mathcal{H}) = \mathcal{G} \wedge \mathcal{H}$.

 $(4) \ \mathcal{G} \leq \mathcal{H} \hookrightarrow \mathcal{K} \Leftrightarrow \mathcal{G} \circledcirc \mathcal{H} \leq \mathcal{K}$

First, we prove the following statements:

- $(a) \ \mathcal{G} \leq \mathcal{H} \Leftrightarrow \mathcal{G} \hookrightarrow \mathcal{H} = \mathcal{F}_0$
- $(b) \ \mathcal{G} \hookrightarrow (\mathcal{H} \hookrightarrow \mathcal{K}) = \mathcal{G} \odot \mathcal{H} \hookrightarrow \mathcal{K}.$

(a) To prove it, let $\mathcal{G} \hookrightarrow \mathcal{H} = \mathcal{F}_0$. Then $\mathcal{G} \odot (\mathcal{G} \hookrightarrow \mathcal{H}) = \mathcal{G} \odot \mathcal{F}_0 = \mathcal{G}$. By (3), $\mathcal{G} \land \mathcal{H} = \mathcal{G}$ and so $\mathcal{G} \leq \mathcal{H}$.

Conversely, let $\mathcal{G} \leq \mathcal{H}$. By Proposition 3.7, the set $S = \{F_*^*(G \to H) : G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\}$ is a base for $\mathcal{G} \hookrightarrow \mathcal{H}$. Let $F_*^*(G \to H) \in S$. We prove that $1 \in F_*^*(G \to H)$. Since by Lemma 3.10, $G \to H$ is a Q^* -cauchy filter base, there are $G_1 \in \mathcal{G}$ and $H_1 \in \mathcal{H}$ such that $(G_1 \to H_1) \times (G_1 \to H_1) \subseteq F_*$. Put $G_2 = G_1 \cap G$ and $H_2 = H_1 \cap H$. It is easy to see that $G_2 \wedge H_2 \subseteq F_*^*(G_2 \wedge H_2) \in \mathcal{G} \land \mathcal{H}$. Since $\mathcal{G} \land \mathcal{H} = \mathcal{G}$, there is a $G_3 \in \mathcal{G}$ such that $G_3 \subseteq G_1$ and $G_3 \subseteq G_2 \wedge H_2$. Since $G_3 \neq \phi$, there are $g_3 \in G_3$, $g \in G_2$ and $h \in H_2$ such that $g_3 = g \wedge h$. Since $(g_3 \to h, g \to h)$ and $(g \to h, g_3 \to h)$ both are in $(G_1 \to H_1) \times (G_1 \to H_1) \subseteq F_*$, we get $g \to h \equiv^F g_3 \to h = 1$ and so $1 \in F_*^*(G \to H)$. Hence $F_*^*(1) \subseteq F_*^*(G \to H)$. This implies that $\mathcal{G} \hookrightarrow \mathcal{H} \subseteq \mathcal{F}_0$. By the minimality of \mathcal{F}_0 , $\mathcal{G} \hookrightarrow \mathcal{H} = \mathcal{F}_0$. Therefore, we have (a).

(b) By Proposition 3.7, the families

$$S_1 = \{ F_{1\star}^*(G \to F_{2\star}^*(H \to K)) : G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_1, F_2 \in \mathcal{F} \},$$
$$S_2 = \{ F_{1\star}^*(F_{2\star}^*(G \odot H) \to K) : G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_1, F_2 \in \mathcal{F} \}$$

are bases of $\mathcal{G} \hookrightarrow (\mathcal{H} \hookrightarrow \mathcal{K})$ and $(\mathcal{G} \odot \mathcal{H}) \hookrightarrow \mathcal{K}$, respectively. Let $F_{1\star}^*(F_{2\star}^*(G \odot H) \to K) \in S_2$, $F = F_1 \cap F_2$ and $y \in F_{\star}^*(G \to F_{\star}^*(H \to K))$. Then there are $g \in G$ and $x \in F_{\star}^*(H \to K)$ such that $y \equiv^F g \to x$. Also there are $h \in H$ and $k \in K$ such that $x \equiv^F h \to k$. Hence $y \equiv^F g \to x \equiv^F g \to (h \to k) = (g \odot h) \to k$. Therefore, $y \in F_{1\star}^*(F_{2\star}^*(G \odot H) \to K)$. This implies that $(\mathcal{G} \odot \mathcal{H}) \hookrightarrow \mathcal{K} \subseteq \mathcal{G} \hookrightarrow (\mathcal{H} \hookrightarrow \mathcal{K})$. By the minimality of $\mathcal{G} \hookrightarrow (\mathcal{H} \hookrightarrow \mathcal{K})$, we get $\mathcal{G} \hookrightarrow (\mathcal{H} \hookrightarrow \mathcal{K}) = \mathcal{G} \odot \mathcal{H} \hookrightarrow \mathcal{K}$. Hence we have (b). Now, by (a) and (b), we have

$$\mathcal{G} \leq \mathcal{H} \hookrightarrow \mathcal{K} \Leftrightarrow \mathcal{G} \hookrightarrow (\mathcal{H} \hookrightarrow \mathcal{K}) = \mathcal{F}_0 \Leftrightarrow (\mathcal{G} \odot \mathcal{H}) \hookrightarrow \mathcal{K} = \mathcal{F}_0 \Leftrightarrow \mathcal{G} \odot \mathcal{H} \leq \mathcal{K}.$$

So $\mathcal{G} \leq \mathcal{H} \hookrightarrow \mathcal{K} \Leftrightarrow \mathcal{G} \odot \mathcal{H} \leq \mathcal{K}$. (5) $(\mathcal{G} \hookrightarrow \mathcal{H}) \curlyvee (\mathcal{H} \hookrightarrow \mathcal{G}) = \mathcal{F}_0$ By Proposition 3.7, the set

$$S = \{F_{1\star}^*(F_{2\star}^*(G_1 \to H_1) \lor F_{3\star}^*(H_2 \to G_2)) : G_1, G_2 \in \mathcal{G}, H_1, H_2 \in \mathcal{H}, F_1, F_2, F_3 \in \mathcal{F}\}$$

is a base for $(\mathcal{G} \hookrightarrow \mathcal{H}) \Upsilon (\mathcal{H} \hookrightarrow \mathcal{G})$. Let $F_{1\star}^*(F_{2\star}^*(G_1 \to H_1) \lor F_{3\star}^*(H_2 \to G_2)) \in S$, $G = G_1 \cap G_2$, $H = H_1 \cap H_2$ and $F = F_1 \cap F_2 \cap F_3$. We show that $1 \in F_{\star}^*(F_{\star}^*(G \to H) \lor F_{\star}^*(H \to G))$. Let $g \in G$ and $h \in H$. Since A is a BL-algebra, we have $(g \to h) \lor (h \to g) = 1$. Since $g \to h \in F_{\star}^*(G \to H)$ and $h \to g \in F_{\star}^*(H \to G)$, we have $(g \to h) \lor (h \to g) \in F_{\star}^*(F_{\star}^*(G \to H) \lor F_{\star}^*(H \to G))$ and so $1 \in F_{\star}^*(F_{\star}^*(G \to H) \lor F_{\star}^*(H \to G))$. Hence $F_{\star}^*(1) \subseteq F_{\star}^*(F_{\star}^*(G \to H) \lor F_{\star}^*(H \to G))$ which implies that $(\mathcal{G} \hookrightarrow \mathcal{H}) \Upsilon (\mathcal{H} \hookrightarrow \mathcal{G}) \subseteq \mathcal{F}_0$.

4 Some topological properties on quasi-unifom BL-algebra (A, Q)

Let T(Q) and $T(Q^*)$ be topologies induced by Q and Q^* , respectively. Our goal in this section is to study (semi)topological BL-algebras (A, T(Q)) and $(A, T(Q^*))$. We prove that $(A, \land, \lor, \odot, T(Q))$ is a compact connected topological BL-algebra and $(A, T(Q^*))$ is a regular topological BL-algebra. We study separation axioms on (A, T(Q)) and $(A, T(Q^*))$. Also we stay conditions under which (A, Q) becomes totally bounded. Finally, we show that if (A, Q) is a T_0 quasi-uniform space, then the BL-algebra $(\widetilde{A}, \widetilde{Q})$ in Theorem 3.11 is the bicomplition topological BL-algebra of (A, Q).

Theorem 4.1. The set $T(Q) = \{G \subseteq A : \forall x \in G \exists F \in \mathcal{F} \text{ s.t } F_{\star}(x) \subseteq G\}$ is the topology induced by Q on A such that $(A, \{\wedge, \lor, \odot\}, T(Q))$ is a topological BL-algebras. Also $(A, \rightarrow, T(Q))$ is a left topological BL-algebra. Furthermore, if the negation map c(x) = x' is one to one, then (A, T(Q)) is a topological BL-algebra.

Proof. First we prove that T(Q) is a nonempty set. For this, we prove that for each $F \in \mathcal{F}$ and each $x \in A$, $F_{\star}(x) \in T(Q)$. Let $F \in \mathcal{F}$, $x \in A$ and $y \in F_{\star}(x)$. If z is an arbitrary element of $F_{\star}(y)$, then $z \to y \in F$. Since $y \to x \in F$, by (B_{15}) , we get $z \to x \in F$. Hence $F_{\star}(y) \subseteq F_{\star}(x)$ which implies that $F_{\star}(x) \in T(Q)$. Now we prove that T(Q) is a topology on A. Clearly, $\phi, A \in T(Q)$. Also it is easy to prove that the arbitrary union of members of T(Q) is in T(Q). Let $G_1, ..., G_n$ be in T(Q) and $x \in \bigcap_{i=1}^{i=n} G_i$. There are $F_1, ..., F_n \in \mathcal{F}$ such that $F_{i\star}(x) \subseteq G_i$, for $1 \leq i \leq n$. Let $F = F_1 \cap ... \cap F_n$. Then $F \in \mathcal{F}$ and $F_{\star}(x) \subseteq F_{1\star}(x) \cap \dots \cap F_{n\star}(x) \subseteq \bigcap_{i=1}^{i=n} G_i$. Hence T(Q) is a topology. Since for each $F \in \mathcal{F}$, F_{\star} belongs to Q, then T(Q) is the topology induced by Q. Now, by Lemmas 3.1, it is clear that $(A, \{\land, \lor, \odot\}, T(Q))$ is a topological BL-algebra. In continue, we prove that $(A, \rightarrow, T(Q))$ is a left topological BL-algebra. Let $x, y, z \in A$, and $z \in F_{\star}(y)$. By (B_9) , $(x \to z) \to (x \to y) \ge z \to y$ which implies that $(x \to z) \to (x \to y) \in F$. So $x \to z \in F_{\star}(x \to y)$. Hence $x \to F_{\star}(y) \subseteq F_{\star}(x \to y)$ and so $(A, \to, T(Q))$ is a left topological BL-algebra.

To complete the proof, suppose that the negation map c is one to one. Since $(A, \rightarrow, T(Q))$ is a topological BL-algebra, c is continuous. Now by [[2], Theorem(3.15)], (A, T(Q)) is a topological BL-algebra.

Theorem 4.2. *BL*-algebra (A, T(Q)) is a connected and compact space and each $F \in \mathcal{F}$, is a closed compact set in (A, T(Q)).

Proof. First we prove that if $\{G_i : i \in I\}$ is an open cover of A in T(Q), then for some $i \in I$, $A = G_i$. Let $A = \bigcup_{i \in I} G_i$, where $G_i \in T(Q)$. Then, there are $i \in I$ and $F \in \mathcal{F}$ such that $1 \in G_i$ and $F_*(1) \subseteq G_i$. By Lemma 3.1 $(vi), A = F_*(1)$. Hence $A = G_i$. Now, it is easy to show that (A, T(Q)) is connected and compact. In continue we prove that each $F \in \mathcal{F}$, is a closed, compact set in (A, T(Q)). For this, let $F \in \mathcal{F}$ and $x \in \overline{F}$. Then, there is a $y \in F_*(x) \cap F$. Since $y \in F$ and $y \to x \in F$, we get $x \in F$. Hence $\overline{F} = F$. Now, Since (A, T(Q)) is compact, F is compact. \Box

Theorem 4.3. (i) *BL*-algebra (A, T(Q)) is not a T_1 and T_2 topological space. (ii) *BL*-algebra (A, T(Q)) is a T_0 topological space iff, for each $1 \neq x \in A$, there is a $F \in \mathcal{F}$ such that $x \notin F$. *Proof.* (i) (A, T(Q)) is not a T_1 and T_2 topological space because for each $G \in T(Q)$, $1 \in G$ if and only if G = A.

(*ii*) Suppose for each $1 \neq x \in A$, there is a $F \in \mathcal{F}$ such that $x \notin F$. We prove that (A, T(Q)) is a T_0 topological space. For this, let $1 \neq x \in A$. Then for some $F \in \mathcal{F}, x \notin F$. Since $1 \to x = x$, then $1 \notin F_{\star}(x)$. Moreover, since $(A, \to T(Q))$ is a left topological BL-algebra, by [[2], Proposition(4.2)], (A, T(Q))is a T_0 topological space. Conversely, let (A, T(Q)) is a T_0 topological space and $1 \neq x \in A$. Then for some $F \in \mathcal{F}, 1 \notin F_{\star}(x)$. Hence $x = 1 \to x \notin F$. \Box

Theorem 4.4. The set $T(Q^*) = \{G \subseteq A : \forall x \in G \exists F \in \mathcal{F} \text{ s.t } F^*_{\star}(x) \subseteq G\}$ is the topology induced by Q^* on BL-algebra A such that $(A, T(Q^*))$ is a topological BL-algebras.

Proof. By the similar argument as Theorem 4.1, we can prove that $T(Q^*)$ is the topology induced by Q^* on A. By Lemma 3.2(v), $(A, T(Q^*))$ is a topological BL-algebra.

Theorem 4.5. (i) BL-algebra $(A, T(Q^*))$ is connected iff, $\mathcal{F} = \{A\}$, (ii) \mathcal{F} has only a proper filter iff, each $F \in \mathcal{F}$ is a component.

Proof. (i) Let $\mathcal{F} = \{A\}$. Then it is easy to prove that $T(Q^*) = \{\phi, A\}$. Hence $(A, T(Q^*))$ is connected.

Conversely, let $\mathcal{F} \neq \{A\}$. Then, there is a filter $F \in \mathcal{F}$ such that $F \neq A$. Since for each $x \in F$, $F_{\star}^*(x) \subseteq F$, we conclude that $F \in T(Q^*)$. Let $y \in \overline{F}$. Then there is a $z \in F_{\star}^*(y) \cap F$. This proves that $y \in F$. Hence F is closed. Now, since F is a closed and open subset of A, then A is not connected.

(*ii*) Let \mathcal{F} has a proper filter F. By the similar argument as (*i*), we get that F is closed and open. We show that F is connected. Let G_1 and G_2 be in $T(Q^*)$ and $F = (F \cap G_1) \cup (F \cap G_2)$. Without loss of generality, Suppose that $1 \in F \cap G_1$, then $F \subseteq F_*^*(1) \subseteq G_1$. Hence $F \cap G_1 = F$, which implies that F is connected. Therefore, F is a component.

Conversely, suppose each $F \in \mathcal{F}$ is a component. If F_1 and F_2 are in \mathcal{F} , then $F_1 \cap F_2$ is in \mathcal{F} and is component. Hence $F_1 = F_1 \cap F_2 = F_2$.

Recall that a topological space (X, \mathcal{U}) is regular if for each $x \in G \in \mathcal{U}$ there is a $U \in \mathcal{U}$ such that $x \in U \subseteq \overline{U} \subseteq G$.

Theorem 4.6. BL-algebra $(A, T(Q^*))$ is a regular space.

Proof. First we prove that for each $F \in \mathcal{F}$ and $x \in A$, $\overline{F_{\star}^*(x)} = F_{\star}^*(x)$. Let $y \in \overline{F_{\star}^*(x)}$. Then there is a $z \in F_{\star}^*(y) \cap F_{\star}^*(x)$. Hence $y \equiv^F z \equiv^F x$ which implies that $y \in F_{\star}^*(x)$. Therefore, $\overline{F_{\star}^*(x)} = F_{\star}^*(x)$. Now if $x \in G \in T(Q^*)$, then for some a $F \in \mathcal{F}$, $x \in \overline{F_{\star}^*(x)} = F_{\star}^*(x) \subseteq G$. Hence $(A, T(Q^*))$ is a regular space.

Theorem 4.7. On BL-algebra $(A, T(Q^*))$ the following statements are equivalent.

(i) $(A, T(Q^*))$ is a T_0 space, (ii) $\bigcap_{F \in \mathcal{F}} F^*_{\star}(1) = \{1\},$ (iii) $(A, T(Q^*))$ is a T_1 space, (iv) $(A, T(Q^*))$ is a T_2 space.

Proof. $(i \Rightarrow ii)$ Let $(A, T(Q^*))$ be a T_0 space and $1 \neq x \in A$. By [[2], Proposition(4.2)], there is a $F \in \mathcal{F}$ such that $1 \notin F^*_{\star}(x)$. Hence $x \notin F$. This implies that $x \notin F^*_{\star}(1)$. Therefore, $x \notin \bigcap_{F \in \mathcal{F}} F^*_{\star}(1)$.

 $(ii \Rightarrow i)$ Let $\bigcap_{F \in \mathcal{F}} F^*_{\star}(1) = \{1\}$ and $1 \neq x \in A$. Then for some a $F \in \mathcal{F}$, $x \notin F$. Hence $1 \notin F^*_{\star}(x)$. Now by [[2], Proposition(4.2)], $(A, T(Q^*))$ is a T_0 space.

By Theorems 4.4 and 4.6, $(A, T(Q^*))$ is a regular topological BL-algebra. Hence by [[2], Theorem(4.7)], the statements (*ii*), (*iii*) and (*iv*) are equivalent.

Example 4.8. In Example 3.4, For each $a \in [0, 1)$ and $x \in [0, 1]$

$$F_{a*}(x) = \begin{cases} [0,x] & , x \leq a, \\ [0,1] & , x > a. \end{cases} F_{a*}^{-1}(x) = \begin{cases} [x,1] & , x \leq a, \\ (a,1] & , x > a. \end{cases}$$
$$F_{a*}^{*}(x) = \begin{cases} x & , x < a, \\ a & , x = a \\ (a,1] & , x > a. \end{cases}$$

If T(Q) is the induced topology by Q and $G \in T(Q)$, then for each $x \in G$, there is a $a \in [0,1)$ such that $F_{a\star}^*(x) \subseteq G$. Hence $[0,x] \subseteq G$ or G = [0,1]. If $G \in T(Q)$ and $G \neq [0,1]$, then for each $x \in G$, $[0,x] \subseteq G$. If $g = \sup G$, then G = [0,g] or [0,g). Therefore $T(Q) = \{[0,x] : x \in [0,1]\} \cup \{[0,x) : x \in [0,1]\}$. Also if $T(Q^*)$ is topology induced by Q^* and $G \in T(Q^*)$, then for each $x \in G$, there is a $a \in [0,1)$ such that $F_{a\star}^*(x) \subseteq G$. Hence if $G \in T(Q^*)$, then for some $a \in [0,1)$, $a \in G$ or $(a,1] \subseteq G$.

Now since for each $a \in [0,1)$, $F_{a*}^*(1) = (a,1]$, we get that $\bigcap_{a \in [0,1)} F_{a*}^*(1) = \{1\}$. Hence by Theorems 4.4, 4.6 and 4.7, $(A, T(Q^*))$ is a T_i regular topological BL-algebra, when $0 \le i \le 2$.

Theorem 4.9. Let $(A, \rightarrow, \mathcal{U})$ be a semitopological BL-algebra and F_0 be an open proper BL-filter in A. Then, there exists a nontrivial topology \mathcal{V} on A such that $\mathcal{V} \subseteq \mathcal{U}$ and (A, \mathcal{V}) is a topological BL-algebra.

Proof. Let \mathcal{F} be a collection of BL-open filters in A which closed under finite intersection and $F_0 \in \mathcal{F}$. Let Q be the quasi-uniformity induced by \mathcal{F} . Since

 $F_0 \neq A$, by Lemma 3.1(vi), there is a $x \in A$ such that $F_{0\star}^*(x) \neq A$. So $T(Q^*)$ is a nontrivial topology. We prove that $T(Q^*) \subseteq \mathcal{U}$. Let $x \in G \in T(Q^*)$. Then, there is a $F \in \mathcal{F}$ such that $F_{\star}^*(x) \subseteq G$. Since $x \to x = 1 \in F \in \mathcal{U}$, there is a $U \in \mathcal{U}$ such that $x \in U$ and $U \to x \subseteq F$ and $x \to U \subseteq F$. If $z \in U$, then $z \to x, x \to z \in F$ and so $z \in F_{\star}^*(x)$. Hence $x \in U \subseteq G$. Therefore, $T(Q^*)$ is a nontrivial topology coaser than \mathcal{U} and so by Theorem 4.4, $(A, T(Q^*))$ is a topological BL-algebra.

Example 4.10. Let \mathcal{I} be the BL-algebra in Example 2.5(ii), and \mathcal{U} be a topology on \mathcal{I} with the base $S = \{(a, b] \cap \mathcal{I} : a, b \in \mathbb{R}\}$. We prove that $(\mathcal{I}, \to, \mathcal{U})$ is a semitopological BL-algebra. Let $x, y \in I$, and $x \to y \in (a, b]$. If $x \leq y$, then [0, x] and (ax, y] are two open neighborhoods of x and y, respectively, such that $(0, x] \to y \subseteq (a, 1]$ and $x \to (ax, y] \subseteq (a, 1]$. If x > y and y = 0, then (0, x] and $\{0\}$ are two open neighborhoods of x and 0, respectively, such that $(0, x] \to 0 \subseteq [0, b]$ and $x \to \{0\} \subseteq [0, b]$. If x > y and $y \neq 0$, then (y/b, y/a] and (ax, bx] are two open sets of x, y, respectively, such that $(0, x] \to 0 \subseteq [0, b]$ and $x \to \{0\} \subseteq [0, b]$. If x > y and $y \neq 0$, then (y/b, y/a] and (ax, bx] are two open sets of x, y, respectively, such that $(y/b, y/a] \to y \subseteq (a, b]$ and $x \to (ax, bx] \subseteq (a, b]$. It is easy to prove that $\mathcal{F} = \{(0, 1], A\}$ is a collection of BL-filters which is closed under intersection. Now since for each $x \in A$, $A_{\star}^*(x) = A$ and $(0, 1]_{\star}^*(x) = (0, 1]$, we conclude $T(Q^*) = \{\phi, (0, 1], A\}$. By Theorem 4.9, $(A, T(Q^*))$ is a topological bL-algebra.

Recall a quasi-uniform space (X, Q) is *totally-bounded* if for each $q \in Q$, there exist sets $A_1, ..., A_n$ such that $X = \bigcup_{i=1}^{i=n} A_i$ and for each $1 \leq i \leq n$, $A_i \times A_i \subseteq q.$ (See [10])

Theorem 4.11. The following conditions on BL-algebra $(A, T(Q^*))$ are equivalent.

(i) For each $F \in \mathcal{F}$, A/F is finite, (ii) (A, Q) is totally bounded, (iii) $(A, T(Q^*))$ is compact.

Proof. $(i \Rightarrow ii)$ Let for each $F \in \mathcal{F}$, A/F be finite. We prove that (A, Q) is totally bounded. For this it is enough to prove that, for each $F \in \mathcal{F}$, there are $a_1, ..., a_n \in A$, such that for each $1 \le i \le n$, $a_i/F \times a_i/F \subseteq F_{\star}$. Let $F \in \mathcal{F}$. Since A/F is finite, there are $a_1, ..., a_n \in A$, such that $A = \bigcup_{i=1}^n a_i/F$. For each $1 \le i \le n$, $a_i/F \times a_i/F \subseteq F_{\star}$ because if $(x, y) \in a_i/F \times a_i/F$, then $x \equiv^F a_i \equiv^F y$ and so $(x, y) \in F_{\star}$. This proves that (A, Q) is totally bounded. $(ii \Rightarrow iii)$ Let (A, Q) be totally bounded and $F \in \mathcal{F}$. There exist sets $A_1, ..., A_n$, such that $\bigcup_{i=1}^{i=n} A_i = A$ and for each $1 \le i \le n$, $A_i \times A_i \subseteq F_{\star}$. Let $1 \le i \le n$ and $x, y \in A_i$. Since (x, y) and (y, x) are in F_{\star} , we get $x \equiv^F y$. This proves that $A_i = a_i/F$, for some $a_i \in A_i$.

R. A. Borzooei, N. Kouhestan

Now to prove that $(A, T(Q^*))$ is compact let $A = \bigcup_{i \in I} G_i$, where each G_i is in $T(Q^*)$. Then there are $H_1, ..., H_n \in \{G_i : i \in I\}$, such that $a_i \in H_i$, for each $1 \leq i \leq n$. Now suppose $x \in A$, then $x \in a_i/F$, for some $1 \leq i \leq n$, and so $x \in F^*_{\star}(a_i) \subseteq H_i$. Therefore, $A \subseteq \bigcup_{i=1}^n H_i$, which shows that $(A, T(Q^*))$ is compact.

 $(iii \Rightarrow i)$ Let $F \in \mathcal{F}$. Since $\{F_{\star}^*(x) : x \in A\}$ is an open cover of A in $T(Q^*)$, then there are $a_1, ..., a_n \in A$, such that $A \subseteq \bigcup_{i=1}^n F_{\star}^*(a_i)$. Now, it is easy to see that $A/F = \{a_1/F, ..., a_n/F\}$.

In the end, we prove that the quasi-uniform Bl-algeba (A, Q) in Theorem 3.11, is T_0 bicomplition quasi-uniform of BL-algebra (A, Q).

Theorem 4.12. If quasi-uniform BL-algebra (A, Q) is T_0 , then

(i) (A, Q) is the bicompletion of (A, Q).
(ii) (A, T(Q)) is a topological BL-algebra.
(iii) A is a sub BL-algebra of A.
(iv) (A, T(Q*)) is a topological BL-algebra.

Proof. (i) By Theorem 3.11 and Lemma 2.18, $(\widetilde{A}, \widetilde{Q})$ is an unique T_0 -bicompletion quasi-uniform of (A, Q) and the mapping $i : A \to \widetilde{A}$ by $i(x) = \{W \subseteq A : W \text{ is a } T(Q^*) - neighborhood of x\}$ is a quasi-uniform embedded and $cl_{T(Q^*)}i(A) = \widetilde{A}.$

(ii) It is clear that

$$T(\widetilde{Q}) = \{ S \subseteq \widetilde{A} : \forall \mathcal{G} \in S \ \exists F \in \mathcal{F} \ s.t \ \widetilde{F_{\star}}(\mathcal{G}) \subseteq S \}$$

Let $\bullet \in \{\land, \lor, \odot\}$ and $\widetilde{\bullet} \in \{\land, \curlyvee, \odot\}$. We have to prove that for each $\mathcal{G}, \mathcal{H} \in \widetilde{A}, \widetilde{F}_{\star}(\mathcal{G}) \widetilde{\bullet} \widetilde{F}_{\star}(\mathcal{H}) \subseteq \widetilde{F}_{\star}(\mathcal{G} \widetilde{\bullet} \mathcal{H})$. Let $\mathcal{G}_{1} \in \widetilde{F}_{\star}(\mathcal{G})$ and $\mathcal{H}_{1} \in \widetilde{F}_{\star}(\mathcal{H})$. Then, there are $G \in \mathcal{G}, G_{1} \in \mathcal{G}_{1}, H \in \mathcal{H}$ and $H_{1} \in \mathcal{H}_{1}$ such that $G \times G_{1} \subseteq F_{\star}, H \times H_{1} \subseteq F_{\star}$. By Proposition 3.7, $S_{1} = \{F_{\star}^{*}(G \bullet H) : G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\}$ and $S_{2} = \{F_{\star}^{*}(G_{1} \bullet H_{1}) : G_{1} \in \mathcal{G}_{1}, H_{1} \in \mathcal{H}_{1}, F \in \mathcal{F}\}$ are bases of $\mathcal{G} \widetilde{\bullet} \mathcal{H}$ and $\mathcal{G}_{1} \widetilde{\bullet} \mathcal{H}_{1}$, respectively. We show that $\mathcal{G}_{1} \widetilde{\bullet} \mathcal{H}_{1} \in \widetilde{F}_{\star}(\mathcal{G} \widetilde{\bullet} \mathcal{H})$. For this, it is enough to show that $F_{\star}^{*}(G \bullet H) \times F_{\star}^{*}(G_{1} \bullet H_{1}) \subseteq F_{\star}$. Let $(y, y_{1}) \in F_{\star}^{*}(G \bullet H) \times F_{\star}^{*}(G_{1} \bullet H_{1}) \subseteq F_{\star}$. Then, there are $g \in G, g_{1} \in G_{1}, h \in H$ and $h_{1} \in H_{1}$ such that $y \equiv^{F} g \bullet h$ and $y_{1} \equiv^{F} g_{1} \bullet h_{1}$. By $(B_{17}), (B_{18})$ and (B_{19}) , we have $(g_{1} \to g) \odot (h_{1} \to h) \leq (g_{1} \bullet h_{1}) \to (g \bullet h)$. It follows from $(g, g_{1}) \in G \times G_{1} \subseteq F_{\star}$ and $(h, h_{1}) \in H \times H_{1} \subseteq F_{\star}$ that $g_{1} \to g$ and $h_{1} \to h$ are in F. Hence $g_{1} \bullet h_{1} \to g \bullet h \in F$. Therefore, $y_{1} \to y \in F$ and so $(y, y_{1}) \in F_{\star}$. Thus we proved that $\widetilde{F}_{\star}(\mathcal{G}) \widetilde{\bullet} \widetilde{F}_{\star}(\mathcal{H}) \subseteq \widetilde{F}_{\star}(\mathcal{G} \widetilde{\bullet} \mathcal{H})$.

(*iii*) Let $\bullet \in \{\land, \lor, \odot, \rightarrow\}, \ \widetilde{\bullet} \in \{\land, \curlyvee, \odot, \hookrightarrow\}$ and $a, b \in A$. We shall prove

that $i(a) \bullet i(b) = i(a \bullet b)$. By Proposition 3.7, the set $S = \{F_{\star}^*(W_a \bullet W_b) : F \in \mathcal{F}, W_a, W_b \text{ are } T(Q^*) - neighborhoods \text{ of } a, b\}$ is a base for $i(a) \bullet i(b)$. Since $F_{\star}^*(a \bullet b) \subseteq F_{\star}^*(W_a \bullet W_b)$ and $F_{\star}^*(a \bullet b) \in i(a \bullet b)$, we deduce that filter $i(a) \bullet i(b)$ is contained in the filter $i(a \bullet b)$. Since they are minimal Q^* -cauchy filters, $i(a) \bullet i(b) = i(a \bullet b)$. Hence A is a sub-BL-algebra of \widetilde{A} . (iv) By Lemma 2.18, $\widetilde{Q^*} = (\widetilde{Q})^*$. Hence

$$T(\widetilde{Q^*}) = \{ S \subseteq \widetilde{A} : \forall \mathcal{G} \in S \; \exists F \in \mathcal{F} \; s.t \; \widetilde{F^*_{\star}}(\mathcal{G}) \subseteq S \}.$$

We prove that $(\widetilde{A}, T(\widetilde{Q^*}))$ is a topological BL-algebra. Let $\bullet \in \{\land, \lor, \odot, \rightarrow\}$ and $\widetilde{\bullet} \in \{\land, \curlyvee, \odot, \hookrightarrow\}$ and let $\mathcal{G}\widetilde{\bullet}\mathcal{H} \in \widetilde{F^*_*}(\mathcal{G}\widetilde{\bullet}\mathcal{H})$. We show that $\widetilde{F^*_*}(\mathcal{G})\widetilde{\bullet}\widetilde{F^*_*}(\mathcal{H}) \subseteq \widetilde{F^*_*}(\mathcal{G}\widetilde{\bullet}\mathcal{H})$. Let $\mathcal{G}_1 \in \widetilde{F^*_*}(\mathcal{G})$ and $\mathcal{H}_1 \in \widetilde{F^*_*}(\mathcal{H})$. Then, there are $G \in \mathcal{G}$, $G_1 \in \mathcal{G}_1, H \in \mathcal{H}$ and $H_1 \in \mathcal{H}_1$ such that $G \times G_1 \subseteq F^*_*$ and $H \times H_1 \subseteq F^*_*$. By Proposition 3.7, $F^*_*(G_1 \bullet H_1) \in \mathcal{G}_1\widetilde{\bullet}\mathcal{H}_1$ and $F^*_*(G \bullet H) \in \mathcal{G}\widetilde{\bullet}\mathcal{H}$. We have to prove that $\mathcal{G}_1\widetilde{\bullet}\mathcal{H}_1 \in \widetilde{F^*_*}(\mathcal{G}\widetilde{\bullet}\mathcal{H})$. For this, it is enough to show that $F^*_*(G \bullet H) \times F^*_*(G_1 \bullet H_1) \subseteq F^*_*$. Let $y \in F^*_*(G \bullet H)$ and $y_1 \in F^*_*(G_1 \bullet H_1)$. Then $y \equiv^F g \bullet h$ and $y_1 \equiv^F g_1 \bullet h_1$ for some $g \in G, g_1 \in G_1, h \in H$ and $h_1 \in H_1$. Since $(g, g_1), (h, h_1)$ are in F^*_* , we get $g \bullet h \equiv^F g_1 \bullet h_1$. Hence $(y, y_1) \in F^*_*$.

5 Conclusions

The aim of this paper is to study In [2] and [4] we study (semi)topological BL-algebras and metrizability on BL-algebras. We showed that continuity the operations \odot and \rightarrow imply continuity \land and \lor . Also, we found some conditions under which a locally compact topological BL-algebra become metrizable. But in there we can not answer some questions, for example:

(i) Is there a topology \mathcal{U} on BL-algera A such that (A, \mathcal{U}) be a (semi)topological BL-algebra?

(*ii*) Is there a topology \mathcal{U} on a BL-algebra A such that (A, \mathcal{U}) be a compact connected topological BL-algebra?

(*iii*) Is there a topological BL-algebra (A, \mathcal{U}) such that T_0, T_1 and T_2 spaces be equivalent?

(*iv*) If $(A, \rightarrow, \mathcal{U})$ is a semitopological BL-algebra, is there a topology \mathcal{V} coarsere than \mathcal{U} or finer than \mathcal{U} such that (A, \mathcal{V}) be a (semi)topological BL-algebra?

Now in this paper, we answered to some above questions and got some interesting results as mentioned in abstract.

References

- [1] A. Arhangel'skii, M. Tkachenko, *Topological groups and related structures*, Atlantis press, 2008.
- [2] R. A. Borzooei, G. R. Rezaei, N. Kouhestani, On (semi)topological BLalgebra, Iranian Journal of Mathematical Sciences and Informatics 6(1) (2011), 59-77.
- [3] R. A. Borzooei, G. R. Rezaei, N. Kouhestani, Metrizability on (semi)topological BL-algebra, Soft Computing, 16 (2012), 1681-1690.
- [4] R. A. Borzooei, G. R. Rezaei, N. Kouhestani, Separation axioms in (semi)topological quotient BL-algebras, Soft Computing, 16 (2012), 1219-1227.
- [5] N. Bourbaki, *Elements of mathematics general topology*, Addison-Wesley Publishing Company, 1966.
- [6] D. Busneag, D. Piciu, Boolean BL-algebra of fractions, Annals of University of Craiova, Math. Comp. Soi. Ser., 31 (2004), 1-19.
- [7] L. C. Ciungu, Convergences in Perfect BL-algebras, Mathware Soft Computing, 14 (2007) 67-80.
- [8] J. Chvalina, B. Smetana, Algebraic Spaces and Set Decompositions, Ratio Mathematica, 34 (2018), 67-76.
- [9] A. Dinola, L. Leustean, Compact Representations of BL-algebra, Arch. Math. Logic, 42 (2003), 737-761.
- [10] P. Fletcher, W.F.Lindgren, *Quasi-uniform Spaces*, Lecture Notes in Pure and Applied Mathematics, Marcel dekker, New York, 77, 1982.
- [11] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer academic publishers, 1998.
- [12] M. Haveshki, A. Borumand Saeid, E. Eslami, Some Types of Filters in BL-algebras, Soft computing, 10 (2006), 657-664.
- [13] M. Haveshki, E. Eslami and A. Borumand Saeid, A topology induced by uniformity on BL-algebras, Mathematical logic Quarterly, 53(2) (2007), 162-169.
- [14] S. Hoskova-Mayerova, An Overview of Topological and Fuzzy Topological Hypergroupoids, Ratio Mathematica, 33 (2017), 21-38.

Quasi-Uniformity on BL-algebras

- [15] T. Husain, Introduction to topological groups, W. B. Sunders Company, 1966.
- [16] H.P.A. Künzi, Quasi-uniform spaces-eleven years later, Top. Proc. 18, (1993), 143-171.
- [17] H.P.A. Künzi, J.Marin, S.Romaguera, *Quasi-Uniformities on Topologi*cal semigroups and Bicompletion, Semigroups Forum, 62 (2001), 403-422.
- [18] H.P.A. Künzi, S. Romaguera, O. Sipacheva, The Doitchinov completion of a regular paratopological group, Serdica math. J., 24 (1998), 73-88.
- [19] J. Marin, S. Romaguera, Bicompleting the left quasi-uniformity of a paratopological group, Archiv Math. (Basel), 70 (1998), 104-110.
- [20] D. Marxen, Uniform semigroups, Math. Ann., 202 (1973), 27-36.
- [21] J. Mi Ko, Y. C. Kim, Closure operators on BL-algebras, Commun. Korean Math. Soc., 19(2) (2004), 219-232.
- [22] M.G. Murdeshwar, S.A. Naimpally, Quasi-Uniform Topological Spaces, 1966
- [23] A. Rezaei, A. Borumand Saeid, R. A. Borzooei, *Relation between Hilbert Algebras and BE-Algebras*, Applications and Applied Mathematics, 8(2) (2013), 573 584.
- [24] A. Weil, sur les espaces a structure uniforme et sur la topologiebgeneral, Gauthier-Villars, Paris, 1973.