Quasi-Uniformity on $B L$-algebras

R.A. Borzooei ${ }^{*}$ N. Kouhestani ${ }^{\dagger}$
Received: 05-06-2018 Accepted: 15-10-2018. Published: 18-12-2018
doi:10.23755/rm.v35i0.423
(c)Borzooei, Kouhestani

Abstract

In this paper, by using the notation of filter in a BL-algebra A, we introduce the quasi-uniformity Q and uniformity Q^{*} on A. Then we make the topologies $T(Q)$ and $T\left(Q^{*}\right)$ on A and show that $(A, \wedge, \vee, \odot, T(Q))$ is a compact connected topological BL-algebra and $\left(A, T\left(Q^{*}\right)\right)$ is a topological BL-algebra. Also we study Q^{*}-cauchy filters and minimal Q^{*}-filters on BL-algebra A and prove that the bicompletion $(\widetilde{A}, \widetilde{Q})$ of quasi-uniform BL-algebra (A, Q) is a topological BL-algebra. 2010 MSC: 06B10, 03G10. Keywords : $B L$-algebra, (semi)topological $B L$-algebra, filter, Quasiuniforme space, Bicompletion

1 Introduction

BL-algebras have been introduced by Hájek [11] in order to investigate manyvalued logic by algebraic means. His motivations for introducing BL-algebras

[^0]R. A. Borzooei, N. Kouhestan

were of two kinds. The first one was providing an algebraic counterpart of a propositional logic, called Basic Logic, which embodies a fragment common to some of the most important many-valued logics, namely Lukasiewicz Logic, Gödel Logic and Product Logic. This Basic Logic (BL for short) is proposed as "the most general" many-valued logic with truth values in $[0,1]$ and BL-algebras are the corresponding Lindenbaum-tarski algebras. The second one was to provide an algebraic mean for the study of continuous t-norms (or triangular norms) on [0,1]. In 1973, André Weil [24] introduced the concept of a uniform space as a generalization of the concept of a metric space in which many non-topological invariant can be defined. This concept of uniformity fits naturally in the study of topological groups. The study of quasi-uniformities started in 1948 with Nachbin's investigations on uniform preordered spaces. In 1960, Á. Csaszar introduced quasi-uniform spaces and showed that every topological space is quasi-uniformizable. This result established an interesting analogy between metrizable spaces and general topological spaces. Just as a metrizable space can be studied with reference to particular compatible metric(s), a topological space can be studied with reference to particular compatible quasi-uniformity(ies). In this and some other respects, a quasi-uniformity is a more natural generalization of a metric than is a uniformity. Quasi-uniform structures were also studied in algebraic structures. In particular the study of paratopological groups and asymmetrically normed linear spaces with the help of quasi-uniformities is well known. See for example, [17], [18], [19], [20]. In the last ten years many mathematicians have studied properties of BL-algebras endowed with a topology. For example A. Di Nola and L. Leustean [9] studied compact representations of BL-algebras, L. C. Ciungu [7] investigated some concepts of convergence in the class of perfect BL-algebras, J. Mi Ko and Y. C. Kim [21] studied relationships between closure operators and BL-algebras.
In [2] and [4] we study (semi)topological BL-algebras and metrizability on BL-algebras. We showed that continuity the operations \odot and \rightarrow imply continuity \wedge and \vee. Also, we found some conditions under which a locally compact topological BL-algebra become metrizable. But in there we can not answer some questions, for example:
(i) Is there a topology \mathcal{U} on BL-algebra A such that (A, \mathcal{U}) be a (semi)topological BL-algebra?
(ii) Is there a topology \mathcal{U} on a BL-algebra A such that (A, \mathcal{U}) be a compact connected topological BL-algebra?
(iii) Is there a topological BL-algebra (A, \mathcal{U}) such that T_{0}, T_{1} and T_{2} spaces be equivalent?
(iv) If $(A, \rightarrow, \mathcal{U})$ is a semitopological BL-algebra, is there a topology \mathcal{V} coarsere than \mathcal{U} or finer than \mathcal{U} such that (A, \mathcal{V}) be a (semi)topological

Quasi-Uniformity on BL-algebras

BL-algebra?

Now in this paper, we answer to some above questions and get some interesting results as mentioned in abstract.

2 Preliminary

Recall that a set X with a family $\mathcal{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ of its subsets is called a topological space, denoted by (X, \mathcal{U}), if $X, \emptyset \in \mathcal{U}$, the intersection of any finite numbers of members of \mathcal{U} is in \mathcal{U} and the arbitrary union of members of \mathcal{U} is in \mathcal{U}. The members of \mathcal{U} are called open sets of X and the complement of $X \in \mathcal{U}$, that is $X \backslash U$, is said to be a closed set. If B is a subset of X, the smallest closed set containing B is called the closure of B and denoted by \bar{B} (or $c l_{u} B$). A subset P of X is said to be a neighborhood of $x \in X$, if there exists an open set U such that $x \in U \subseteq P$. A subfamily $\left\{U_{\alpha}: \alpha \in J\right\}$ of \mathcal{U} is said to be a base of \mathcal{U} if for each $x \in U \in \mathcal{U}$ there exists an $\alpha \in J$ such that $x \in U_{\alpha} \subseteq U$, or equivalently, each U in \mathcal{U} is a union of members of $\left\{U_{\alpha}\right\}$. Let \mathcal{U}_{x} denote the totality of all neighborhoods of x in X. Then a subfamily \mathcal{V}_{x} of \mathcal{U}_{x} is said to form a fundamental system of neighborhoods of x, if for each U_{x} in \mathcal{U}_{x}, there exists a V_{x} in \mathcal{V}_{x} such that $V_{x} \subseteq U_{x} .(X, \mathcal{U})$ is said to be compact, if each open covering of X is reducible to a finite open covering. Also (X, \mathcal{U}) is said to be disconnected if there are two nonempty, disjoint, open subsets $U, V \subseteq X$ such that $X=U \cup V$, and connected otherwise. The maximal connected subset containing a point of X is called the component of that point. Topological space (X, \mathcal{U}) is said to be:
(i) T_{0} if for each $x \neq y \in X$, there is one in an open set excluding the other,
(ii) T_{1} if for each $x \neq y \in X$, each are in an open set not containing the other,
(iii) T_{2} if for each $x \neq y \in X$, both are in two disjoint open set.(See [1])

Definition 2.1. [1] Let $(A, *)$ be an algebra of type 2 and \mathcal{U} be a topology on A. Then $\mathcal{A}=(A, *, \mathcal{U})$ is called a
(i) left (right) topological algebra if for all $a \in A$, the map $*_{a}: A \rightarrow A$ is defined by $x \rightarrow a * x(x \rightarrow x * a)$ is continuous, or equivalently, for any x in A and any open set U of $a * x(x * a)$, there exists an open set V of x such that $a * V \subseteq U(V * a \subseteq U)$.
(ii) semitopological algebra if \mathcal{A} is a right and left topological algebra.
(iii) topological algebra if the operation $*$ is continuous, or equivalently, if for any x, y in A and any open set (neighborhood) W of $x * y$, there exist two open sets (neighborhoods) U and V of x and y, respectively, such that $U * V \subseteq W$.

R. A. Borzooei, N. Kouhestan

Proposition 2.2. [1] Let $(A, *)$ be a commutative algebra of type 2 and \mathcal{U} be a topology on A. Then right and left topological algebras are equivalent. Moreover, $(A, *, \mathcal{U})$ is a semitopological algebra if and only if it is right or left topological algebra.

Definition 2.3. [1] Let A be a nonempty set and $\left\{*_{i}\right\}_{i \in I}$ be a family of operations of type 2 on A and \mathcal{U} be a topology on A. Then
(i) $\left(A,\left\{*_{i}\right\}_{i \in I}, \mathcal{U}\right)$ is a right(left) topological algebra if for any $i \in I,\left(A, *_{i}, \mathcal{U}\right)$ is a right (left) topological algebra.
(ii) $\left(A,\left\{*_{i}\right\}_{i \in I}, \mathcal{U}\right)$ is a semitopological (topological) algebra if for all $i \in I$, $\left(A, *_{i}, \mathcal{U}\right)$ is a semitopological (topological) algebra.

Definition 2.4. [11] A $B L$-algebra is an algebra $\mathcal{A}=(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ of type $(2,2,2,2,0,0)$ such that $(A, \wedge, \vee, 0,1)$ is a bounded lattice, $(A, \odot, 1)$ is a commutative monoid and for any $a, b, c \in A$,

$$
c \leq a \rightarrow b \Leftrightarrow a \odot c \leq b, \quad a \wedge b=a \odot(a \rightarrow b), \quad(a \rightarrow b) \vee(b \rightarrow a)=1 .
$$

Let A be a $B L$-algebra. We define $a^{\prime}=a \rightarrow 0$ and denote $\left(a^{\prime}\right)^{\prime}$ by $a^{\prime \prime}$. The $\operatorname{map} c: A \rightarrow A$ by $c(a)=a^{\prime}$, for any $a \in A$, is called the negation map. Also, we define $a^{0}=1$ and $a^{n}=a^{n-1} \odot a$, for all natural numbers n.

Example 2.5. [11] (i) Let " \odot " and " \rightarrow " on the real unit interval $I=[0,1]$ be defined as follows:

$$
x \odot y=\min \{x, y\} \quad x \rightarrow y= \begin{cases}1 & , x \leq y \\ y & , \text { otherwise } .\end{cases}
$$

Then $\mathcal{I}=(I, \min , \max , \odot, \rightarrow, 0,1)$ is a BL-algebra.
(ii) Let \odot be the usual multiplication of real numbers on the unit interval $I=[0,1]$ and $x \rightarrow y=1$ iff, $x \leq y$ and y / x otherwise. Then $\mathcal{I}=(I, \min , \max , \odot, \rightarrow, 0,1)$ is a BL-algebra.

Proposition 2.6. [11] Let A be a $B L$-algebra. The following properties hold.

$$
\begin{aligned}
& \left(B_{1}\right) x \odot y \leq x, y \text { and } x \odot 0=0, \\
& \left(B_{2}\right) x \leq y \text { implies } x \odot z \leq y \odot z, \\
& \left(B_{3}\right) x \leq y \text { iff } x \rightarrow y=1, \\
& \left(B_{4}\right) 1 \rightarrow x=x, 1 \odot x=x, \\
& \left(B_{5}\right) y \leq x \rightarrow y, \\
& \left(B_{6}\right) x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z=y \rightarrow(x \rightarrow z), \\
& \left(B_{7}\right) x \vee y=((x \rightarrow y) \rightarrow y) \wedge((y \rightarrow x) \rightarrow x), \\
& \left(B_{8}\right) x \leq y \Rightarrow x \rightarrow z \geq y \rightarrow z, z \rightarrow x \leq z \rightarrow y,
\end{aligned}
$$

Quasi-Uniformity on BL-algebras

$$
\begin{aligned}
& \left(B_{9}\right) x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y), \\
& \left(B_{10}\right) x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z), \\
& \left(B_{11}\right) x \rightarrow(y \wedge z)=(x \rightarrow y) \wedge(x \rightarrow z), \\
& \left(B_{12}\right)(y \wedge z) \rightarrow x=(y \rightarrow x) \vee(z \rightarrow x), \\
& \left(B_{13}\right)(y \vee z) \rightarrow x=(y \rightarrow x) \wedge(z \rightarrow x), \\
& \left(B_{14}\right) x \rightarrow y \leq x \odot z \rightarrow y \odot z, \\
& \left(B_{15}\right)(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z, \\
& \left(B_{16}\right)(x \rightarrow y) \odot(a \rightarrow z) \leq(x \vee a) \rightarrow(y \vee z), \\
& \left(B_{17}\right)(x \rightarrow y) \odot(a \rightarrow z) \leq(x \wedge a) \rightarrow(y \wedge z), \\
& \left(B_{18}\right)(x \rightarrow y) \odot(a \rightarrow z) \leq(x \odot a) \rightarrow(y \odot z) .
\end{aligned}
$$

Definition 2.7. [11] A filter of a BL-algebra A is a nonempty set $F \subseteq A$ such that $x, y \in F$ implies $x \odot y \in F$ and if $x \in F$ and $x \leq y$ imply $y \in F$, for any $x, y \in A$.

It is easy to prove that if F is a filter of a $B L$-algebra A, then for each $x, y \in F, x \wedge y, x \vee y$ and $x \rightarrow y$ are in F

Proposition 2.8. [11] Let F be a subset of BL-algebra A such that $1 \in F$. Then the following conditions are equivalent.
(i) F is a filter.
(ii) $x \in F$ and $x \rightarrow y \in F$ imply $y \in F$.
(iii) $x \rightarrow y \in F$ and $y \rightarrow z \in F$ imply $x \rightarrow z \in F$.

Proposition 2.9. [11] Let F be a filter of a BL-algebra A. Define $x \equiv^{F}$ $y \Leftrightarrow x \rightarrow y, y \rightarrow x \in F$. Then \equiv^{F} is a congruence relation on A. Moreover, if $x / F=\left\{y \in A: y \equiv^{F} x\right\}$, then
(i) $x / F=y / F \Leftrightarrow y \equiv^{F} x$,
(ii) $x / F=1 / F \Leftrightarrow x \in F$.

Definition 2.10. [2] (i) Let A be a BL-algebra and $\left(A,\left\{*_{i}\right\}, \mathcal{U}\right)$ be a semitopological (topological) algebra, where $\left\{*_{i}\right\} \subseteq\{\wedge, \vee, \odot, \rightarrow\}$, then $\left(A,\left\{*_{i}\right\}, \mathcal{U}\right)$ is called a semitopological (topological) $B L$-algebra.

Remark 2.11. If $\left\{*_{i}\right\}=\{\wedge, \vee, \odot, \rightarrow\}$, we consider $\mathcal{A}=(A, \mathcal{U})$ instead of $(A,\{\wedge, \vee, \odot, \rightarrow\}, \mathcal{U})$, for simplicity.

Proposition 2.12. [2] Let $(A,\{\odot, \rightarrow\}, \mathcal{U})$ be a topological BL-algebra. Then (A, \mathcal{U}) is a topological BL-algebra.

Notation. From now on, in this paper, we use of BL-filter instead of filter in BL-algebras.

R. A. Borzooei, N. Kouhestan

Definition 2.13. [10] Let X be a non-empty set. A family \mathcal{F} of nonempty subsets of X is called a filter on X if $(i) X \in \mathcal{F}$, (ii) for each F_{1}, F_{2} of elements of $\mathcal{F}, F_{1} \cap F_{2} \in \mathcal{F}$ and, (iii) if $F \in \mathcal{F}$ and $F \subseteq G$, then $G \in \mathcal{F}$.

A subset \mathcal{B} of a filter \mathcal{F} on X is said to be a base of \mathcal{F} if every set of \mathcal{F} contains a set of \mathcal{B}.
If \mathcal{F} is a family of nonempty subsets of X, then there exists the smallest filter on X containing \mathcal{F}, denoted with $\operatorname{fil}(\mathcal{F})$ and called generated filter by \mathcal{F}.

Definition 2.14. [10] A quasi-uniformity on a set X is a filter Q on X such that
(i) $\triangle=\{(x, x) \in X \times X: x \in A\} \subseteq q$, for each $q \in Q$,
(ii) for each $q \in Q$, there is a $p \in Q$ such that $p \circ p \subseteq q$, where

$$
p \circ p=\{(x, y) \in X \times X: \exists z \in A \text { s.t }(x, z),(z, y) \in p\} .
$$

The pair (X, Q) is called a quasi-uniform space.
If Q is a quasi-uniformity on a set $X, q \in Q$ and $q^{-1}=\{(x, y):(y, x) \in$ $q\}$, then $Q^{-1}=\left\{q^{-1}: q \in Q\right\}$ is also a quasi-uniformity on X called the conjugate of Q. It is well-known that if Q satisfies condition: $q \in Q$ implies $q^{-1} \in Q$, then Q is a uniformity. Furthermore, $Q^{*}=Q \vee Q^{-1}$ is a uniformity on X. If Q and R are quasi-uniformities on X and $Q \subseteq R$, then Q is called coarser than R. A subfamily \mathcal{B} of quasi-uniformity Q is said to be a base for Q if each $q \in Q$ contains some member of \mathcal{B}.(See [10])

Proposition 2.15. [22] Let \mathcal{B} be a family of subsetes of $X \times X$ such that
(i) $\triangle \subseteq q$, for each $q \in \mathcal{B}$,
(ii) for $q_{1}, q_{2} \in \mathcal{B}$, there exists a $q_{3} \in \mathcal{B}$ such that $q_{3} \subseteq q_{1} \cap q_{2}$,
(iii) for each $q \in \mathcal{B}$, there is a $p \in \mathcal{B}$ such that $p \circ p \subseteq q$.

Then, there is the unique quasiuniformity $Q=\{q \subseteq X \times X$: for some $p \in$ $\mathcal{B}, p \subseteq q\}$ on X for which \mathcal{B} is a base.

The topology $T(Q)=\{G \subseteq X: \forall x \in G \exists q \in Q$ s.t $q(x) \subseteq G\}$ is called the topology induced by the quasi-uniformity Q.

Definition 2.16. [10] (i) A filter \mathcal{G} on quasi-uniform space (X, Q) is called Q^{*}-cauchy filter if for each $U \in Q$, there is a $G \in \mathcal{G}$ such that $G \times G \subseteq U$.
(ii) A quasi-uniform space (X, Q) is called bicomplete if each Q^{*}-cauchy filter converges with respect to the topology $T\left(Q^{*}\right)$.
(iii) A bicompletion of a quasi-uniform space (X, Q) is a bicomplete quasiuniform space (Y, \mathcal{V}) that has a $T\left(\mathcal{V}^{*}\right)$-dense subspace quasi-unimorphic to
(X, Q).
(iv) A Q^{*}-cauchy filter on a quasi-uniform space (X, Q) is minimal provided that it contains no Q^{*}-cauchy filter other than itself.

Lemma 2.17. [10] Let \mathcal{G} be a Q^{*}-cauchy filter on a quasi-uniform space (X, Q). Then, there is exactly one minimal Q^{*}-cauchy filter coarser than \mathcal{G}. Furthermore, if \mathcal{B} is a base for \mathcal{G}, then $\{q(B): B \in \mathcal{B}$ and q is a symetric member of $\left.Q^{*}\right\}$ is a base for the minimal Q^{*}-cauchy filter coarser than \mathcal{G}.

Lemma 2.18. [10] Let (X, Q) be a T_{0} quasi-uniform space and \tilde{X} be the family of all minimal Q^{*}-cauchy filters on (A, Q). For each $q \in Q$, let

$$
\widetilde{q}=\{(\mathcal{G}, \mathcal{H}) \in \widetilde{X} \times \widetilde{X}: \exists G \in \mathcal{G} \text { and } H \in \mathcal{H} \text { s.t } G \times H \subseteq q\}
$$

and $\widetilde{Q}=\operatorname{fil}\{\widetilde{q}: q \in Q\}$. Then the following statements hold:
(i) $(\widetilde{X}, \widetilde{Q})$ is a T_{0} bicomplete quasi-uniform space and (X, Q) is a quasiuniformly embedded as a $T\left(\widetilde{\left(Q^{*}\right)}\right)$-dense subspace of $(\widetilde{X}, \widetilde{Q})$ by the map i : $X \rightarrow \widetilde{X}$ such that, for each $x \in X, i(x)$ is the $T\left(Q^{*}\right)$-neighborhood filter at x. Furthermore, the uniformities \widetilde{Q}^{*} and $\widetilde{\left(Q^{*}\right)}$ coincide.

Notation. From now on, in this paper we let A be a $B L$-algebra and \mathcal{F} be a family of BL-filters in A which is closed under intersection, unless otherwise state.

3 Quasi-uniformity on $B L$-algebras

In this section, by using of BL-filters we introduce a quasi-uniformity Q on BL-algebra A and stay some properties it. We show that (A, Q) is not a T_{1} and T_{2} quasi-uniform space but it is a T_{0} quasi-uniform space. Also we study Q^{*}-cauchy filters, minimal Q^{*}-cauchy filters and we make a quasiuniform space $(\widetilde{A}, \widetilde{Q})$ of minimal Q^{*}-cauchy filters of (A, Q) which admits the structure of a BL-algebra.

Lemma 3.1. Let F be a BL-filter of BL-algebra A and $F_{\star}(x)=\{y: y \rightarrow$ $x \in F\}$, for each $x \in A$. Then for each $x, y \in A$, the following properties hold.
(i) $x \leq y$ implies $F_{\star}(x) \subseteq F_{\star}(y)$,
(ii) $F_{\star}(x) \wedge F_{\star}(y)=F_{\star}(x \wedge y)=F_{\star}(x) \cap F_{\star}(y)$,
(iii) $F_{\star}(x) \vee F_{\star}(y) \subseteq F_{\star}(x \vee y)$,
(iv) $F_{\star}(x) \odot F_{\star}(y) \subseteq F_{\star}(x \odot y)$,
(v) If for each $a \in A, a \odot a=a$, then $F_{\star}(x) \odot F_{\star}(y)=F_{\star}(x \odot y)$,

R. A. Borzooei, N. Kouhestan

(vi) $x \in F \Leftrightarrow 1 \in F_{\star}(x) \Leftrightarrow F_{\star}(x)=A$,
(vii) For $a, b \in A$, if $a \vee b \in F_{\star}(x)$, then $a, b \in F_{\star}(x)$,
(viii) If $y \in F_{\star}(x)$, then $F_{\star}(y) \subseteq F_{\star}(x)$.

Proof. (i) Let $x, y \in A$, such that $x \leq y$ and $z \in F_{\star}(x)$. Then by $\left(B_{8}\right)$, $z \rightarrow x \leq z \rightarrow y$. Since F is a BL-filter and $z \rightarrow x \in F, z \rightarrow y$ is in F and so $z \in F_{\star}(y)$.
(ii) Let $x, y \in A$, such that $a \in F_{\star}(x)$ and $b \in F_{\star}(y)$. Then $a \rightarrow x \in F$ and $b \rightarrow y \in F$ and so $(a \rightarrow x) \odot(b \rightarrow y) \in F$. Since by $\left(B_{17}\right),(a \rightarrow$ $x) \odot(b \rightarrow y) \leq(a \wedge b) \rightarrow(x \wedge y)$, we get $(a \wedge b) \rightarrow(x \wedge y) \in F$. Thus, $a \wedge b \in F_{\star}(x \wedge y)$. Now, if $a \in F_{\star}(x \wedge y)$, since $a \rightarrow(x \wedge y) \in F$ and by $\left(B_{11}\right), a \rightarrow(x \wedge y)=(a \rightarrow x) \wedge(a \rightarrow y)$, we conclude that $a \rightarrow x \in F$ and $a \rightarrow y \in F$. Hence $a \in F_{\star}(x) \cap F_{\star}(y)$. Finally, let $a \in F_{\star}(x) \cap F_{\star}(y)$. Since $a=a \wedge a$, then $a \in F_{\star}(x) \wedge F_{\star}(y)$.
(iii), (iv) The proof is similar to the proof of (ii), by some modification.
(v) Let $x, y \in A$ such that $z \in F_{\star}(x \odot y)$. Then $z \rightarrow(x \odot y) \in F$. By $\left(B_{8}\right)$, $z \rightarrow(x \odot y) \leq z \rightarrow x$ and $z \rightarrow(x \odot y) \leq z \rightarrow y$ which imply that $z \rightarrow x, z \rightarrow$ $y \in F$. Hence z is in both $F_{\star}(x)$ and $F_{\star}(y)$ and so $z=z \odot z \in F_{\star}(x) \odot F_{\star}(y)$. (vi) The proof is clear.
(vii), (viii) The proof come from by $\left(B_{13}\right)$ and (B_{15}).

Lemma 3.2. Let F be a BL-filter of BL-algebra A. Define $F_{\star}=\{(x, y) \in$ $\left.A \times A: y \in F_{\star}(x)\right\}$ and $F_{\star}^{*}=F_{\star} \cap F_{\star}^{-1}$. Then
(i) $F_{\star}^{-1}=\{(x, y) \in A \times A: x \rightarrow y \in F\}$,
(ii) $F_{\star}^{*}=\left\{(x, y) \in A \times A: x \equiv^{F} y\right\}=F_{\star}^{*^{-1}}$,
(iii) $F_{\star}^{*}(x)=\left\{y: x \equiv^{F} y\right\}$,
(iv) $F_{\star}^{-1}(x) \rightarrow y \subseteq F_{\star}(x \rightarrow y)$,
(v) If $\bullet \in\{\wedge, \vee, \odot, \rightarrow\}$, then $F_{\star}^{*}(x) \bullet F_{\star}^{*}(y) \subseteq F_{\star}^{*}(x \bullet y)$.

Proof. The proof of $(i),(i i)$ and (iii) are clear.
(iv) Let $a \in F_{\star}^{-1}(x) \rightarrow y$. Then there exists a $z \in F_{\star}^{-1}(x)$ such that $a=z \rightarrow y$ and $x \rightarrow z \in F$. By $\left(B_{10}\right),(z \rightarrow y) \rightarrow(x \rightarrow y) \geq x \rightarrow z$. Since F is a filter, $(z \rightarrow y) \rightarrow(x \rightarrow y) \in F$. Hence $a=z \rightarrow y \in F_{\star}(x \rightarrow y)$.
(v) Let $a \in F_{\star}^{*}(x)$ and $b \in F_{\star}^{*}(y)$. Then by (iii), $a \equiv^{F} x$ and $b \equiv^{F} y$. By Proposition 2.9, $a \bullet b \equiv^{F} x \bullet y$. Therefore, $a \bullet b \in F_{\star}^{*}(x \bullet y)$.

Theorem 3.3. Let \mathcal{F} be a family of BL-filters of BL-algebra A which is closed under finite intersection. Then the set $\mathcal{B}=\left\{F_{\star}: F \in \mathcal{F}\right\}$ is a base for the unique quasi-uniformity $Q=\left\{q \subseteq A \times A: \exists F \in \mathcal{F}\right.$ s.t $\left.F_{\star} \subseteq q\right\}$. Moreover, $Q^{*}=\left\{q \subseteq A \times A: \exists F \in \mathcal{F}\right.$ s.t $\left.F_{\star}^{*} \subseteq q\right\}$.

Proof. We prove that \mathcal{B} satisfies in conditions (i), (ii) and (iii) of Proposition 2.15. For (i), it is easy to see that for each $F \in \mathcal{F}, \triangle \subseteq F_{\star}$. Let $F_{1}, F_{2} \in \mathcal{F}$
and $F=F_{1} \cap F_{2}$. If $(x, y) \in F_{\star}$, then $y \rightarrow x \in F=F_{1} \cap F_{2}$. Hence $(x, y) \in F_{1 \star} \cap F_{2 \star}$. This concludes that $F_{\star} \subseteq F_{1 \star} \cap F_{2 \star}$ and so (ii) is true. Finally for (iii), let $F \in \mathcal{F}$ and $(x, y) \in F_{\star} \circ F_{\star}$. Then there is a $z \in A$ such that (x, z) and (z, y) are both in F_{\star}. Hence $z \rightarrow x$ and $y \rightarrow z$ are in F. Since F is a filter and by $\left(B_{15}\right),(y \rightarrow z) \odot(z \rightarrow x) \leq y \rightarrow x$, we conclude that $y \rightarrow x \in F$. Hence $F_{\star} \circ F_{\star} \subseteq F_{\star}$ and so (iii) is true. Therefore, by Proposition 2.15, Q is a unique quasi-uniformity on A for which \mathcal{B} is a base.

Now, we prove that

$$
Q^{*}=\left\{q \subseteq A \times A: \exists F \in \mathcal{F} \text { s.t } F_{\star}^{*} \subseteq q\right\} .
$$

First we prove that $\mathcal{P}=\left\{q \subseteq A \times A: \exists F \in \mathcal{F}\right.$ s.t $\left.F_{\star}^{*} \subseteq q\right\}$ is a uniformity on A. With a similar argument as above, we get $\left\{F_{\star}^{*}: F \in \mathcal{F}\right\}$ is a base for the quasi-uniformity $\mathcal{P}=\left\{q \subseteq A \times A: \exists F \in \mathcal{F}\right.$ s.t $\left.F_{\star}^{*} \subseteq q\right\}$. To prove that \mathcal{P} is a uniformity we have to show that for each $q \in \mathcal{P}, q^{-1}$ is in \mathcal{P}. Suppose $q \in \mathcal{P}$. Then there exists a $F \in \mathcal{F}$, such that $F_{\star}^{*} \subseteq q$. By Lemma 3.2(ii), $F_{\star}^{*}=F_{\star}^{*^{-1}}$. Hence $F_{\star}^{*} \subseteq q^{-1}$ and so $q^{-1} \in \mathcal{P}$. Thus \mathcal{P} is a uniformity on A which contains Q. Since $Q^{*}=Q \vee Q^{-1}$, then $Q^{*} \subseteq \mathcal{P}$. On the other hand, if $q \in \mathcal{P}$, then there is a $F \in \mathcal{F}$ such that $F_{\star}^{*} \subseteq q$. Since $F_{\star}^{*}=F_{\star} \cap F_{\star}^{-1} \in Q^{*}$, we get that $q \in Q^{*}$. Therefore, $Q^{*}=\mathcal{P}$.

In Theorem 3.3, we call Q is quasi-uniformity induced by \mathcal{F}, the pair (A, Q) is quasi-uniform BL-algebra and the pair $\left(A, Q^{*}\right)$ is uniform BLalgebra.

Notation. From now on, \mathcal{F}, Q and Q^{*} are as in Theorem 3.3.
Example 3.4. Let \mathcal{I} be the BL-algebra in Example 2.5 (i), and for each $a \in[0,1), F_{a}=(a, 1]$. Then F_{a} is a BL-filter in \mathcal{I} and easily proved that for each $a, b \in[0,1), F_{a} \cap F_{b}=F_{a \wedge b}$. Hence $\mathcal{F}=\left\{F_{a}\right\}_{a \in[0,1)}$ is a family of $B L$-filters which is closed under intersection. For each $a \in[0,1)$,

$$
F_{a \star}=(a, 1] \times[0,1], F_{a \star}^{-1}=[0,1] \times(a, 1] \text { and } F_{a \star}^{*}=(a, 1] \times(a, 1] .
$$

By Theorem 3.3, $Q=\{q: \exists a \in[0,1)$ s.t $(a, 1] \times[0,1] \subseteq q\}$ and $Q^{*}=\{q:$ $\exists a \in[0,1)$ s.t $(a, 1] \times(a, 1] \subseteq q\}$.

Recall that a map f from a (quasi) uniform space (X, Q) into a (quasi) uniform space (Y, R) is (quasi) uniformly continuous, if for each $V \in R$, there exists a $U \in Q$ such that $(x, y) \in U$ implies $(f(x), f(y)) \in V$. If $f:(X, Q) \hookrightarrow(Y, R)$ is a quasi-uniform continuous map between quasi-uniform spaces, then f : $\left(X, Q^{*}\right) \hookrightarrow\left(Y, R^{*}\right)$ is a uniform continuous map. (See [10])

R. A. Borzooei, N. Kouhestan

Proposition 3.5. In BL-algebra A, for each $a \in A$, the mappings $t_{a}(x)=$ $a \wedge x, r_{a}(x)=a \vee x, l_{a}(x)=a \odot x$ and $L_{a}(x)=a \rightarrow x$ of quasi-uniform BL-algebra (A, Q) into quasi-uniform BL-algebra (A, Q) are quasi-uniformly continuous. Moreover, they are uniformly continuous mappings of uniform BL-algebra $\left(A, Q^{*}\right)$ into uniform BL-algebra $\left(A, Q^{*}\right)$.

Proof. Let $q \in Q$. Then, there is a $F \in \mathcal{F}$ such that $F_{\star} \subseteq q$. If $(x, y) \in F_{\star}$, then $y \rightarrow x \in F$. By $\left(B_{10}\right)(a \wedge y) \rightarrow(a \wedge x) \geq y \rightarrow x$ which implies that $(a \wedge y) \rightarrow(a \wedge x) \in F \subseteq q$. Hence t_{a} is quasi-uniform continuous. Moreover, $t_{a}:\left(A, Q^{*}\right) \hookrightarrow\left(A, Q^{*}\right)$ is uniform continuous. In a similar fashion and by use of $\left(B_{16}\right),\left(B_{14}\right)$ and $\left(B_{9}\right)$, we can prove that, respectively, r_{a}, l_{a} and L_{a} are quasi-uniform continuous of $(A, Q) \hookrightarrow(A, Q)$ and are uniform continuous of $\left(A, Q^{*}\right) \hookrightarrow\left(A, Q^{*}\right)$.

Let (X, Q) be a (quasi)uniform space and \mathcal{B} be a base for it. Recall (X, Q) is
(i) T_{0} quasi-uniform if (x, y) and (y, x) are in $\bigcap_{U \in \mathcal{B}} U$, then $x=y$, for each $x, y \in X$,
(ii) T_{1} quasi-uniform if $\triangle=\bigcap_{U \in \mathcal{B}} U$,
(iii) T_{2} quasi-uniform if $\triangle=\bigcap_{U \in \mathcal{B}} U^{-1} \circ U$. (See [10])

Theorem 3.6. Quasi-uniform BL-algebra (A, Q) is not T_{1} and T_{2} quasiuniform. If $\{1\} \in \mathcal{F}$, then (A, Q) is a T_{0} quasi-uniform space and uniform BL-algebra $\left(A, Q^{*}\right)$ is T_{0}, T_{1} and T_{2} quasi-uniform space.

Proof. Let $x, y \in A$ and $F \in \mathcal{F}$. Since $y \rightarrow 1=1 \in F$, we get that $(1, y) \in$ $\bigcap_{F \in \mathcal{F}} F_{\star}$. Hence (A, Q) is not T_{0} quasi-uniform. Also since $x \rightarrow 1=y \rightarrow 1 \in$ F, we conclude that $(1, x),(1, y) \in F_{\star}$. Hence $(x, y) \in F_{\star}^{-1} \circ F_{\star}$ which implies that $\triangle \neq \bigcap_{F \in \mathcal{F}} F_{\star}^{-1} \circ F_{\star}$. So (A, Q) is not T_{2} quasi-unifom
Let $\{1\} \in \mathcal{F}$ and (x, y) and (y, x) be in $\bigcap_{F \in \mathcal{F}} F_{\star}$. Then for each $F \in \mathcal{F}$, $x \rightarrow y$ and $y \rightarrow x$ are in F. Hence $x \equiv \equiv^{\{1\}} y$, which implies that $x=y$. Therefore, (A, Q) is T_{0} quasi-uniform. With a similar argument as above, we can prove that $\left(A, Q^{*}\right)$ is a T_{0} and T_{1} quasi-uniform space. To verify T_{2} quasi-uniformity, let $(x, y) \in \bigcap_{F \in \mathcal{F}} F_{\star}^{*^{-1}} \circ F_{\star}^{*}$. Then for each $F \in \mathcal{F}$ there is a $z \in A$ such that $(x, z) \in F_{\star}^{*-1}$ and $(z, y) \in F_{\star}^{*}$. By Lemma 3.2(ii), $x \equiv^{F} y$. Since $\{1\} \in \mathcal{F}$, we get that $x=y$. Therefore, $\left(A, Q^{*}\right)$ is a T_{2} quasi-uniform space.

Proposition 3.7. Let \mathcal{B} be a base for a Q^{*}-cauchy filter \mathcal{G} on quasi-uniform BL-algebra (A, Q). Then the set $\left\{F_{\star}^{*}(B): F \in \mathcal{F}, B \in \mathcal{B}\right\}$ is a base for the uniqe minimal Q^{*}-cauchy filter coarser than \mathcal{G}.

Quasi-Uniformity on BL-algebras

Proof. By Lemma 2.17, the set $\left\{q(B): B \in \mathcal{B}, q^{-1}=q \in Q^{*}\right\}$ is a base for the unique minimal Q^{*}-cauchy filter \mathcal{G}_{0} coarser than \mathcal{G}. Let $q^{-1}=q \in Q^{*}$ and $B \in \mathcal{B}$. Then for some $F \in \mathcal{F}, F_{\star}^{*} \subseteq q$. So, $F_{\star}^{*}(B) \subseteq q(B)$. Now, it is easy to prove that the set $\left\{F_{\star}^{*}(B): F \in \mathcal{F}, B \in \mathcal{B}\right\}$ is a base for \mathcal{G}_{0}.

Proposition 3.8. \mathcal{F} is a base for a minimal Q^{*}-cauchy filter on quasiuniform BL-algebra (A, Q).

Proof. Let $\mathcal{C}=\{S \subseteq A: \exists F \in \mathcal{F}$ s.t $F \subseteq S\}$. It is easy to prove that \mathcal{C} is a filter and \mathcal{F} is a base for it. We prove that \mathcal{C} is a Q^{*}-cauchy filter. For this, let $q \in Q$. There is a $F \in \mathcal{F}$ such that $F_{\star} \subseteq q$. Since F is a filter, clearly $F \times F \subseteq F_{\star} \subseteq q$. Hence \mathcal{C} is a Q^{*}-cauchy filter. Now, by Proposition 3.7, the set $\left\{F_{\star}^{*}\left(F_{1}\right): F, F_{1} \in \mathcal{F}\right\}$ is a base for the unique minimal Q^{*}-cauchy filter \mathcal{F}_{0} coarser than \mathcal{C}. To complete proof we show that for each $F, F_{1} \in \mathcal{F}$, $F_{\star}^{*}\left(F_{1}\right)=F_{1}$. Let $F, F_{1} \in \mathcal{F}$. If $y \in F_{\star}^{*}\left(F_{1}\right)$, then for some $x \in F_{1}, x \equiv^{F} y$. By Proposition 2.9, $y \in F_{1}$. Hence $F_{\star}^{*}\left(F_{1}\right) \subseteq F_{1}$. Clearly, $F_{1} \subseteq F_{\star}^{*}\left(F_{1}\right)$. Therefore, $F_{1}=F_{\star}^{*}\left(F_{1}\right)$. Thus proved that \mathcal{F} is a base for \mathcal{F}_{0}.

Proposition 3.9. The set $\mathcal{B}=\left\{F_{\star}^{*}(0): F \in \mathcal{F}\right\}$ is a base for a minimal Q^{*}-cauchy filter on quasi-uniform BL-algebra (A, Q).

Proof. Let $\mathcal{C}=\left\{S \subseteq A: \exists F \in \mathcal{F}\right.$ s.t $\left.F_{\star}^{*}(0) \subseteq S\right\}$. It is easy to prove that \mathcal{C} is a filter and the set $\mathcal{B}=\left\{F_{*}^{*}(0): F \in \mathcal{F}\right\}$ is a base for it. To prove that \mathcal{C} is a Q^{*}-cauchy filter, let $q \in Q$. There is a $F \in \mathcal{F}$ such that $F_{\star} \subseteq q$. If $x, y \in F_{\star}^{*}(0)$, then $x \equiv^{F} y$ and so $(x, y) \in F_{\star}^{*} \subseteq F_{\star} \subseteq q$. This prove that $F_{\star}^{*}(0) \times F_{\star}^{*}(0) \subseteq q$. Hence \mathcal{C} is a Q^{*}-cauchy filter. By Proposition 3.7, the set $\left\{F_{\star}^{*}\left(F_{\star}^{*}(0)\right): F \in \mathcal{F}\right\}$ is a base for the uniqe minimal Q^{*}-cauchy filter \mathcal{I} coarser than \mathcal{C}. But it is easy to pove that fo each $F \in \mathcal{F}, F_{\star}^{*}\left(F_{\star}^{*}(0)\right)=F_{\star}^{*}(0)$. Therefore, \mathcal{B} is a base for \mathcal{I}.

Lemma 3.10. Let \mathcal{G} and \mathcal{H} be Q^{*}-cauchy filters on quasi-uniform BL-algebra (A, Q). If $\bullet \in\{\wedge, \vee, \odot, \rightarrow\}$, then $\mathcal{G} \bullet \mathcal{H}=\{G \bullet H: G \in \mathcal{G}, H \in \mathcal{H}\}$ is a Q^{*}-cauchy filter base on quasi-uniform BL-algebra (A, Q).

Proof. Let $\mathcal{C}=\{S \subseteq A: \exists G, H$ s.t $G \in \mathcal{G}, H \in \mathcal{H}, G \bullet H \subseteq S\}$. It is easy to prove that \mathcal{C} is a filter and the set $\mathcal{B}=\{G \bullet H: G \in \mathcal{G}, H \in \mathcal{H}\}$ is a base for it. We prove that \mathcal{C} is a Q^{*}-cauchy filter. For this, let $q \in Q$. Then for some a $F \in \mathcal{F}, F_{\star} \subseteq q$. Since \mathcal{G}, \mathcal{H} are Q^{*}-cauchy filters, there are $G \in \mathcal{G}$ and $H \in \mathcal{H}$ such that $G \times G \subseteq F_{\star}$ and $H \times H \subseteq F_{\star}$. We show that $G \bullet H \times G \bullet H \subseteq F_{\star} \subseteq q$. Let $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$. Then $\left(g_{1}, g_{2}\right),\left(g_{2}, g_{1}\right),\left(h_{1}, h_{2}\right),\left(h_{2}, h_{1}\right)$ are in F_{\star}. So $g_{1} \equiv^{F} g_{2}$ and $h_{1} \equiv^{F} h_{2}$. By Proposition 2.9, $g_{1} \bullet h_{1} \equiv^{F} g_{2} \bullet h_{2}$, which implies that $\left(g_{1} \bullet h_{1}, g_{2} \bullet h_{2}\right) \in F_{\star}$.

R. A. Borzooei, N. Kouhestan

Theorem 3.11. There is a quasi-uniform space $(\widetilde{A}, \widetilde{Q})$ of minimal Q^{*}-cauchy filters of quasi-uniform BL-algebra (A, Q) that admits a $B L$-algebra structure.

Proof. Let \widetilde{A} be the family of all minimal Q^{*}-cauchy filters on (A, Q). Let for each $q \in Q$,

$$
\widetilde{q}=\{(\mathcal{G}, \mathcal{H}) \in \widetilde{A} \times \widetilde{A}: \exists G \in \mathcal{G}, H \in \mathcal{H} \text { s.t } G \times H \subseteq q\} .
$$

If $\widetilde{Q}=\operatorname{fil}\{\widetilde{q}: q \in Q\}$, then $(\widetilde{A}, \widetilde{Q})$ is a quasi-uniform space of minimal Q^{*}-cauchy filters of (A, Q). Let $\mathcal{G}, \mathcal{H} \in \widetilde{A}$. Since \mathcal{G}, \mathcal{H} are minimal Q^{*}-cauchy filters on A, then by Lemma $3.10, \mathcal{G} \wedge \mathcal{H}, \mathcal{G} \vee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \rightarrow \mathcal{H}$ are Q^{*} cauchy filter bases on A. Now, we define $\mathcal{G} \curlywedge \mathcal{H}, \mathcal{G} \curlyvee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \hookrightarrow \mathcal{H}$ as the minimal Q^{*}-cauchy filters contained $\mathcal{G} \wedge \mathcal{H}, \mathcal{G} \vee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \rightarrow \mathcal{H}$, respectively. Thus, $\mathcal{G} \curlywedge \mathcal{H}, \mathcal{G} \curlyvee \mathcal{H}, \mathcal{G} \odot \mathcal{H}$ and $\mathcal{G} \hookrightarrow \mathcal{H}$ are in \widetilde{A}. Now, we will prove that $\left(\widetilde{A}, \curlywedge, \curlyvee, \odot, \hookrightarrow, \mathcal{I}, \mathcal{F}_{0}\right)$ is a BL-algebra, where \mathcal{I} is minimal Q^{*}-cauchy filter in Proposition 3.9 and \mathcal{F}_{0} is minimal Q^{*}-cauchy filter in Proposition 3.8. For this, we consider the following steps:

(1) $(\widetilde{A}, \curlywedge, \curlyvee)$ is a bounded lattice.

Let $\mathcal{G}, \mathcal{H}, \mathcal{K} \in \widetilde{A}$. We consider the following cases:
Case 1.1: $\mathcal{G} \curlywedge \mathcal{G}=\mathcal{G}, \mathcal{G} \curlyvee \mathcal{G}=\mathcal{G}$
By Proposition 3.7, $S_{1}=\left\{F_{\star}^{*}(G): G \in \mathcal{G}, F \in \mathcal{F}\right\}$ and $S_{2}=\left\{F_{\star}^{*}\left(G_{1} \wedge G_{2}\right)\right.$: $\left.G_{1}, G_{2} \in \mathcal{G}, F \in \mathcal{F}\right\}$ are bases of the minimal Q^{*}-cauchy filters \mathcal{G} and $\mathcal{G} \curlywedge \mathcal{G}$, respectively. First, we show that $S_{2} \subseteq S_{1}$. Let $F_{\star}^{*}\left(G_{1} \wedge G_{2}\right) \in S_{2}$. Put $G=G_{1} \cap G_{2}$, then $G \in \mathcal{G}$. Let $y \in F_{\star}^{*}(G)$. Then there is a $x \in G$ such that $(x, y) \in F_{\star}^{*}$. Since $x \wedge x=x$, it follows that $(x \wedge x, y) \in F_{\star}^{*}$ and so $y \in F_{\star}^{*}\left(G_{1} \wedge G_{2}\right)$. Hence $S_{2} \subseteq S_{1}$. Therefore, $\mathcal{G} \curlywedge \mathcal{G} \subseteq \mathcal{G}$. By the minimality of $\mathcal{G}, \mathcal{G} \curlywedge \mathcal{G}=\mathcal{G}$. The proof of the other case is similar.
Case 1.2: $\mathcal{G} \curlywedge \mathcal{H}=\mathcal{H} \curlywedge \mathcal{G}, \mathcal{G} \curlyvee \mathcal{H}=\mathcal{H} \curlyvee \mathcal{G}$
By Proposition 3.7, $S_{1}=\left\{F_{\star}^{*}(G \wedge H): G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\right\}$ and $S_{2}=$ $\left\{F_{*}^{*}(H \wedge G): G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\right\}$ are bases of $\mathcal{G} \curlywedge \mathcal{H}$ and $\mathcal{H} \curlywedge \mathcal{G}$, respectively. For each $G \in \mathcal{G}$ and $H \in \mathcal{H}$, since $G \wedge H=H \wedge G$, for each $F \in \mathcal{F}, F_{\star}^{*}(G \wedge H)=F_{\star}^{*}(H \wedge G)$. Hence $\mathcal{G} \curlywedge \mathcal{H}=\mathcal{H} \curlywedge \mathcal{G}$. The proof of the other case is similar.
Case 1.3: $\mathcal{G} \curlywedge(\mathcal{H} \curlywedge \mathcal{K})=(\mathcal{G} \curlywedge \mathcal{H}) \curlywedge \mathcal{K}, \mathcal{G} \curlyvee(\mathcal{H} \curlyvee \mathcal{K})=(\mathcal{G} \curlyvee \mathcal{H}) \curlyvee \mathcal{K}$
By Proposition 3.7, the families

$$
\begin{aligned}
S_{1} & =\left\{F_{1 \star}^{*}\left(F_{2 \star}^{*}(G \wedge H) \wedge K\right): G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_{1}, F_{2} \in \mathcal{F}\right\} \\
S_{2} & =\left\{F_{1 \star}^{*}\left(G \wedge F_{2 \star}^{*}(H \wedge K): G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_{1}, F_{2} \in \mathcal{F}\right\}\right.
\end{aligned}
$$

are bases for the minimal Q^{*}-cauchy filters $(\mathcal{G} \curlywedge \mathcal{H}) \curlywedge \mathcal{K}$ and $\mathcal{G} \curlywedge(\mathcal{H} \curlywedge \mathcal{K})$, respectively. Let $F_{1 \star}^{*}\left(F_{2 \star}^{*} G \wedge(H \wedge K) \in S_{2}\right.$ and $F=F_{1} \cap F_{2}$. Then $F \in \mathcal{F}$.

Quasi-Uniformity on BL-algebras

Now, we show that $F_{\star}^{*}\left(F_{\star}^{*}(G \wedge H) \wedge K\right) \subseteq F_{1 \star}^{*}\left(G \wedge F_{2 \star}^{*}(H \wedge K)\right.$. Let $y \in$ $F_{\star}^{*}\left(F_{\star}^{*}(G \wedge H) \wedge K\right)$. Then there are $x \in F_{\star}^{*}(G \wedge H), k \in K, g \in G$ and $h \in H$ such that $y \equiv^{F} x \wedge k$ and $x \equiv^{F} g \wedge h$. Hence $y \equiv^{F}(g \wedge h) \wedge k=$ $g \wedge(h \wedge k)$, which implies that $y \in F_{\star}^{*}\left(G \wedge F_{\star}^{*}(H \wedge K) \subseteq F_{1 \star}^{*}\left(G \wedge F_{2 \star}^{*}(H \wedge K)\right.\right.$. Therefore, $\mathcal{G} \curlywedge(\mathcal{H} \curlywedge \mathcal{K}) \subseteq(\mathcal{G} \curlywedge \mathcal{H}) \curlywedge \mathcal{K}$. By the minimality of $(\mathcal{G} \curlywedge \mathcal{H}) \curlywedge \mathcal{K}$, $\mathcal{G} \curlywedge(\mathcal{H} \curlywedge \mathcal{K})=(\mathcal{G} \curlywedge \mathcal{H}) \curlywedge \mathcal{K}$. The proof of the other case is similar.
Case 1.4: $\mathcal{G} \curlywedge(\mathcal{G} \curlyvee \mathcal{H})=\mathcal{G}, \mathcal{G} \curlyvee(\mathcal{G} \curlywedge \mathcal{H})=\mathcal{G}$
It is enough to prove that $\mathcal{G} \curlywedge(\mathcal{G} \curlyvee \mathcal{H})=\mathcal{G}$. The proof of the other case is similar. By Proposition 3.7, the families $S_{1}=\left\{F_{\star}^{*}(G): G \in \mathcal{G}, F \in \mathcal{F}\right\}$ and $S_{2}=\left\{F_{1 \star}^{*}\left(G_{1} \wedge F_{2 \star}^{*}\left(G_{2} \vee H\right): G_{1}, G_{2} \in \mathcal{G}, H \in \mathcal{H}, F_{1}, F_{2} \in \mathcal{F}\right\}\right.$ are bases for the minimal Q^{*}-cauchy filters \mathcal{G} and $\mathcal{G} \curlywedge(\mathcal{G} \curlyvee \mathcal{H})$, respectively. Let $F_{1 \star}^{*}\left(G_{1} \wedge F_{2 \star}^{*}\left(G_{2} \vee H\right) \in S_{2}\right.$. Put $G=G_{1} \cap G_{2}$ and $F=F_{1} \cap F_{2}$. We prove that $F_{\star}^{*}(G) \subseteq F_{1 \star}^{*}\left(G_{1} \wedge F_{2 \star}^{*}\left(G_{2} \vee H\right)\right.$. Let $y \in F_{\star}^{*}(G)$. Then there is a $g \in G$ such that $y \equiv^{F} g$. If $h \in H$, since $g=g \wedge(g \vee h)$, then $y \equiv^{F} g \wedge(g \vee h)$ and so $y \in F_{1 \star}^{*}\left(G_{1} \wedge F_{2 \star}^{*}\left(G_{2} \vee H\right)\right.$. Hence $\mathcal{G} \curlywedge(\mathcal{G} \curlyvee \mathcal{H}) \subseteq \mathcal{G}$. By the minimality of \mathcal{G}, we conclude that $\mathcal{G} \curlywedge(\mathcal{G} \curlyvee \mathcal{H})=\mathcal{G}$.
Now the cases $1.1,1.2,1.3,1.4$ imply that $(\widetilde{A}, \curlywedge, \curlyvee)$ is a lattice.
Case 1.5: The lattice $(\widetilde{A}, \curlywedge, \curlyvee)$ is bounded.
For this, for each $\mathcal{G}, \mathcal{H} \in \widetilde{A}$, define $\mathcal{G} \leq \mathcal{H} \Leftrightarrow \mathcal{G} \curlywedge \mathcal{H}=\mathcal{G}$. It is clear that (\widetilde{A}, \leq) is a partial ordered. Now, we prove that for each $\mathcal{G} \in \widetilde{A}, \mathcal{I} \leq \mathcal{G} \leq \mathcal{F}_{0}$. First, we show that $\mathcal{I} \leq \mathcal{G}$. Let $S \in \mathcal{I}$. Then for some a $F \in \mathcal{F}, F_{\star}^{*}(0) \subseteq S$. Since \mathcal{G} is a minimal Q^{*}-cauchy filter, there is a $G \in \mathcal{G}$ such that $G \times G \subseteq F_{\star}$. We show that $F_{\star}^{*}\left(G \wedge F_{\star}^{*}(0)\right) \subseteq S$. Let $y \in F_{\star}^{*}\left(G \wedge F_{\star}^{*}(0)\right)$. Then there are $g \in G$ and $x \in F_{\star}^{*}(0)$ such that $y \equiv^{F} g \wedge x$. On the other hand, since $x \equiv^{F} 0$, we get $g \wedge x \equiv^{F} 0$. Hence $y \equiv{ }^{F} 0$ which implies that $y \in F_{\star}^{*}(0) \subseteq S$. Since $F_{\star}^{*}\left(G \wedge F_{\star}^{*}(0)\right) \in \mathcal{G} \curlywedge \mathcal{I}$, then $S \in \mathcal{G} \curlywedge \mathcal{I}$. By the minimality of $\mathcal{G} \curlywedge \mathcal{I}, \mathcal{G} \curlywedge \mathcal{I}=\mathcal{I}$. Now, we prove that $\mathcal{G} \leq \mathcal{F}_{0}$. By Proposition 3.7, the set $S_{1}=\left\{F_{\star}^{*}\left(G \wedge F_{1}\right)\right.$: $\left.G \in \mathcal{G}, F, F_{1} \in \mathcal{F}\right\}$ is a base for $\mathcal{G} \curlywedge \mathcal{F}_{0}$. Let $F_{\star}^{*}\left(G \wedge F_{1}\right) \in S_{1}$. We prove that $F_{\star}^{*}(G) \subseteq F_{\star}^{*}\left(G \wedge F_{1}\right)$. Let $y \in F_{\star}^{*}(G)$. Then, there is a $g \in G$ such that $y \equiv{ }^{F} g=g \wedge 1$. Hence $y \in F_{\star}^{*}\left(G \wedge F_{1}\right)$. By the minimality of $\mathcal{G}, \mathcal{G} \curlywedge \mathcal{F}_{0}=\mathcal{G}$.
(2) $(\widetilde{A}, \bigcirc)$ is a commutative monoid

Case 2.1: (\widetilde{A}, \odot) is a commutative semigroup.
We will prove that $\mathcal{G} \odot(\mathcal{H} \odot \mathcal{K})=(\mathcal{G} \odot \mathcal{H}) \odot \mathcal{K}$. By Proposition 3.7, the sets

$$
\begin{aligned}
& S_{1}=\left\{F_{1 \star}^{*}\left(G \odot F_{2 \star}^{*}(H \odot K)\right): G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_{1}, F_{2} \in \mathcal{F}\right\}, \\
& \left.S_{2}=\left\{F_{1 \star}^{*}\left(F_{2 \star}^{*}(G \odot H) \odot K\right)\right): G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_{1}, F_{2} \in \mathcal{F}\right\}
\end{aligned}
$$

are bases from $\mathcal{G} \odot(\mathcal{H} \odot \mathcal{K})$ and $(\mathcal{G} \odot \mathcal{H}) \odot \mathcal{K}$, respectively. Let $F_{1 \star}^{*}\left(F_{2 \star}^{*}(G \odot\right.$ $H) \odot K)) \in S_{2}, F=F_{1} \cap F_{2}$ and $y \in F_{\star}^{*}\left(G \odot F_{\star}^{*}(H \odot K)\right.$. Then there are $g \in G$, $x \in F_{\star}^{*}(H \odot K), h \in H$ and $k \in K$ such that $y \stackrel{F}{\equiv} g \odot x$ and $x \stackrel{F}{\equiv} h \odot k$. Hence

R. A. Borzooei, N. Kouhestan

$y \stackrel{F}{=} g \odot(h \odot k)=(g \odot h) \odot k$ and so $y \in F_{\star}^{*}\left(F_{\star}^{*}(G \odot H) \odot K\right) \subseteq F_{1 \star}^{*}\left(F_{2 \star}^{*}(G \odot H) \odot\right.$ $K)$). Therefore, $S_{2} \subseteq S_{1}$ which implies that $(\mathcal{G} \odot \mathcal{H}) \odot \mathcal{K} \subseteq \mathcal{G} \odot(\mathcal{H} \odot \mathcal{K})$. Now, by the minimality of $\mathcal{G} \odot(\mathcal{H} \odot \mathcal{K}), \mathcal{G} \odot(\mathcal{H} \odot \mathcal{K})=(\mathcal{G} \odot \mathcal{H}) \odot \mathcal{K}$. Finally, it is easy to prove that $\mathcal{G} \odot \mathcal{H}=\mathcal{H} \odot \mathcal{G}$.
Case 2.2: (\widetilde{A}, \odot) is a monoid
We prove that $\mathcal{G} \odot \mathcal{F}_{0}=\mathcal{G}$. By Proposition 3.7, the set $S_{2}=\left\{F_{\star}^{*}\left(G \odot F_{1}\right): G \in\right.$ $\left.\mathcal{G}, F, F_{1} \in \mathcal{F}\right\}$ is a base for $\mathcal{G} \odot \mathcal{F}_{0}$. It is clear that for each $F_{\star}^{*}\left(G \odot F_{1}\right) \in S_{2}$, $F_{\star}^{*}(G) \subseteq F_{\star}^{*}\left(G \odot F_{1}\right)$ and this implies that $\mathcal{G} \odot \mathcal{F}_{0} \subseteq \mathcal{G}$. By the minimality of $\mathcal{G}, \mathcal{G} \odot \mathcal{F}_{0}=\mathcal{G}$.
(3) $\mathcal{G} \odot(\mathcal{G} \hookrightarrow \mathcal{H})=\mathcal{G} \curlywedge \mathcal{H}$

By Proposition 3.7, the families

$$
\begin{gathered}
S_{1}=\left\{F_{\star}^{*}(G \wedge H): G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\right\}, \\
S_{2}=\left\{F_{1 \star}^{*}\left(G_{1} \odot F_{2 \star}^{*}\left(G_{2} \rightarrow H\right)\right): G_{1}, G_{2} \in \mathcal{G}, H \in \mathcal{H}, F_{1}, F_{2} \in \mathcal{F}\right\}
\end{gathered}
$$

are bases for $\mathcal{G} \curlywedge \mathcal{H}$ and $\mathcal{G} \odot(\mathcal{G} \hookrightarrow \mathcal{H})$, respectively. Let $F_{1 \star}^{*}\left(G_{1} \odot F_{2 \star}^{*}\left(G_{2} \rightarrow\right.\right.$ $H)) \in S_{2}, G=G_{1} \cap G_{2}$ and $F=F_{1} \cap F_{2}$. We will prove that $F_{\star}^{*}(G \wedge H) \subseteq$ $F_{1 \star}^{*}\left(G_{1} \odot F_{2 \star}^{*}\left(G_{2} \rightarrow H\right)\right)$. Let $y \in F_{\star}^{*}(G \wedge H)$. Then there are $g \in G$ and $h \in H$ such that $y \equiv^{F} g \wedge h$. It follows from $g \wedge h=g \odot(g \rightarrow h)$ which $y \in F_{1 \star}^{*}\left(G_{1} \odot F_{2 \star}^{*}\left(G_{2} \rightarrow H\right)\right)$. Hence $F_{\star}^{*}(G \wedge H) \subseteq F_{1 \star}^{*}\left(G_{1} \odot F_{2 \star}^{*}\left(G_{2} \rightarrow H\right)\right)$ which implies that $\mathcal{G} \odot(\mathcal{G} \hookrightarrow \mathcal{H}) \subseteq \mathcal{G} \curlywedge \mathcal{H}$. Now, by the minimality of $\mathcal{G} \curlywedge \mathcal{H}$, we get $\mathcal{G} \odot(\mathcal{G} \hookrightarrow \mathcal{H})=\mathcal{G} \curlywedge \mathcal{H}$.
(4) $\mathcal{G} \leq \mathcal{H} \hookrightarrow \mathcal{K} \Leftrightarrow \mathcal{G} \odot \mathcal{H} \leq \mathcal{K}$

First, we prove the following statements:
(a) $\mathcal{G} \leq \mathcal{H} \Leftrightarrow \mathcal{G} \hookrightarrow \mathcal{H}=\mathcal{F}_{0}$
(b) $\mathcal{G} \hookrightarrow(\mathcal{H} \hookrightarrow \mathcal{K})=\mathcal{G} \odot \mathcal{H} \hookrightarrow \mathcal{K}$.
(a) To prove it, let $\mathcal{G} \hookrightarrow \mathcal{H}=\mathcal{F}_{0}$. Then $\mathcal{G} \odot(\mathcal{G} \hookrightarrow \mathcal{H})=\mathcal{G} \odot \mathcal{F}_{0}=\mathcal{G}$. By (3), $\mathcal{G} \curlywedge \mathcal{H}=\mathcal{G}$ and so $\mathcal{G} \leq \mathcal{H}$.
Conversely, let $\mathcal{G} \leq \mathcal{H}$. By Proposition 3.7, the set $S=\left\{F_{\star}^{*}(G \rightarrow H): G \in\right.$ $\mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\}$ is a base for $\mathcal{G} \hookrightarrow \mathcal{H}$. Let $F_{\star}^{*}(G \rightarrow H) \in S$. We prove that $1 \in F_{\star}^{*}(G \rightarrow H)$. Since by Lemma $3.10, G \rightarrow H$ is a Q^{*}-cauchy filter base, there are $G_{1} \in \mathcal{G}$ and $H_{1} \in \mathcal{H}$ such that $\left(G_{1} \rightarrow H_{1}\right) \times\left(G_{1} \rightarrow H_{1}\right) \subseteq F_{\star}$. Put $G_{2}=G_{1} \cap G$ and $H_{2}=H_{1} \cap H$. It is easy to see that $G_{2} \wedge H_{2} \subseteq$ $F_{\star}^{*}\left(G_{2} \wedge H_{2}\right) \in \mathcal{G} \curlywedge \mathcal{H}$. Since $\mathcal{G} \curlywedge \mathcal{H}=\mathcal{G}$, there is a $G_{3} \in \mathcal{G}$ such that $G_{3} \subseteq G_{1}$ and $G_{3} \subseteq G_{2} \wedge H_{2}$. Since $G_{3} \neq \phi$, there are $g_{3} \in G_{3}, g \in G_{2}$ and $h \in H_{2}$ such that $g_{3}=g \wedge h$. Since $\left(g_{3} \rightarrow h, g \rightarrow h\right)$ and $\left(g \rightarrow h, g_{3} \rightarrow h\right)$ both are in $\left(G_{1} \rightarrow H_{1}\right) \times\left(G_{1} \rightarrow H_{1}\right) \subseteq F_{\star}$, we get $g \rightarrow h \equiv^{F} g_{3} \rightarrow h=1$ and so $1 \in F_{\star}^{*}(G \rightarrow H)$. Hence $F_{\star}^{*}(1) \subseteq F_{\star}^{*}(G \rightarrow H)$. This implies that $\mathcal{G} \hookrightarrow \mathcal{H} \subseteq \mathcal{F}_{0}$. By the minimality of $\mathcal{F}_{0}, \mathcal{G} \hookrightarrow \mathcal{H}=\mathcal{F}_{0}$. Therefore, we have (a).

Quasi-Uniformity on BL-algebras

(b) By Proposition 3.7, the families

$$
\begin{aligned}
S_{1} & =\left\{F_{1 \star}^{*}\left(G \rightarrow F_{2 \star}^{*}(H \rightarrow K)\right): G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_{1}, F_{2} \in \mathcal{F}\right\}, \\
S_{2} & =\left\{F_{1 \star}^{*}\left(F_{2 \star}^{*}(G \odot H) \rightarrow K\right): G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}, F_{1}, F_{2} \in \mathcal{F}\right\}
\end{aligned}
$$

are bases of $\mathcal{G} \hookrightarrow(\mathcal{H} \hookrightarrow \mathcal{K})$ and $(\mathcal{G} \odot \mathcal{H}) \hookrightarrow \mathcal{K}$, respectively. Let $F_{1 \star}^{*}\left(F_{2 \star}^{*}(G \odot\right.$ $H) \rightarrow K) \in S_{2}, F=F_{1} \cap F_{2}$ and $y \in F_{\star}^{*}\left(G \rightarrow F_{\star}^{*}(H \rightarrow K)\right)$. Then there are $g \in G$ and $x \in F_{*}^{*}(H \rightarrow K)$ such that $y \equiv{ }^{F} g \rightarrow x$. Also there are $h \in H$ and $k \in K$ such that $x \equiv^{F} h \rightarrow k$. Hence $y \equiv^{F} g \rightarrow x \equiv^{F} g \rightarrow(h \rightarrow$ $k)=(g \odot h) \rightarrow k$. Therefore, $y \in F_{1 \star}^{*}\left(F_{2 \star}^{*}(G \odot H) \rightarrow K\right)$. This implies that $(\mathcal{G} \odot \mathcal{H}) \hookrightarrow \mathcal{K} \subseteq \mathcal{G} \hookrightarrow(\mathcal{H} \hookrightarrow \mathcal{K})$. By the minimality of $\mathcal{G} \hookrightarrow(\mathcal{H} \hookrightarrow \mathcal{K})$, we get $\mathcal{G} \hookrightarrow(\mathcal{H} \hookrightarrow \mathcal{K})=\mathcal{G} \odot \mathcal{H} \hookrightarrow \mathcal{K}$. Hence we have (b).
Now, by (a) and (b), we have

$$
\mathcal{G} \leq \mathcal{H} \hookrightarrow \mathcal{K} \Leftrightarrow \mathcal{G} \hookrightarrow(\mathcal{H} \hookrightarrow \mathcal{K})=\mathcal{F}_{0} \Leftrightarrow(\mathcal{G} \odot \mathcal{H}) \hookrightarrow \mathcal{K}=\mathcal{F}_{0} \Leftrightarrow \mathcal{G} \odot \mathcal{H} \leq \mathcal{K} .
$$

So $\mathcal{G} \leq \mathcal{H} \hookrightarrow \mathcal{K} \Leftrightarrow \mathcal{G} \odot \mathcal{H} \leq \mathcal{K}$.
(5) $(\mathcal{G} \hookrightarrow \mathcal{H}) \curlyvee(\mathcal{H} \hookrightarrow \mathcal{G})=\mathcal{F}_{0}$

By Proposition 3.7, the set
$S=\left\{F_{1 \star}^{*}\left(F_{2 \star}^{*}\left(G_{1} \rightarrow H_{1}\right) \vee F_{3 \star}^{*}\left(H_{2} \rightarrow G_{2}\right)\right): G_{1}, G_{2} \in \mathcal{G}, H_{1}, H_{2} \in \mathcal{H}, F_{1}, F_{2}, F_{3} \in \mathcal{F}\right\}$
is a base for $(\mathcal{G} \hookrightarrow \mathcal{H}) \curlyvee(\mathcal{H} \hookrightarrow \mathcal{G})$. Let $F_{1 \star}^{*}\left(F_{2 \star}^{*}\left(G_{1} \rightarrow H_{1}\right) \vee F_{3 \star}^{*}\left(H_{2} \rightarrow\right.\right.$ $\left.\left.G_{2}\right)\right) \in S, G=G_{1} \cap G_{2}, H=H_{1} \cap H_{2}$ and $F=F_{1} \cap F_{2} \cap F_{3}$. We show that $1 \in F_{\star}^{*}\left(F_{\star}^{*}(G \rightarrow H) \vee F_{\star}^{*}(H \rightarrow G)\right)$. Let $g \in G$ and $h \in H$. Since A is a BL-algebra, we have $(g \rightarrow h) \vee(h \rightarrow g)=1$. Since $g \rightarrow h \in F_{\star}^{*}(G \rightarrow H)$ and $h \rightarrow g \in F_{\star}^{*}(H \rightarrow G)$, we have $(g \rightarrow h) \vee(h \rightarrow g) \in F_{\star}^{*}\left(F_{\star}^{*}(G \rightarrow\right.$ $\left.H) \vee F_{\star}^{*}(H \rightarrow G)\right)$ and so $1 \in F_{\star}^{*}\left(F_{\star}^{*}(G \rightarrow H) \vee F_{\star}^{*}(H \rightarrow G)\right)$. Hence $F_{\star}^{*}(1) \subseteq$ $F_{\star}^{*}\left(F_{\star}^{*}(G \rightarrow H) \vee F_{\star}^{*}(H \rightarrow G)\right)$ which implies that $(\mathcal{G} \hookrightarrow \mathcal{H}) \curlyvee(\mathcal{H} \hookrightarrow \mathcal{G}) \subseteq \mathcal{F}_{0}$. By the minimality of $\mathcal{F}_{0},(\mathcal{G} \hookrightarrow \mathcal{H}) \curlyvee(\mathcal{H} \hookrightarrow \mathcal{G})=\mathcal{F}_{0}$.

4 Some topological properties on quasi-unifom BL-algebra (A, Q)

Let $T(Q)$ and $T\left(Q^{*}\right)$ be topologies induced by Q and Q^{*}, respectively. Our goal in this section is to study (semi)topological BL-algebras $(A, T(Q))$ and $\left(A, T\left(Q^{*}\right)\right)$. We prove that $(A, \wedge, \vee, \odot, T(Q))$ is a compact connected topological BL-algebra and $\left(A, T\left(Q^{*}\right)\right)$ is a regular topological BL-algebra. We study separation axioms on $(A, T(Q))$ and $\left(A, T\left(Q^{*}\right)\right)$. Also we stay conditions under which (A, Q) becomes totally bounded. Finally, we show that if

R. A. Borzooei, N. Kouhestan

(A, Q) is a T_{0} quasi-uniform space, then the BL-algebra $(\widetilde{A}, \widetilde{Q})$ in Theorem 3.11 is the bicomplition topological BL-algebra of (A, Q).

Theorem 4.1. The set $T(Q)=\left\{G \subseteq A: \forall x \in G \exists F \in \mathcal{F}\right.$ s.t $F_{\star}(x) \subseteq$ $G\}$ is the topology induced by Q on A such that $(A,\{\wedge, \vee, \odot\}, T(Q))$ is a topological BL-algebras. Also $(A, \rightarrow, T(Q))$ is a left topological BL-algebra. Furthermore, if the negation map $c(x)=x^{\prime}$ is one to one, then $(A, T(Q))$ is a topological BL-algebra.

Proof. First we prove that $T(Q)$ is a nonempty set. For this, we prove that for each $F \in \mathcal{F}$ and each $x \in A, F_{\star}(x) \in T(Q)$. Let $F \in \mathcal{F}, x \in A$ and $y \in F_{\star}(x)$. If z is an arbitrary element of $F_{\star}(y)$, then $z \rightarrow y \in F$. Since $y \rightarrow x \in F$, by $\left(B_{15}\right)$, we get $z \rightarrow x \in F$. Hence $F_{\star}(y) \subseteq F_{\star}(x)$ which implies that $F_{\star}(x) \in T(Q)$. Now we prove that $T(Q)$ is a topology on A. Clearly, $\phi, A \in T(Q)$. Also it is easy to prove that the arbitrary union of members of $T(Q)$ is in $T(Q)$. Let G_{1}, \ldots, G_{n} be in $T(Q)$ and $x \in \bigcap_{i=1}^{i=n} G_{i}$. There are $F_{1}, \ldots, F_{n} \in \mathcal{F}$ such that $F_{i \star}(x) \subseteq G_{i}$, for $1 \leq i \leq n$. Let $F=F_{1} \cap \ldots \cap F_{n}$. Then $F \in \mathcal{F}$ and $F_{\star}(x) \subseteq F_{1 \star}(x) \cap \ldots \cap F_{n \star}(x) \subseteq \bigcap_{i=1}^{i=n} G_{i}$. Hence $T(Q)$ is a topology. Since for each $F \in \mathcal{F}, F_{\star}$ belongs to Q, then $T(Q)$ is the topology induced by Q. Now, by Lemmas 3.1, it is clear that $(A,\{\wedge, \vee, \odot\}, T(Q))$ is a topological BL-algebra. In continue, we prove that $(A, \rightarrow, T(Q))$ is a left topological BL-algebra. Let $x, y, z \in A$, and $z \in F_{\star}(y)$. By $\left(B_{9}\right)$, $(x \rightarrow z) \rightarrow(x \rightarrow y) \geq z \rightarrow y$ which implies that $(x \rightarrow z) \rightarrow(x \rightarrow y) \in F$. So $x \rightarrow z \in F_{\star}(x \rightarrow y)$. Hence $x \rightarrow F_{\star}(y) \subseteq F_{\star}(x \rightarrow y)$ and so $(A, \rightarrow, T(Q))$ is a left topological BL-algebra.
To complete the proof, suppose that the negation map c is one to one. Since $(A, \rightarrow, T(Q))$ is a topological BL-algebra, c is continuous. Now by [[2], Theorem(3.15)], $(A, T(Q))$ is a topological BL-algebra.

Theorem 4.2. BL-algebra $(A, T(Q))$ is a connected and compact space and each $F \in \mathcal{F}$, is a closed compact set in $(A, T(Q))$.
Proof. First we prove that if $\left\{G_{i}: i \in I\right\}$ is an open cover of A in $T(Q)$, then for some $i \in I, A=G_{i}$. Let $A=\bigcup_{i \in I} G_{i}$, where $G_{i} \in T(Q)$. Then, there are $i \in I$ and $F \in \mathcal{F}$ such that $1 \in G_{i}$ and $F_{\star}(1) \subseteq G_{i}$. By Lemma 3.1 $(v i), A=F_{\star}(1)$. Hence $A=G_{i}$. Now, it is easy to show that $(A, T(Q))$ is connected and compact. In continue we prove that each $F \in \mathcal{F}$, is a closed, compact set in $(A, T(Q))$. For this, let $F \in \mathcal{F}$ and $x \in \bar{F}$. Then, there is a $y \in F_{\star}(x) \cap F$. Since $y \in F$ and $y \rightarrow x \in F$, we get $x \in F$. Hence $\bar{F}=F$. Now, Since $(A, T(Q))$ is compact, F is compact.
Theorem 4.3. (i) BL-algebra $(A, T(Q))$ is not a T_{1} and T_{2} topological space. (ii) BL-algebra $(A, T(Q))$ is a T_{0} topological space iff, for each $1 \neq x \in A$, there is a $F \in \mathcal{F}$ such that $x \notin F$.

Quasi-Uniformity on BL-algebras

Proof. (i) $(A, T(Q))$ is not a T_{1} and T_{2} topological space because for each $G \in T(Q), 1 \in G$ if and only if $G=A$.
(ii) Suppose for each $1 \neq x \in A$, there is a $F \in \mathcal{F}$ such that $x \notin F$. We prove that $(A, T(Q))$ is a T_{0} topological space. For this, let $1 \neq x \in A$. Then for some $F \in \mathcal{F}, x \notin F$. Since $1 \rightarrow x=x$, then $1 \notin F_{\star}(x)$. Moreover, since $(A, \rightarrow$ $, T(Q))$ is a left topological BL-algebra, by [[2], Proposition $(4.2)],(A, T(Q))$ is a T_{0} topological space. Conversely, let $(A, T(Q))$ is a T_{0} topological space and $1 \neq x \in A$. Then for some $F \in \mathcal{F}, 1 \notin F_{\star}(x)$. Hence $x=1 \rightarrow x \notin F$.

Theorem 4.4. The set $T\left(Q^{*}\right)=\left\{G \subseteq A: \forall x \in G \exists F \in \mathcal{F}\right.$ s.t $\left.F_{\star}^{*}(x) \subseteq G\right\}$ is the topology induced by Q^{*} on BL-algebra A such that $\left(A, T\left(Q^{*}\right)\right)$ is a topological BL-algebras.

Proof. By the similar argument as Theorem 4.1, we can prove that $T\left(Q^{*}\right)$ is the topology induced by Q^{*} on A. By Lemma $3.2(v),\left(A, T\left(Q^{*}\right)\right)$ is a topological BL-algebra.

Theorem 4.5. (i) BL-algebra $\left(A, T\left(Q^{*}\right)\right)$ is connected iff, $\mathcal{F}=\{A\}$, (ii) \mathcal{F} has only a proper filter iff, each $F \in \mathcal{F}$ is a component.

Proof. (i) Let $\mathcal{F}=\{A\}$. Then it is easy to prove that $T\left(Q^{*}\right)=\{\phi, A\}$. Hence $\left(A, T\left(Q^{*}\right)\right)$ is connected.
Conversely, let $\mathcal{F} \neq\{A\}$. Then, there is a filter $F \in \mathcal{F}$ such that $F \neq A$. Since for each $x \in F, F_{\star}^{*}(x) \subseteq F$, we conclude that $F \in T\left(Q^{*}\right)$. Let $y \in \bar{F}$. Then there is a $z \in F_{\star}^{*}(y) \cap F$. This proves that $y \in F$. Hence F is closed. Now, since F is a closed and open subset of A, then A is not connected.
(ii) Let \mathcal{F} has a proper filter F. By the similar argument as (i), we get that F is closed and open. We show that F is connected. Let G_{1} and G_{2} be in $T\left(Q^{*}\right)$ and $F=\left(F \cap G_{1}\right) \cup\left(F \cap G_{2}\right)$. Without loss of generality, Suppose that $1 \in F \cap G_{1}$, then $F \subseteq F_{\star}^{*}(1) \subseteq G_{1}$. Hence $F \cap G_{1}=F$, which implies that F is connected. Therefore, F is a component.
Conversely, suppose each $F \in \mathcal{F}$ is a component. If F_{1} and F_{2} are in \mathcal{F}, then $F_{1} \cap F_{2}$ is in \mathcal{F} and is component. Hence $F_{1}=F_{1} \cap F_{2}=F_{2}$.

Recall that a topological space (X, \mathcal{U}) is regular if for each $x \in G \in \mathcal{U}$ there is a $U \in \mathcal{U}$ such that $x \in U \subseteq \bar{U} \subseteq G$.

Theorem 4.6. BL-algebra $\left(A, T\left(Q^{*}\right)\right)$ is a regular space.
Proof. First we prove that for each $F \in \mathcal{F}$ and $x \in A, \overline{F_{\star}^{*}(x)}=F_{\star}^{*}(x)$. Let
 implies that $y \in F_{\star}^{*}(x)$. Therefore, $\overline{F_{\star}^{*}(x)}=F_{\star}^{*}(x)$. Now if $x \in G \in T\left(Q^{*}\right)$, then for some a $F \in \mathcal{F}, x \in \overline{F_{\star}^{*}(x)}=F_{\star}^{*}(x) \subseteq G$. Hence $\left(A, T\left(Q^{*}\right)\right)$ is a regular space.

R. A. Borzooei, N. Kouhestan

Theorem 4.7. On BL-algebra $\left(A, T\left(Q^{*}\right)\right)$ the follwing statements are equivalent.
(i) $\left(A, T\left(Q^{*}\right)\right)$ is a T_{0} space,
(ii) $\bigcap_{F \in \mathcal{F}} F_{\star}^{*}(1)=\{1\}$,
(iii) $\left(A, T\left(Q^{*}\right)\right)$ is a T_{1} space,
(iv) $\left(A, T\left(Q^{*}\right)\right)$ is a T_{2} space.

Proof. $(i \Rightarrow i i)$ Let $\left(A, T\left(Q^{*}\right)\right)$ be a T_{0} space and $1 \neq x \in A$. By [[2], Proposition(4.2)], there is a $F \in \mathcal{F}$ such that $1 \notin F_{\star}^{*}(x)$. Hence $x \notin F$. This implies that $x \notin F_{\star}^{*}(1)$. Therefore, $x \notin \bigcap_{F \in \mathcal{F}} F_{\star}^{*}(1)$.
$(i i \Rightarrow i)$ Let $\bigcap_{F \in \mathcal{F}} F_{\star}^{*}(1)=\{1\}$ and $1 \neq x \in A$. Then for some a $F \in \mathcal{F}$, $x \notin F$. Hence $1 \notin F_{\star}^{*}(x)$. Now by [[2], Proposition(4.2)], $\left(A, T\left(Q^{*}\right)\right)$ is a T_{0} space.
By Theorems 4.4 and $4.6,\left(A, T\left(Q^{*}\right)\right)$ is a regular topological BL-algebra. Hence by [[2], Theorem(4.7)], the statements (ii), (iii) and (iv) are equivalent.

Example 4.8. In Example 3.4, For each $a \in[0,1)$ and $x \in[0,1]$

$$
\begin{gathered}
F_{a *}(x)=\left\{\begin{array}{ll}
{[0, x]} & , x \leq a, \\
{[0,1]} & , x>a .
\end{array} F_{a *}^{-1}(x)= \begin{cases}{[x, 1]} & , x \leq a, \\
(a, 1] & , x>a .\end{cases} \right. \\
F_{a *}^{*}(x)= \begin{cases}x & , x<a, \\
a & , x=a \\
(a, 1] & , x>a .\end{cases}
\end{gathered}
$$

If $T(Q)$ is the induced topology by Q and $G \in T(Q)$, then for each $x \in G$, there is a $a \in[0,1)$ such that $F_{a \star}^{*}(x) \subseteq G$. Hence $[0, x] \subseteq G$ or $G=[0,1]$. If $G \in T(Q)$ and $G \neq[0,1]$, then for each $x \in G,[0, x] \subseteq G$. If $g=\sup G$, then $G=[0, g]$ or $[0, g)$. Therefore $T(Q)=\{[0, x]: x \in[0,1]\} \cup\{[0, x): x \in[0,1]\}$. Also if $T\left(Q^{*}\right)$ is topology induced by Q^{*} and $G \in T\left(Q^{*}\right)$, then for each $x \in G$, there is a $a \in[0,1)$ such that $F_{a \star}^{*}(x) \subseteq G$. Hence if $G \in T\left(Q^{*}\right)$, then for some $a \in[0,1), a \in G$ or $(a, 1] \subseteq G$.
Now since for each $a \in[0,1), F_{a *}^{*}(1)=(a, 1]$, we get that $\bigcap_{a \in[0,1)} F_{a *}^{*}(1)=$ $\{1\}$. Hence by Theorems 4.4, 4.6 and 4.7, $\left(A, T\left(Q^{*}\right)\right)$ is a T_{i} regular topological BL-algebra, when $0 \leq i \leq 2$.

Theorem 4.9. Let $(A, \rightarrow, \mathcal{U})$ be a semitopological BL-algebra and F_{0} be an open proper $B L$-filter in A. Then, there exists a nontrivial topology \mathcal{V} on A such that $\mathcal{V} \subseteq \mathcal{U}$ and (A, \mathcal{V}) is a topological BL-algebra.

Proof. Let \mathcal{F} be a collection of BL-open filters in A which closed under finite intersection and $F_{0} \in \mathcal{F}$. Let Q be the quasi-uniformity induced by \mathcal{F}. Since

Quasi-Uniformity on BL-algebras

$F_{0} \neq A$, by Lemma 3.1 $(v i)$, there is a $x \in A$ such that $F_{0 \star}^{*}(x) \neq A$. So $T\left(Q^{*}\right)$ is a nontrivial topology. We prove that $T\left(Q^{*}\right) \subseteq \mathcal{U}$. Let $x \in G \in T\left(Q^{*}\right)$. Then, there is a $F \in \mathcal{F}$ such that $F_{\star}^{*}(x) \subseteq G$. Since $x \rightarrow x=1 \in F \in \mathcal{U}$, there is a $U \in \mathcal{U}$ such that $x \in U$ and $U \rightarrow x \subseteq F$ and $x \rightarrow U \subseteq F$. If $z \in U$, then $z \rightarrow x, x \rightarrow z \in F$ and so $z \in F_{\star}^{*}(x)$. Hence $x \in U \subseteq G$. Therefore, $T\left(Q^{*}\right)$ is a nontrivial topology coaser than \mathcal{U} and so by Theorem 4.4, $\left(A, T\left(Q^{*}\right)\right)$ is a topological BL-algebra.

Example 4.10. Let \mathcal{I} be the BL-algebra in Example 2.5(ii), and \mathcal{U} be a topology on \mathcal{I} with the base $S=\{(a, b] \cap \mathcal{I}: a, b \in \mathbb{R}\}$. We prove that $(\mathcal{I}, \rightarrow, \mathcal{U})$ is a semitopological BL-algebra. Let $x, y \in I$, and $x \rightarrow y \in(a, b]$. If $x \leq y$, then $[0, x]$ and (ax,y] are two open neighborhoods of x and y, respectively, such that $(0, x] \rightarrow y \subseteq(a, 1]$ and $x \rightarrow(a x, y] \subseteq(a, 1]$. If $x>y$ and $y=0$, then $(0, x]$ and $\{0\}$ are two open neighborhoods of x and 0 , respectively, such that $(0, x] \rightarrow 0 \subseteq[0, b]$ and $x \rightarrow\{0\} \subseteq[0, b]$. If $x>y$ and $y \neq 0$, then $(y / b, y / a]$ and $(a x, b x]$ are two open sets of x, y, respectively, such that $(y / b, y / a] \rightarrow y \subseteq(a, b]$ and $x \rightarrow(a x, b x] \subseteq(a, b]$. It is easy to prove that $\mathcal{F}=\{(0,1], A\}$ is a collection of BL-filters which is closed under intersection. Now since for each $x \in A, A_{\star}^{*}(x)=A$ and $(0,1]_{\star}^{*}(x)=(0,1]$, we conclude $T\left(Q^{*}\right)=\{\phi,(0,1], A\}$. By Theorem 4.9, $\left(A, T\left(Q^{*}\right)\right)$ is a topological $B L$-algebra.

Recall a quasi-uniform space (X, Q) is totally-bounded if for each $q \in Q$, there exist sets A_{1}, \ldots, A_{n} such that $X=\bigcup_{i=1}^{i=n} A_{i}$ and for each $1 \leq i \leq n$, $A_{i} \times A_{i} \subseteq q .($ See [10])

Theorem 4.11. The following conditions on BL-algebra $\left(A, T\left(Q^{*}\right)\right)$ are equivalent.
(i) For each $F \in \mathcal{F}, A / F$ is finite,
(ii) (A, Q) is totally bounded,
(iii) $\left(A, T\left(Q^{*}\right)\right)$ is compact.

Proof. ($i \Rightarrow i i$) Let for each $F \in \mathcal{F}, A / F$ be finite. We prove that (A, Q) is totally bounded. For this it is enough to prove that, for each $F \in \mathcal{F}$, there are $a_{1}, \ldots, a_{n} \in A$, such that for each $1 \leq i \leq n, a_{i} / F \times a_{i} / F \subseteq F_{\star}$. Let $F \in \mathcal{F}$. Since A / F is finite, there are $a_{1}, \ldots, a_{n} \in A$, such that $A=\cup_{i=1}^{n} a_{i} / F$. For each $1 \leq i \leq n, a_{i} / F \times a_{i} / F \subseteq F_{\star}$ because if $(x, y) \in a_{i} / F \times a_{i} / F$, then $x \equiv{ }^{F} a_{i} \equiv{ }^{F} y$ and so $(x, y) \in F_{\star}$. This proves that (A, Q) is totally bounded. (ii \Rightarrow iii) Let (A, Q) be totally bounded and $F \in \mathcal{F}$. There exist sets A_{1}, \ldots, A_{n}, such that $\bigcup_{i=1}^{i=n} A_{i}=A$ and for each $1 \leq i \leq n, A_{i} \times A_{i} \subseteq F_{\star}$. Let $1 \leq i \leq n$ and $x, y \in A_{i}$. Since (x, y) and (y, x) are in F_{\star}, we get $x \equiv^{F} y$. This proves that $A_{i}=a_{i} / F$, for some $a_{i} \in A_{i}$.

R. A. Borzooei, N. Kouhestan

Now to prove that $\left(A, T\left(Q^{*}\right)\right)$ is compact let $A=\bigcup_{i \in I} G_{i}$, where each G_{i} is in $T\left(Q^{*}\right)$. Then there are $H_{1}, \ldots, H_{n} \in\left\{G_{i}: i \in I\right\}$, such that $a_{i} \in H_{i}$, for each $1 \leq i \leq n$. Now suppose $x \in A$, then $x \in a_{i} / F$, for some $1 \leq i \leq n$, and so $x \in F_{\star}^{*}\left(a_{i}\right) \subseteq H_{i}$. Therefore, $A \subseteq \bigcup_{i=1}^{n} H_{i}$, which shows that $\left(A, T\left(Q^{*}\right)\right)$ is compact.
(iii $\Rightarrow i$) Let $F \in \mathcal{F}$. Since $\left\{F_{\star}^{*}(x): x \in A\right\}$ is an open cover of A in $T\left(Q^{*}\right)$, then there are $a_{1}, \ldots, a_{n} \in A$, such that $A \subseteq \bigcup_{i=1}^{n} F_{\star}^{*}\left(a_{i}\right)$. Now, it is easy to see that $A / F=\left\{a_{1} / F, \ldots, a_{n} / F\right\}$.

In the end, we prove that the quasi-uniform Bl -algeba $(\widetilde{A}, \widetilde{Q})$ in Theorem 3.11, is T_{0} bicomplition quasi-uniform of BL-algebra (A, Q).

Theorem 4.12. If quasi-uniform BL-algebra (A, Q) is T_{0}, then
(i) $(\widetilde{A}, \widetilde{Q})$ is the bicompletion of (A, Q).
(ii) $(\widetilde{A}, T(\widetilde{Q}))$ is a topological BL-algebra.
(iii) A is a sub $B L$-algebra of \widetilde{A}.
(iv) $\left(\widetilde{A}, T\left(\widetilde{Q^{*}}\right)\right)$ is a topological BL-algebra.

Proof. (i) By Theorem 3.11 and Lemma 2.18, $(\widetilde{A}, \widetilde{Q})$ is an unique T_{0}-bicompletion quasi-uniform of (A, Q) and the mapping $i: A \rightarrow \widetilde{A}$ by $i(x)=\{W \subseteq$ $A: W$ is a $T\left(Q^{*}\right)$ - neighborhood of $\left.x\right\}$ is a quasi-uniform embedded and $c l_{T\left(Q^{*}\right)} i(A)=\widetilde{A}$.
(ii) It is clear that

$$
T(\widetilde{Q})=\left\{S \subseteq \widetilde{A}: \forall \mathcal{G} \in S \exists F \in \mathcal{F} \text { s.t } \widetilde{F_{\star}}(\mathcal{G}) \subseteq S\right\}
$$

Let $\bullet \in\{\wedge, \vee, \odot\}$ and $\widetilde{\bullet} \in\{\curlywedge, \curlyvee, \odot\}$. We have to prove that for each $\mathcal{G}, \mathcal{H} \in \widetilde{A}, \widetilde{F_{\star}}(\mathcal{G}) \widetilde{\bullet} \widetilde{F}_{\star}(\mathcal{H}) \subseteq \widetilde{F_{\star}}(\mathcal{G} \bullet \mathcal{H})$. Let $\mathcal{G}_{1} \in \widetilde{F_{\star}}(\mathcal{G})$ and $\mathcal{H}_{1} \in \widetilde{F_{\star}}(\mathcal{H})$. Then, there are $G \in \mathcal{G}, G_{1} \in \mathcal{G}_{1}, H \in \mathcal{H}$ and $H_{1} \in \mathcal{H}_{1}$ such that $G \times G_{1} \subseteq F_{\star}$, $H \times H_{1} \subseteq F_{\star}$. By Proposition 3.7, $S_{1}=\left\{F_{\star}^{*}(G \bullet H): G \in \mathcal{G}, H \in \mathcal{H}, F \in \mathcal{F}\right\}$ and $S_{2}=\left\{F_{\star}^{*}\left(G_{1} \bullet H_{1}\right): G_{1} \in \mathcal{G}_{1}, H_{1} \in \mathcal{H}_{1}, F \in \mathcal{F}\right\}$ are bases of $\mathcal{G} \widetilde{\bullet} \mathcal{H}$ and $\mathcal{G}_{1} \widetilde{\bullet} \mathcal{H}_{1}$, respectively. We show that $\mathcal{G}_{1} \widetilde{\bullet} \mathcal{H}_{1} \in \widetilde{F_{\star}}(\widetilde{\mathcal{G}} \widetilde{\mathcal{H}})$. For this, it is enough to show that $F_{\star}^{*}(G \bullet H) \times F_{\star}^{*}\left(G_{1} \bullet H_{1}\right) \subseteq F_{\star}$. Let $\left(y, y_{1}\right) \in F_{\star}^{*}(G \bullet$ $H) \times F_{\star}^{*}\left(G_{1} \bullet H_{1}\right) \subseteq F_{\star}$. Then, there are $g \in G, g_{1} \in G_{1}, h \in H$ and $h_{1} \in H_{1}$ such that $y \equiv^{F} g \bullet h$ and $y_{1} \equiv^{F} g_{1} \bullet h_{1}$. By $\left(B_{17}\right),\left(B_{18}\right)$ and $\left(B_{19}\right)$, we have $\left(g_{1} \rightarrow g\right) \odot\left(h_{1} \rightarrow h\right) \leq\left(g_{1} \bullet h_{1}\right) \rightarrow(g \bullet h)$. It follows from $\left(g, g_{1}\right) \in G \times G_{1} \subseteq F_{\star}$ and $\left(h, h_{1}\right) \in H \times H_{1} \subseteq F_{\star}$ that $g_{1} \rightarrow g$ and $h_{1} \rightarrow h$ are in F. Hence $g_{1} \bullet h_{1} \rightarrow g \bullet h \in F$. Therefore, $y_{1} \rightarrow y \in F$ and so $\left(y, y_{1}\right) \in F_{\star}$. Thus we proved that $\widetilde{F_{\star}}(\mathcal{G}) \widetilde{\bullet} \widetilde{F}_{\star}(\mathcal{H}) \subseteq \widetilde{F_{\star}}(\mathcal{G} \widetilde{\bullet})$.
(iii) Let $\bullet \in\{\wedge, \vee, \odot, \rightarrow\}, \widetilde{\bullet} \in\{\curlywedge, \curlyvee, \odot, \hookrightarrow\}$ and $a, b \in A$. We shall prove

Quasi-Uniformity on BL-algebras

that $i(a) \widetilde{\bullet} i(b)=i(a \bullet b)$. By Proposition 3.7, the set $S=\left\{F_{\star}^{*}\left(W_{a} \bullet W_{b}\right)\right.$: $F \in \mathcal{F}, W_{a}, W_{b}$ are $T\left(Q^{*}\right)-$ neighborhoods of $\left.a, b\right\}$ is a base for $i(a) \widetilde{\bullet} i(b)$. Since $F_{\star}^{*}(a \bullet b) \subseteq F_{\star}^{*}\left(W_{a} \bullet W_{b}\right)$ and $F_{\star}^{*}(a \bullet b) \in i(a \bullet b)$, we deduce that filter $i(a) \widetilde{\bullet} i(b)$ is contained in the filter $i(a \bullet b)$. Since they are minimal Q^{*}-cauchy filters, $i(a) \widetilde{\bullet} i(b)=i(a \bullet b)$. Hence A is a sub-BL-algebra of \widetilde{A}.
(iv) By Lemma 2.18, $\widetilde{Q^{*}}=(\widetilde{Q})^{*}$. Hence

$$
T\left(\widetilde{Q^{*}}\right)=\left\{S \subseteq \widetilde{A}: \forall \mathcal{G} \in S \exists F \in \mathcal{F} \text { s.t } \widetilde{F_{*}^{*}}(\mathcal{G}) \subseteq S\right\}
$$

We prove that $\left(\widetilde{A}, T\left(\widetilde{Q^{*}}\right)\right)$ is a topological BL-algebra. Let $\bullet \in\{\wedge, \vee, \odot, \rightarrow\}$ and $\widetilde{\bullet} \in\{\curlywedge, \curlyvee, \odot, \hookrightarrow\}$ and let $\mathcal{G} \widetilde{\bullet} \mathcal{H} \in \widetilde{F_{*}^{*}}(\mathcal{G} \widetilde{\bullet} \mathcal{H})$. We show that $\widetilde{F_{*}^{*}}(\mathcal{G}) \widetilde{F_{*}^{*}}(\mathcal{H}) \subseteq$ $\widetilde{F_{*}^{*}}(\mathcal{G} \widetilde{\mathcal{H}})$. Let $\mathcal{G}_{1} \in \widetilde{F_{\star}^{*}}(\mathcal{G})$ and $\mathcal{H}_{1} \in \widetilde{F_{\star}^{*}}(\mathcal{H})$. Then, there are $G \in \mathcal{G}$, $G_{1} \in \mathcal{G}_{1}, H \in \mathcal{H}$ and $H_{1} \in \mathcal{H}_{1}$ such that $G \times G_{1} \subseteq F_{\star}^{*}$ and $H \times H_{1} \subseteq F_{\star}^{*}$. By Proposition 3.7, $F_{\star}^{*}\left(G_{1} \bullet H_{1}\right) \in \mathcal{G}_{1} \widetilde{\bullet} \mathcal{H}_{1}$ and $F_{\star}^{*}(G \bullet H) \in \mathcal{G} \widetilde{\bullet} \mathcal{H}$. We have to prove that $\mathcal{G}_{1} \widetilde{\bullet} \mathcal{H}_{1} \in \widetilde{F_{*}^{*}}(\mathcal{G} \widetilde{\bullet} \mathcal{H})$. For this, it is enough to show that $F_{\star}^{*}(G \bullet H) \times F_{\star}^{*}\left(G_{1} \bullet H_{1}\right) \subseteq F_{\star}^{*}$. Let $y \in F_{\star}^{*}(G \bullet H)$ and $y_{1} \in F_{\star}^{*}\left(G_{1} \bullet H_{1}\right)$. Then $y \equiv^{F} g \bullet h$ and $y_{1} \equiv^{F} g_{1} \bullet h_{1}$ for some $g \in G, g_{1} \in G_{1}, h \in H$ and $h_{1} \in H_{1}$. Since $\left(g, g_{1}\right),\left(h, h_{1}\right)$ are in F_{\star}^{*}, we get $g \bullet h \equiv^{F} g_{1} \bullet h_{1}$. Hence $\left(y, y_{1}\right) \in F_{\star}^{*}$.

5 Conclusions

The aim of this paper is to study In [2] and [4] we study (semi)topological BL-algebras and metrizability on BL-algebras. We showed that continuity the operations \odot and \rightarrow imply continuity \wedge and \vee. Also, we found some conditions under which a locally compact topological BL-algebra become metrizable. But in there we can not answer some questions, for example:
(i) Is there a topology \mathcal{U} on BL-algera A such that (A, \mathcal{U}) be a (semi)topological BL-algebra?
(ii) Is there a topology \mathcal{U} on a BL-algebra A such that (A, \mathcal{U}) be a compact connected topological BL-algebra?
(iii) Is there a topological BL-algebra (A, \mathcal{U}) such that T_{0}, T_{1} and T_{2} spaces be equivalent?
(iv) If $(A, \rightarrow, \mathcal{U})$ is a semitopological BL-algebra, is there a topology \mathcal{V} coarsere than \mathcal{U} or finer than \mathcal{U} such that (A, \mathcal{V}) be a (semi)topological BL-algebra?

Now in this paper, we answered to some above questions and got some interesting results as mentioned in abstract.

R. A. Borzooei, N. Kouhestan

References

[1] A. Arhangel'skii, M. Tkachenko, Topological groups and related structures, Atlantis press, 2008.
[2] R. A. Borzooei, G. R. Rezaei, N. Kouhestani, On (semi)topological BLalgebra, Iranian Journal of Mathematical Sciences and Informatics 6(1) (2011), 59-77.
[3] R. A. Borzooei, G. R. Rezaei, N. Kouhestani, Metrizability on (semi)topological BL-algebra, Soft Computing, 16 (2012), 1681-1690.
[4] R. A. Borzooei, G. R. Rezaei, N. Kouhestani, Separation axioms in (semi)topological quotient BL-algebras, Soft Computing, 16 (2012), 12191227.
[5] N. Bourbaki, Elements of mathematics general topology, Addison-Wesley Publishing Company, 1966.
[6] D. Busneag, D. Piciu, Boolean BL-algebra of fractions, Annals of University of Craiova, Math. Comp. Soi. Ser., 31 (2004), 1-19.
[7] L. C. Ciungu, Convergences in Perfect BL-algebras, Mathware Soft Computing, 14 (2007) 67-80.
[8] J. Chvalina, B. Smetana, Algebraic Spaces and Set Decompositions, Ratio Mathematica, 34 (2018), 67-76.
[9] A. Dinola, L. Leustean, Compact Representations of BL-algebra, Arch. Math. Logic, 42 (2003), 737-761.
[10] P. Fletcher, W.F.Lindgren, Quasi-uniform Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel dekker, New York, 77, 1982.
[11] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer academic publishers, 1998.
[12] M. Haveshki, A. Borumand Saeid, E. Eslami, Some Types of Filters in $B L$-algebras, Soft computing, 10 (2006), 657-664.
[13] M. Haveshki, E. Eslami and A. Borumand Saeid, A topology induced by uniformity on BL-algebras, Mathematical logic Quarterly, 53(2) (2007), 162-169.
[14] S. Hoskova-Mayerova, An Overview of Topological and Fuzzy Topological Hypergroupoids, Ratio Mathematica, 33 (2017), 21-38.
[15] T. Husain, Introduction to topological groups, W. B. Sunders Company, 1966.
[16] H.P.A. Künzi, Quasi-uniform spaces-eleven years later, Top. Proc. 18, (1993), 143-171.
[17] H.P.A. Künzi, J.Marin, S.Romaguera, Quasi-Uniformities on Topological semigroups and Bicompletion, Semigroups Forum, 62 (2001), 403-422.
[18] H.P.A. Künzi, S. Romaguera, O. Sipacheva, The Doitchinov completion of a regular paratopological group, Serdica math. J., 24 (1998), 73-88.
[19] J. Marin, S. Romaguera, Bicompleting the left quasi-uniformity of a paratopological group, Archiv Math. (Basel), 70 (1998), 104-110.
[20] D. Marxen, Uniform semigroups, Math. Ann., 202 (1973), 27-36.
[21] J. Mi Ko, Y. C. Kim, Closure operators on BL-algebras, Commun. Korean Math. Soc., 19(2) (2004), 219-232.
[22] M.G. Murdeshwar, S.A. Naimpally, Quasi-Uniform Topological Spaces, 1966
[23] A. Rezaei, A. Borumand Saeid, R. A. Borzooei, Relation between Hilbert Algebras and BE-Algebras, Applications and Applied Mathematics, 8(2) (2013), 573-584.
[24] A. Weil, sur les espaces a structure uniforme et sur la topologiebgeneral, Gauthier-Villars, Paris, 1973.

[^0]: *Department of Mathematics, Shahid Beheshti University, Tehran, Iran; borzooei@sbu.ac.ir
 ${ }^{\dagger}$ Department of Mathematics, Sistan and Balouchestan University, Zahedan, Iran; Kouhestani@math.usb.ac.ir

