
RATIO MATHEMATICA
ISSUE N. 30 (2016) pp. 35-43

ISSN (print): 1592-7415
(online): 2282-8214

A Recursive Variant of Schwarz Type
Domain Decomposition Methods

Frantǐsek Bubeńık, Petr Mayer
Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic

Frantisek.Bubenik@cvut.cz, Petr.Mayer@cvut.cz

Abstract

In this paper a slightly different approach to the use of the domain
decomposition method of the Schwarz type is proposed. Instead of
the standard coarse space construction we propose to use a recursive
solution on each domain. Thus we do not need to construct a coarse
space but nevertheless we are still keeping O(1) convergence speed.
For local problems we use the standard iterative solvers for which the
amount of the work for one step is O(N), where N is the number of
equations. Due to the fact that the overlapping is under our control we
can keep total work in O(N (1+γ)) operations with arbitrary positive γ.

Keywords: Domain Decomposition, Finite Element Method, Lin-
ear Systems.

2000 AMS subject classifications: 97U99

doi: 10.23755/rm.v30i1.4

1 Introduction

This paper deals with some aspects of the classic Schwarz alternating
method. There are analyzed ways how to arrange with the deceleration of
algorithms if the stepsize of a mesh for the finite element method is de-
creasing. The standard two-level method is described and some alternative
approaches to solve a number of local problems by the same method are
proposed.

35

Frantǐsek Bubeńık and Petr Mayer

2 The Schwartz alternating method

As a model problem we will solve a Poisson problem

−4u(x) = f(x), x ∈ Ω ⊆ Rd.

We use the finite element method to solve the problem. It leads to a linear
system

Ax = b . (1)

Consider functions ϕ1, . . . , ϕn as a basis and denote by Vn = span(ϕ1, . . . ,
ϕn) the linear hull of the functions, that is the set of all linear combinations
of the functions. Let us remind that Aij = a(ϕi, ϕj) and

a(u, v) =

∫
Ω

uv dΩ.

The matrix A for our problem is symmetric and positive definite. More-
over, for many interesting choices of the basis of Vn, the matrix A is sparse,
but large.

One of the possible strategies to solve the system (1) is to use a sparse
version of LU-decomposition. In most cases, fill-in which takes place along
with Gaussian elimination makes such an approach unusable. A usual choice
is then to use some iterative method. Since our matrix is a symmetric positive
definite, it seems to be more advantageous to employ the conjugate gradient
method. But this choice is still problematic because the amount of the work
is rapidly increasing with the size of the problem. Therefore there is then
more convenient to use a preconditioned conjugate gradient method with an
appropriate preconditioner.

As a preconditioner we can choose a slightly modified the Schwarz alter-
natig method, see [2]. The original description is in [1]. We can see it as
a kind of some block symmetrized Gauss-Seidel method.

2.1 Formulation of the algorithm

Let us denote by nd the number of domains. For each i ∈ I = {1, 2, . . . , nd}
we define an index set Ii =

{
i
(i)
1 , i

(i)
2 , . . . , i

(i)
ni

}
. These index sets realize a cov-

ering of I, i. e. I =

nd⋃
i=1

Ii. This covering is not required to be disjoint. We

define subspaces of Vn so that the subspace V
(i)
n is the linear hull of a cor-

responding part of the basis of Vn, that is V
(i)
n = span

j ∈ Ii
{ϕj} . Finally we

36

A Recursive Variant of Schwarz Type Domain Decomposition Methods

define subdomains
Ω(i) =

⋃
j∈Ii

supp (ϕj) , (2)

where supp (f) denotes the support of a function f . The sizes of individual
domains are n1, . . . , nnd . We can write A(i) = A(Ii, Ii) in terms of Matlab-like

notation. Matrix interpretation of local problems is N (i) = {n(i)
k,l} ∈ R

n×ni ,
where

n
(i)
k,l =

{
1 if l = i

(i)
k ,

0 otherwise.

Then
A(i) = N (i)TAN (i). (3)

The following algorithm describes the transition from x(k) to x(k+1).

Algorithm 2.1. One step of the symmetrized Schwarz method

x
(k+ 0

2nd
)

:= x(k)

for i = 1, . . . , nd

r := b− Ax(k+ i−1
2nd

)

r̃ := N (i)T r
A(i) := N (i)TAN (i)

(♣) Solve A(i)c = r̃, i. e. c = A(i)−1
r̃

x
(k+ i

2nd
)

:= x
(k+ i−1

2nd
)
+N (i)c

end for (4)

for i = 1, . . . , nd (5)

r := b− Ax(k+ 1
2

+ i−1
2nd

)

r̃ := N (nd+1−i)T r
A(nd+1−i) := N (nd+1−i)TAN (nd+1−i)

(♣) Solve A(nd+1−i)c = r̃

x
(k+ 1

2
+ i

2nd
)

:= x
(k+ 1

2
+ i−1

2nd
)
+N (nd+1−i)c

end for
end algorithm

The method used in the Algorithm 2.1 can also be viewed as a variant of the
block Gauss-Seidel method, but with the fact that the individual blocks can
overlap.
Put

P (i) = A1/2N (i)(N (i)TAN (i))−1N (i)TA1/2. (6)

37

Frantǐsek Bubeńık and Petr Mayer

Then

P (i)2
= A1/2N (i)(N (i)TAN (i))−1N (i)TA1/2A1/2N (i)(N (i)TAN (i))−1N (i)TA1/2

= A1/2N (i)A(i)−1
A(i)A(i)−1

N (i)TA1/2

= A1/2N (i)A(i)−1
N (i)TA1/2 = P (i).

It follows that P (i) is a projection, moreover A-orthogonal. Further P (i) =

P (i)T , then the projection is symmetric.

Let us denote
ε(k) = x(k) − x∗,

where x∗ denotes the solution of the problem. Errors are analyzed in terms
of the energy norm ||x||A =

√
(x, x)A, where (x, y)A = xTAy.

Let us note that A is a symmetric positive definite matrix and A(i) is
a principal minor of A. Then A(i) is also a symmetric positive definite matrix.

We have

||ε(k)||2A = ε(k)TAε(k) = ε(k)TA1/2A1/2 ε(k) = ||A1/2ε(k)||2A.

Thus

A1/2ε(k−1) = (I − P (1)) . . . (I − P (nd))(I − P (nd)) . . . (I − P (1))A1/2ε(k)

= M A1/2ε(k). (7)

Since I−P (i) is a symmetric A−orthogonal projection then M is a symmetric
matrix. And moreover, M is, according to the definition, a positive semi-
definite matrix. It can be proved that M is even a positive definite matrix.

2.2 Dependence on the dimension of Vn

For the following considerations we suppose that piecewise linear finite
elements are used. In that case n = O(1/hd), where h is the stepsize of
a mesh. If we try to keep domains with the same geometry, the amount of
elements will increase as O((H/h)d), where H is the typical size of a domain.
Then, the amount of iterations is the same, but the amount of work for one
step will increase.

On the other hand, when we keep equal the number of elements inside
a domain, then the size of the domain will decrease and then the number
of domains will increase. This leads to increasing amount of iterations and
slightly increasing work for one full step.

Usual solution is to use a coarse space. It typically means to replace each
domain by a base function. We create the coarse space and the solution of the

38

A Recursive Variant of Schwarz Type Domain Decomposition Methods

problem for the corrections on the coarse level is inserted between steps (4)
and (5) of the Algorithm 2.1. A detailed analysis is introduced, for example,
in [2]. When it is used in a right way, we get O(1) convergence speed.

2.3 Basic convergence

Let us denote
E(x) = xTAx− 2xT b. (8)

It is known that Ax = b if and only if E(x) assumes its minimum at x.
Each step in Algorithm 2.1 means the minimization of functional (8) on
a corresponding subspace and the following inequality holds for the successive
terms of the minimizing sequence

E(x(k+1)) ≤ E(x(k)). (9)

We prove the following equivalence:

Lemma 2.1. The equality in (9) occurs⇐⇒ x(k) is the accurate solution of
Ax(k) = b.

Proof. It is clear that an accurate solution is equivalent to r(k) = 0,
where r(k) = b− Ax(k).

We prove one direction of the equivalence: Suppose that x(k) is an accurate
solution and we prove the equality required. It is easy to see that if x(k) is
an accurate solution then r(k) = 0 and then the equality in (9) occurs.

Now we prove the opposite direction of the equivalence. We apply the proof
by contradiction: suppose that x(k) is not an accurate solution and sup-
pose that the equality in (9) holds. If x(k) is not an accurate solution then

r(k) 6= 0. Then there exists the least index im such that N (im)T r(k) 6= 0. It
causes a decrease at this step of Algorithm 2.1 and then the strict inequality
E(x(k+1)) < E(x(k)). This contradicts to the assumption of equality in (9)
and the proof of the equivalence in Lemma 2.1 is complete. 2

3 Recursive approach

Another possibility comes from the idea that the local problems are con-
ceptually identical as the original one. It opens a possibility to use the same
Schwarz algorithm for solving them. It means to retain domains in the same
geometry, then Ω(i) in (2) remain unchanged. On the other hand it means
that the number of degrees of freedom for a domain increases. In this case
we recommend to use the same algorithm for each domain separately.

39

Frantǐsek Bubeńık and Petr Mayer

3.1 Two - level variant

We start from the Algorithm 2.1, and we replace both steps denoted by
(♣) in the algorithm by an iterative solution for c. It means that we replace

A(i)−1
r̃ by an approximate solution of the problem A(i)c = r̃. As the method

we use again the algorithm 2.1 with ` steps.
Then the error operator has the form

M̃ = (I − P̃ (1)) . . . (I − P̃ (nd))(I − P̃ (nd)) . . . (I − P̃ (1)),

where
P̃ (i) = A1/2N (i)Q̃(i)N (i)TA1/2. (10)

Expression (N (i)TAN (i))−1 in (6) is for short denoted byQ(i) and it is replaced
in (10) by

Q̃(i) = A(i)−1/2
[
I −

(
I − A(i)1/2

M (i)A(i)1/2
)`]

A(i)−1/2
, (11)

where A(i) is from (3) and M (i) denotes the error operator to the algorithm 2.1
applied on the i−th domain. This replacement comes from the following:

Let us solve a problem Ax = b and let us use the following iterative
method

x(i+1) = x(i) +M(b− Ax(i)),

where M is a symmetric positive definite matrix. The initial approximation
is

x(0) = 0. (12)

Let x∗ = A−1b. Then

x∗ − x(i+1) = x∗ − x(i) −M(b− Ax(i)) = (I −MA)(x∗ − x(i))

and then

A1/2(x∗ − x(i+1)) = (I − A1/2MA1/2)A1/2(x∗ − x(i)).

After `−iterations we get

A1/2(x∗ − x(`)) = (I − A1/2MA1/2)`A1/2(x∗ − x(0))

and thus

x∗ − x(`) = A−1/2(I − A1/2MA1/2)`A1/2(x∗ − x(0)).

40

A Recursive Variant of Schwarz Type Domain Decomposition Methods

Since x(0) = 0 we get

x∗ − x(`) = A−1/2(I − A1/2MA1/2)`A1/2x∗ = A−1/2(I − A1/2MA1/2)`A−1/2b.

Thus

x(`) = x∗ − A−1/2(I − A1/2MA1/2)`A−1/2b

= A−1/2
[
I −

(
I − A1/2MA1/2

)`]
A−1/2b

and that is why the form of Q̃(i) in (11) and P̃ (i) in (10).

3.2 Recursive - multilevel method

When we use a two-level method we need to compute P̃ (i) in (10) and

for it there is required to know Q̃(i) from (11). For Q̃(i) there is necessary
to know M (i) and its realization comes from the solution of a local problem
on subdomains of the i−th domain. In case when these local problems are
still large then the process may be repeated again and a two-level method
becomes a recursive-multilevel method.

As to convergence of a recursive variant of the method the same facts as
in section 2.3 can be used. Then we can state that a recursive - multilevel
method converges as well and we have proved the following theorem.

Theorem 3.1. A recursive - multilevel method is convergent.

4 Cost analysis

4.1 Two levels

The work required for solving a problem of size n is

W = K n(1+β)

with K and β positive constants. Let α be a relative overlapping in one
dimension. The number of domains is nd. Then the size of a local problem
is

nloc =
n

nd
(1 + α)d

and the work needed for its solving

W = K

(
n

nd
(1 + α)d

)(1+β)

.

41

Frantǐsek Bubeńık and Petr Mayer

Thus the work for one iteration is

W = 2ndK

(
n

nd
(1 + α)d

)(1+β)

=
2(1 + α)d(1+β)

nβd
K n(1+β)

and for ` iterations on this level

W = 2`
(1 + α)d(1+β)

nβd
K n(1+β).

4.2 k levels

In the k−th level we repeat the previous considerations. We have nkd

subdomains and the size of one subdomain is nloc,k = n

(
1 + α

nd

)k
. The

problem is solved on each subdomain (2`)k times. Total work is

W = (2`)knkdK

(
n

(
1 + α

nd

)k)(1+β)

= K
(

2` n−βd (1 + α)(1+β)
)k
n(1+β).

4.3 Full recursion

We want to find such k that nloc,k = 1. We take the greatest possible k.
This is

k =
lnn

lnnd − ln(1 + α)
.

We obtain

W = K
(

2` n−βd (1 + α)(1+β)
) lnn

lnnd−ln(1+α)
n(1+β)

which is

W = K exp
(ln 2+ln `−β lnnd+(1+β) ln(1+α)) lnn

lnnd−ln(1+α)
+(1+α) lnn

.

This expression can be improved and after some manipulations we get

W = K n(1+γ),

with

γ =
ln(1 + α) + ln 2 + ln `

lnnd − ln(1 + α)
. (13)

We can see from (13) that it is possible to achieve γ arbitrary small by an
appropriate choice of α, `, nd.

42

A Recursive Variant of Schwarz Type Domain Decomposition Methods

5 Conclusion

An alternative process to the classic two-level method with a coarse space
is proposed in this paper. One of the significant advantages of the method
presented here is the fact that we can extremely reduce the memory require-
ments if this is called for.

References

[1] H. A. Schwarz, Gessamelte Mathematische Abhandlungen, volume 2,
pages 133 − 143, Springer, Berlin, (1890). First published in Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Zürich, Über einen
Grenzübergang durch alternierendes Verfahren, volume 15, (1870), pp.
272− 286.

[2] A. Toselli and O. Widlund, Domain Decomposition Methods - Algo-
rithms and Theory. Springer-Verlag, Berlin Heidelberg, (2005).

[3] M. Brezina and P. Vaněk, A black-box iterative solver based on a twolevel
Schwarz method. Computing 63(3), (1999), 233− 263.

[4] R. Varga, Matrix Iterative Analysis. Prentice Hall, first edition, (1962).

43

