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Abstract

In many real world problems, cactus graphs were considered as mod-
els from both algorithmic and theoretical point of view and this graph
is a subclass of planar graph and superclass of a tree. In this arti-
cle, the study has been carried out on some cactus graphs with cycle
blocks for obtaining results on square product labeling.
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1 Introduction

Graph labeling is one of the field in graph theory and it is the labeling of
integers to the vertices or edges, or both under particular conditions which was
introduced by A. Rosa [1967] in 1967. Graph labeling has a wide range of ap-
plications such as in X-ray crystallography, coding theory, radar, astronomy, cir-
cuit design, network theory, communication networks and database management.
Nowadays, research in labeling of graph is increasingly expanding by studing
more than 300 kinds of labelings. One such labeling is square sum labeling in-
troduced by V. Ajitha et al. [2009] and they explored some results on it. J. B.
Babujee and Babitha [2012] also worked on square sum labeling and obtained
the results on it. Further, J.Shiama [2012] has worked on square difference la-
beling and proved some results. K. G. Mirajkar and Sthavarmath [2022] initiated
square product labeling and obtained results for some class of graphs, cycle re-
lated graphs, Cartesian product of graphs and silicate and oxide networks. Khan
et al. [2010a] have studied on cactus graphs for proving the results for (2, 1)−
total labeling and for L(2, 1)− Labeling of cactus graphs in Khan et al. [2010b].
K. Kalaiarasi and Mahalakshmi [2022] shown the applications for cactus fuzzy la-
beling graphs. Further, S. Philomena, M. Pal, and K. Thirusanga Philomena et al.
[2014] investigated some results for square and cube difference labeling on cactus
graphs. In this article, the results are obtained for cactus graphs with cycle blocks
on square product labeling and applied number theory concepts to establish the
results.

All examined graphs here are finite, undirected, simple and connected. For
undefined expressions and symbols refer F.Harary [1969], for number theory con-
cepts refer Burton [2006] and for different labeling concepts we refer Gallian
[2020].

2 Preliminaries

Definition 2.1. A graph G is said to be a square product labeling (SPL), if there
exists function f : V (G) → {1, 2, 3, . . . , p} which is bijective, here p is count-
ing of vertices inducing f ∗ : E(G) → N which is injective, where f ∗(uv) =
f(u)2f(v)2 and the resulting edges are distinctly labeled.

Definition 2.2. Cactus graph Khan et al. [2010a] is a connected graph, in which
every block is a cycle or an edge, in other words, no edge belongs to more than
one cycle.
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3 Main Results
Theorem 3.1. For two cycles Cn and Cm of any lengths n and m with a common
cutvertex v admits square product labeling.

Proof. Consider the cycles Cn and Cm of any lengths n and m having a
common cutvertex v labeled by 1 with V (Cn) = {v1, v2, v3, ..., vn} and V (Cm) =
{v′

1, v
′
2, v

′
3, ..., v

′
m}, hence the number of vertices are (n + m) − 1 and edges are

2n. We consider six cases to prove the result with f : V (G) → {1, 2, 3, . . . , (n+
m)− 1}
Case 1: For n < m

f(vi) = 2i for 1 ≤ i ≤ n− 1, f(v
′

i) = f(vn−1) + 2i for 1 ≤ i ≤ m− n

f(v
′

i+1) = 2i+ 1 for m− n ≤ i ≤ m− 2

Labeling of edges acquired here are distinct, as it forms quadratic sequences of
the forms (4P (P +1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n−2} and (4P 2−1)2,
P ⩾ 1 for {f ∗(v

′

m−n+1+(i−1)v
′

m−n+2+(i−1)) : m−n ≤ i ≤ m−2}. The remaining
edges are labeled as follows,

f ∗(vvn) = (f(vn))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(vv
′

n) = (f(v
′

n))
2, f ∗(v

′

iv
′

i+1) = (f(v
′

n))
2(f(v

′

n))
2 for 1 ≤ i ≤ m− n

Case 2: For n > m

f(vi) = 2i for 1 ≤ i ≤ n− 2, f(vn−1) = 3

f(v
′

i) = f(vn−1) + 2i for 1 ≤ i ≤ m− 1

Labeling of edges acquired here are distinct, as it forms quadratic sequences of
the forms (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 3} and (4P 2 +
16P +15)2, P ⩾ 1 for {f ∗(v

′
iv

′
i+1) : m−n ≤ i ≤ m− 2}. The remaining edges

are labeled as follows,

f ∗(vvn) = (f(vn))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(vn−1vn) = (f(vn−1))
2 (f(vn))

2

Case 3: For n = m

f(vi) = 2i, 1 ≤ i ≤ (n− 1), f(v
′

i) = 2i− 1, 1 ≤ i ≤ m− 1

f(v
′

i) = f(vn−1) + 2i, 1 ≤ i ≤ m− 1

Labeling of edges acquired here are distinct, as it forms quadratic sequences of
the forms (4P (P +1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n−2} and (4P 2−1)2,
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P ⩾ 1 for {f ∗(v
′
iv

′
i+1) : m− n ≤ i ≤ m− 2}. The remaining edges are labeled

as follows,

f ∗(vvn) = (f(vn))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(v
′

mv) = (f(v
′
))2

Case 4: For n = 2P (P + 1), P ⩾ 1 and n < m

For n = 2P (P + 1), P = 1

f(v1) = 2, f(v2) = 6, f(v3) = 4, f(v
′

1) = f(v2) + 2

f(v
′

m−1 − (i− 1)) = 2i+ 1 for 1 ≤ i ≤ m− n

if n ⩾ 4, n = 2P (P + 1), P > 1

f(vi) = 2i for 1 ≤ i ≤ n− 1, f(v
′

1) = 3

f(v
′

i+1) = 2i+ 1 for 2 ≤ i ≤ m− 3

f(v
′

i+1) = f(vn−1) + 2 + 2(i− 1) for 1 ≤ i ≤ m− n

Labeling of edges acquired here are distinct, as it forms quadratic sequences of
the forms (4P (P +1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n−3} and (4P 2−1)2,
P ⩾ 1 for {f ∗(v

′

(m−1)−(i−1)v
′

(m−2)−(i−1)) : 1 ≤ i ≤ m−3}. The remaining edges
are labeled as follows,

f ∗(vvn) = (f(vn))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2, f ∗(v

′

mv) = (f(v
′
))2

f ∗(vn−1v) = (f(vn−1))
2, f ∗(v1v2) = f(v1)

2 f(v2)
2

f ∗(v2v3) = f(v2)
2 f(v3)

2, f ∗(v
′

1v
′

2) = (f(v
′

1))
2 (f(v

′

2))
2

Case 5: For n = 2P 2 + 2P + 1 m ⩾ (n− 1)

f(vi) = 2i for 1 ≤ i ≤ n− 3, f(vn−2) = (2n− 2)

f(vn−1) = (2n− 4)

f(v
′

1) = 3, f(v
′

i+1) = f(vn−2) + 2i for 1 ≤ i ≤ m− n

f(v
′

(m−n+1)+(i−1)) = 2i+ 1 for m− n ≤ i ≤ m− 2

Labeling of edges acquired here are distinct, as it forms quadratic sequences of
the forms (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 3} and (4P 2 +
16P +15)2, P ⩾ 1 for {f ∗(v

′
iv

′
i+1) : m−n ≤ i ≤ m− 2}. The remaining edges

are labeled as follows,

f ∗(vvn) = (f(vn))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(vn−1vn) = (f(vn−1))
2 (f(vn))

2, f ∗(v
′

1v
′

2) = 9 (f(vn−1) + 2))2

if n = 5, f ∗(v
′

2v
′

3) = (f(vn−1) + 2))2 (f(v
′

3))
2

f ∗(v
′

i+2v
′

i+3) = (4P 2 + 16P + 15)2 for 1 ≤ i ≤ m− 3
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Case 6: For n = 4P 2+8P +3 and n = 4(P 2+2P +1) number of vertices where
P ≥ 1
v

′
n−1 = n+m−2 and v

′
n−2 = n+m−1 and if f(v′

i) is labeled with even numbers
before the label 3 for n = 4(P 2 + 2P + 1) then change the label with preceding
vertex label. The remaining labels of both the edges and vertices are same as in
the above cases. The labels of both vertices and edges are distinct in all cases,
hence the result. 2.
Example 3.1: The square product labeling of two cycles of any lengths n and m
with a common cut vertex v is as shown in below figure.

Figure 1: Square product labeling of two cycles of any lengths n and m with a
common cutvertex v

Theorem 3.2. For three cycles Cn, Cm, and Cl of any lengths n, m, and l with a
common cut vertex v admits SPL.

Proof. Consider three cycles Cn, Cm, and Cl having a common cut vertex v
with fixed label as 1 and V (Cn) = {v1, v2, v3, ..., vn}, V (Cm) = {v′

1, v
′
2, v

′
3, ..., v

′
m},

and V (Cl) = {v′′
1 , v

′′
2 , v

′′
3 , ..., v

′′

l }, hence the number of vertices are (n+m+ l)−2
and edges are 3n. We consider nine cases to prove the result and in each case



K. G. Mirajkar and P. G. Sthavarmath

the labels of vertices of cactus graph starts from even numbers among the total
number of vertices of that graph later the graph G is given odd numbers. let
f : V (G) → {1, 2, 3, . . . , (n +m + l) − 2}, thus both the vertices and edges for
all nine cases are labeled as follows,
Case 1: For n = 2P (P + 1), P ≥ 1 and n < m

if n = 2P (P + 1), P = 1

f(v1) = 2, f(v2) = 6, f(v3) = 4, f(v
′

i) = f(v2) + 2

i for 1 ≤ i ≤ m+ n− l

f(v
′

m+n−l + i) = 2i+ 1 for 1 ≤ i ≤ l −m, if l > m

if n = 2P (P + 1), P > 1

f(vi) = 2i, 1 ≤ i ≤ (n− 2), f(v
′

i) = f(vn−2) + 2i

for 1 ≤ i ≤ m+ n− l

f(v
′′

i ) = f(v
′

n−1) + 2i

for 1 ≤ i ≤ n+ l −m+ 1

f(vn−2) = 2n, f(vn−1) = 2n− 2

The edge labels acquired here are distinct, as it forms a quadratic sequence of the
form (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 3}. The remaining
edges are labeled as follows,

f ∗(vvn) = (f(vn))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(v1v2) = (f(v1))
2 (f(v2))

2, f ∗(v2v3) = (f(v2))
2 (f(v3))

2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(v

′

iv
′

i+1) = (f(vn−2) + 2i))2(f(v
′

i) + 2i))2,

for 1 ≤ i ≤ m− 3

f ∗(v
′

n−2v
′

n−1) = (f(v
′

n−2))
2(f(v

′

n−1))
2

f ∗(v
′′

i v
′′

i+1) = (f(v
′

n−2) + 2i))2(f(v
′′

i ) + 2i))2 for 1 ≤ i ≤ l + n−m

Case 2: For n = 2P 2 + P + 1, P ≥ 1

f(vi) = 2i for 1 ≤ i ≤ n− 1

2
, f(vn−2) = (2n− 2), f(vn−1) = 2n− 4

f(v
′

i) = f(vn−2) + 2i for 1 ≤ i ≤ m+ n− l

f(v
′′

i ) = f(v
′

n−1) + 2i for 1 ≤ i ≤ (n+ l −m) + 1

The edge labels acquired here are distinct, as it forms quadratic sequences of the
form (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 3}, (4P 2 + 24P +
35))2, P ⩾ 1 for {f ∗(v

′′
i v

′′
i+1) : 1 ≤ i ≤ l − 2} and (4P 2 − 1)2, P ⩾ 1 for
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{f ∗(v
′

(n+l−m)−1+iv
′

(n+l−m)+1+(i−1)) : 1 ≤ i ≤ m − l} if l < m. The remaining
edges are labeled as follows,

f ∗(vvn−1) = (f(vn−1))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(v
′

n−2v
′

n−1) = (f(v
′

n−2))
2 (f(v

′

n−1))
2

f ∗(v
′

n−3v
′

n−2) = (f(v
′

n−3))
2 (f(v

′

n−2))
2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(vv

′′

n−1) = (f(v
′′

n−1))
2

f ∗(v
′

iv
′

i+1) = (f(vn−2) + 2i))2(f(v
′

i) + 2i))2

for 1 ≤ i ≤ (l + n−m)− 2

f ∗(v
′

(n+l−m)−1v
′

(n+l−m)+1)) = (f(v
′

(n+l−m)−1)))
2(f(v

′

(n+l−m)+1))
2

Case 3: For n = m = l

f(vi) = 2i for 1 ≤ i ≤ n− 1, f(v
′

i) = f(vn−1) + 2i

for 1 ≤ i ≤ m− 4

f(v
′

(m−4)+i) = 2i+ 1 for 1 ≤ i ≤ m− 4, f(v
′′

i ) = f(v
′

n−1) + 2i

for 1 ≤ i ≤ l − 1

The edge labels acquired here are distinct, as it forms quadratic sequences of the
form (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 2} and (4P 2 − 1)2,
P ⩾ 1 for {f ∗(v(m−3)+(i−1)v(m−2)+(i−1)) : 1 ≤ i ≤ m−5}. The remaining edges
are labeled as follows,

f ∗(vvn−1) = (f(vn−1))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(vv

′′

n−1) = (f(v
′′

n−1))
2

f ∗(v
′

iv
′

i+1) = (f(vn−1) + 2i))2(f(v
′

i) + 2i))2 for 1 ≤ i ≤ m− 5

f ∗(vm−4vm−3) = (f(vm−4))
2 (f(vm−3))

2

f ∗(v
′′

i v
′′

i+1) = (f(v
′

m−1) + 2i))2(f(v
′

i) + 2i))2 for 1 ≤ i ≤ l − 2

Case 4: For V (G) = 4P 2 + 8P + 3, P ≥ 1, n < m and n ⩽ l

f(vi) = 2i for 1 ≤ i ≤ n− 1, f(v
′′

n−2) = (n+m+ l − 2)

f(v
′′

n−1) = (n+m+ l − 4)

f(v
′

i) = f(vn−1) + 2i for 1 ≤ i ≤ m− l − 1

f(v
′

m−(l+1)+i) = 2i+ 1 for 1 ≤ i ≤ m− 2

f(v
′′

i ) = f(v
′

n−1) + 2i for 1 ≤ i ≤ l − 3

The edge labels acquired here are distinct, as it forms a quadratic sequence of the
form (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 2}. The remaining
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edges are labeled as follows,

f ∗(vvn−1) = (f(vn−1))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(v
′′

n−2v
′′

n−1) = (f(v
′′

n−2))
2, f ∗(v

′

1v
′

2) = (f(v
′

1))
2 (f(v

′

2))
2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(vv

′′

n−1) = (f(v
′′

n−1))
2, f ∗(vv

′′

1 ) = (f(v
′′

1 ))
2

f ∗(v
′

iv
′

i+1) = (f(vn−2) + 2i))2(f(v
′

i) + 2i))2 for 2 ≤ i ≤ m− 2

f ∗(v
′′

i v
′′

(i+1)) = (f(v
′

(n−1) + 2i))2(f(v
′

i) + 2i)2 for 1 ≤ i ≤ l − 3

Case 5: For V (G) = 4(P 2 + 2P + 1), P ≥ 1

f(vi) = 2i for 1 ≤ i ≤ (n− 1), f(v
′

i) = f(vn−1) + 2i for 1 ≤ i ≤ m− l

f(v
′

(m−4)+i) = 2i+ 1 for 1 ≤ i ≤ m− 4, f(v
′

(m−l)+1) = f(v
′

(m−l)+4)

f(v
′

(m−l)+2) = f(v
′

(m−l)+2), f(v
′′

i ) = f(v
′

n−1) + 2i for 1 ≤ i ≤ l − 3

f(v
′′

n−2) = f(v
′

(m−l)) + 3, f(v
′′

n−1) = f(v
′

(n−1))− 2

The edge labels acquired here are distinct, as it forms quadratic sequences of the
form (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 2} and (4P 2 − 1)2,
P ⩾ 1 for {f ∗(v

′

(m−3)+(i−1)v
′

(m−2)+(i−1)) : 1 ≤ i ≤ m−5}. The remaining edges
are labeled as follows,

f ∗(vvn−1) = (f(vn−1))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1))
2

f ∗(v
′

(m−l)+1v
′

(m−l)+2) = (f(v
′

(m−l) + 4))2 (f(v
′

(m−l) + 2))2,

f ∗(v
′

m−4v
′

m−3) = (f(v
′

m−4))
2 (f(v

′

m−3))
2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(vv

′′

n−1) = (f(v
′′

n−1))
2

f ∗(v
′

iv
′

i+1) = (f(vn−1) + 2i))2(f(v
′

i) + 2i))2 for 1 ≤ i ≤ m− l

f ∗(v
′′

i v
′′

(i+1)) = (f(v
′

(n−1)) + 2i)2 (f(v
′

i) + 2i))2 for 1 ≤ i ≤ l − 2

Case 6: For V (V ) = 12P 2 + 4P + 1 and 12P 2 + 4P + 1, P ≥ 1, where n < m

f(vi) = 2i for 1 ≤ i ≤ n− 1

f(v
′

i) = f(vn−1) + 2i for 1 ≤ i ≤ m− n

f(v
′

(m−n) + 1) = (n+m+ l − 2), f(v
′

(m−n)+2) = (n+m+ l − 4)

f(v
′

(m−n)+2 + i) = 2i+ 1 for 1 ≤ i ≤ (m− n) + 2

f(v
′′

n−2) = f(v
′

(m−l)) + 3, f(v
′′

i ) = f(v
′

(n−1)) + 2i for 1 ≤ i ≤ l − 2

The edge labels acquired here are distinct, as it forms quadratic sequences of the
forms (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 2} and (4P 2 − 1)2,
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P ⩾ 1 for {f ∗(v
′

(m−n)+2+iv
′

(m−n)+4+i) : 1 ≤ i ≤ (m − n) + 1}. The remaining
edges are labeled as follows,

f ∗(vvn−1) = (f(vn−1))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(vn−1) + 2)2

f ∗(vv
′′

1 ) = (f(v
′

n−1) + 2)2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(vv

′′

n−1) = (f(v
′′

n−1))
2

f ∗(v
′

iv
′

i+1) = (f(vn−1) + 2i))2(f(v
′

i) + 2i))2 for 1 ≤ i ≤ m− n

f ∗(v
′′

i v
′′

(i+1)) = (f(v
′

(n−1)) + 2i)2 (f(v
′′

i ) + 2i))2 for 1 ≤ i ≤ l − 2

f(v
′

(m−n)+1v
′

(m−n)+2) = (n+m+ l − 2)2 (n+m+ l − 4)2

Case 7: For n+m = 2P 2 + 6P + 5 P ≥ 1 and l = 2P 2 + 6P + 4, P ≥ 1

f(vi) = 2i for 1 ≤ i ≤ (n− 2), f(v
′

i) = f(vn−1) + 2i, 1 ≤ i ≤ (m− 3)

f(v
′

(n−2)) = 2(n+m)− 2, f(v
′

(n−1)+2) = 2(n+m)− 4,

f(v
′′

i ) = 2i+ 1 for 1 ≤ i ≤ l − 1

The edge labels acquired here are distinct, as it forms quadratic sequences of the
form (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 2} and (4P 2 − 1)2,
P ⩾ 1 for {f ∗(v

′′
i v

′′
i+1) : 1 ≤ i ≤ l − 2}. The remaining edges are labeled as

follows,

f ∗(vvn−1) = (f(vn−1))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1)
2,

f ∗(vv
′′

1 ) = (f(v
′′

1 )
2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(vv

′′

n−1) = (f(v
′′

n−1))
2

f ∗(v
′

iv
′

i+1) = (f(vn−1) + 2i))2(f(v
′

i) + 2i))2 for 1 ≤ i ≤ m− 4

f ∗(v
′

m−3v
′

(m−2)) = (f(v
′

(m−3)))
2 (f(v

′

m−2))
2

f(v
′

(m−2)v
′

(m−1)) = (2(n+m)− 2)2 (2(n+m)− 4)2

Case 8: For n+m = (2P 2 + 6P + 4), P ≥ 1 and l = (2P 2 + 6P + 5), P ≥ 1

f(vi) = 2i for 1 ≤ i ≤ (n− 2),

f(v
′

i) = f(vn−1) + 2i for 1 ≤ i ≤ m− 2

f(v
′′

2 ) = 2(l − 1), f(v
′′

1 ) = 3, f(v
′′

1 ) = 9

f(v
′′

1 ) = 5, f(v
′′

1 ) = 7, f(v
′′

5+i) = 2i+ 9 for 1 ≤ i ≤ l − 6

The edge labels acquired here are distinct, as it forms quadratic sequences of the
form (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 2} and (2P + 9)2,
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P ⩾ 1 for {f ∗(v
′′
5+iv

′′
6+i) : 1 ≤ i ≤ l − 7}. The remaining edges are labeled as

follows,

f ∗(vvn−1) = (f(vn−1))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v(n−1)+2)
2

f ∗(vv
′′

1 ) = (f(v
′′

1 )
2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(vv

′′

n−1) = (f(v
′′

n−1))
2

f ∗(v
′

iv
′

i+1) = (f(vn−1) + 2i))2(f(v
′

i) + 2i))2 for 1 ≤ i ≤ m− 2

f ∗(v
′′

5 v
′′

6 ) = (f(v
′′

5 ))
2 (f(v

′′

6 ))
2, f ∗(v

′′

1 v
′′

2 ) = (f(v
′′

1 ))
2, (f(v

′′

2 ))
2

f ∗(v
′′

3 v
′′

4 ) = (f(v
′′

3 ))
2 (f(v

′′

4 ))
2, f ∗(v

′′

4 v
′′

5 ) = (f(v
′′

4 ))
2 (f(v

′′

5 ))
2

Case 9: For all n, m, and l except the above cases

f(vi) = 2i for 1 ≤ i ≤ (n− 1),

f(v
′

i) = f(vn−1) + 2i for 1 ≤ i ≤ n−m, if n > m and 1 ≤ i ≤ m− n

if n < m

f(v
′

(n−m)+i) = 2i+ 1 for 1 ≤ i ≤ m− 2, f(v
′′

i ) = f(v
′

n−1) + 2i for 1 ≤ i ≤ l − 1

f(v
′′

i ) = 2i+ 1 for 1 ≤ i ≤ l − 1.

The edge labels acquired here are distinct, as it forms quadratic sequence of the
forms (4P (P + 1))2, P ⩾ 1 for {f ∗(vivi+1) : 1 ≤ i ≤ n − 2} and (4P 2 − 1)2,
P ⩾ 1 for {f ∗(v

′

(n−m)+(i−1))v
′

(n−m+1)+(i−1)) : 1 ≤ i ≤ m − 3}. The remaining
edges are labeled as follows,

f ∗(vvn−1) = (f(vn−1))
2, f ∗(vv1) = 4, f ∗(vv

′

1) = (f(v
′

1)
2, f ∗(vv

′′

1 ) = (f(v
′′

1 )
2

f ∗(vv
′

n−1) = (f(v
′

n−1))
2, f ∗(vv

′′

n−1) = (f(v
′′

n−1))
2

f ∗(v
′

iv
′

i+1) = (f(vn−1) + 2i))2(f(v
′

i) + 2i))2 for 1 ≤ i ≤ n−m if n > m

f ∗(v
′′

i v
′′

(i+1)) = (f(v
′

(n−1) + 2i))2 (f(v
′′

i + 2i))2 for 1 ≤ i ≤ l − 2

In all the cases, the labeling pattern of edges and vertices are distinct so, for three
cycles Cn, Cm, and Cl of any lengths n, m, and l with a common cut vertex v
admits SPL. 2
Example 3.2: The square product labeling of three cycles of any lengths n, m,
and l with a common cut vertex v is shown in the below figure.
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Figure 2: Three cycles of any lengths n, m, and l with a common cutvertex v

Theorem 3.3. A graph G having r number of cycle of length n, with a common
cutvertex v, except for the graph G with r number of cycle of length 3 having a
common cutvertex v admits SPL.
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Proof. Consider the graph G having r number of cycles of length n with a
common cutvertex v with nr − (r − 1) vertices and nr edges, here we consider
two cases for prove the result with f : V (G) → {1, 2, 3, . . . , (nr − (r − 1))}.
Case 1: Suppose G contains even copies of cycles of length n
In this case, the vertices of first half copies r

2
of cycle of length n are labeled by

even numbers then next half copies by odd numbers. In first r
2

copies of cycle, the
vertices are labeled as,

f(v11) = 2, f(vi2) = f(vi1) + 2 for 1 ≤ i ≤ r

2

f(vin−1) = f(vi1) + 4 for 1 ≤ i ≤ r

2

f(vi3) = f(vin−1) + 2 for 1 ≤ i ≤ r

2
, f(vi3+i) = f(vi3) + 2i for 1 ≤ i ≤ n− 5

f(v(i+ 1)1) = f(vin−2) + 2 for 1 ≤ i ≤ r − 2

2

In second r
2

copies of cycle, the vertices are labeled by,

f
(
v

r+2
2

1

)
= 3, f

(
v

r+2
2

2

)
= f

(
v

r+2
2

1

)
+ 2 for 1 ≤ i ≤ r

2

f
(
v

r+2
2

n−1

)
= f

(
v

r+2
2

1

)
+ 2 for 1 ≤ i ≤ r

2

f
(
v

r
2
+(i−1)

1

)
= f

(
v

r
2
+i

n−2

)
+ 2 for 1 ≤ i ≤ r − 2

2

f
(
v

r
2
+i

2

)
= f

(
v

r
2
+i

n−1

)
+ 2 for 1 ≤ i ≤ r

2

f
(
v

r
2
+i

2+i

)
= f

(
v

r
2
+i

2

)
+ 2 for 1 ≤ i ≤ n− 4

The labels of vertices of f(vi1) and f(vin−1) with 1 yields distinct edge labels where
1 ≤ i ≤ r, the remaining edge labels are as below

f ∗(vi1v
i
2) = (f(vi1))

2 (f(vi2))
2 for 1 ≤ i ≤ r

2
,

f ∗(vi2v
i
3) = (f(vi1) + 2)2 (f(vin−1) + 2)2 for 1 ≤ i ≤ r

2
f ∗(vin−2v

i
n−1) = (f(vin−2))

2 (f(vi1) + 4)2 for 1 ≤ i ≤ n− 4

f ∗(vi3v
i
3+i) = (f(vin−1 + 2))2 (f(vi3 + 2i))2 for 1 ≤ i ≤ n− 5

The labels of edges of remaining r
2

copies of G are,

f ∗(v r
2
+i

1 v
r
2
+i

2

)
=

(
f(v

r
2
+i

1 )
)2

(f(v
r
2
+i

n−1 + 2)
)2

for 1 ≤ i ≤ r − 2

2

f ∗(v r
2
+i

n−2v
r
2
+i

n−1

)
=

(
f(v

r
2
+i

n−2)
)2 (

f(v
r
2
+i

1 + 2)
)2

for 1 ≤ i ≤ r − 2

2

f ∗(v r
2
+i

2 v
r
2
+i

2+i

)
=

(
f(v

r
2
+i

n−1 + 2)
)2 (

f(v
r
2
+i

2 + 2i)
)2

for 1 ≤ i ≤ n− 4
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Case 2: Suppose G contains odd copies of cycles of length n
In this case, the vertices of r copies of cycle of length n are first labeled by even
numbers then by odd numbers as follows,

f(v11) = 2, f(vi2) = f(vi1) + 2 for 1 ≤ i ≤ r − 1

2

f(vi+1
1 ) = f(vin−2) + 2 for 1 ≤ i ≤ r − 3

2

f(vin−1) = f(vi1) + 4 for 1 ≤ i ≤ r − 1

2

f(vi2) = f(vi1) + 2i for 1 ≤ i ≤ r − 1

2

f(v(i)3) = f(vin−1) + 2 for 1 ≤ i ≤ r − 1

2
f(v(i)3+i) = f(vi3) + 2i for 1 ≤ i ≤ n− 5

f
(
v

r+1
2

1 ) = f(v
r−1
2

n−2

)
+ 2, f

(
v

r+1
2

n−1

)
= f

(
v

r+1
2

1 ) + 4

f
(
v

r−1
2

+i

2

)
= f

(
v

r−1
2

+i

1

)
+ 2 for 1 ≤ i ≤ n− 6

f
(
v

r−1
2

+i

n−4

)
= 2i+ 1 for 1 ≤ i ≤ n− 4

f
(
v

r+1
2

+i

1

)
= f

(
v

r+1
2

+i

n−2

)
+ 2 for 1 ≤ i ≤ r − 1

2

f
(
v

r+1
2

+i

n−1

)
= f

(
v

r+1
2

+i

1

)
+ 2 for 1 ≤ i ≤ r − 1

2

f
(
v

r+1
2

+j

i+1

)
= f

(
v

r+1
2

+j

1

)
+ 4 + 2(i− 1) for 1 ≤ i ≤ n− 3 and 1 ≤ j ≤ r − 1

2

The labels of vertices of f(vi1) and f(vin−1) with cutvertex label 1 yields distinct
edge labels where 1 ≤ i ≤ r, the remaining edge labels are as below.

f ∗(vi1v
i
2) = (f(vi1))

2 (f(vi1 + 2))2 for 1 ≤ i ≤ r − 1

2
,

f ∗(vi2v
i
3) = (f(vi1 + 2))2 (f(vin−1 + 2))2 for 1 ≤ i ≤ r − 1

2
,

f ∗(vin−2v
i
n−1) = (f(vin−2))

2 (f(vi1 + 4))2 for 1 ≤ i ≤ r − 1

2
f ∗(vi3v

i
3+i) = (f(vin−1 + 2))2 (f(vi3 + 2i))2 for 1 ≤ i ≤ n− 4

f ∗(v r−1
2

+i

n−2 v
r−1
2

+i

n−1

)
=

(
f(v

r−1
2

+2

1 )
)2 (

f(v
r−1
2

+i

1 + 4)
)2

for 1 ≤ i ≤ r − 3

2

f ∗(v r+1
2

+i

1 v
r+1
2

+i

2

)
=

(
f(v

r−1
2

+i

n−2 + 2)
)2 (

f(v
r−1
2

+i

n−1 + 2)
)2

for 1 ≤ i ≤ r − 1

2

f ∗(v r+1
2

+i

i v
r+1
2

+i

2+i

)
=

(
f(v

r+1
2

+i

n−1 + 2)
)2 (

f(v
r+1
2

+i

2 + 2i)
)2

for 1 ≤ i ≤ n− 3
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Subcase 1: For cycle of length 4 with even cpoies

f(v11) = 2, f(vin−1) = f(vi1) + 2 for 1 ≤ i ≤ r

2

f(vi+1
1 ) = f(vi2) + 2 for 1 ≤ i ≤ r − 2

2

f(vi2) = f(vin−1) + 2 for 1 ≤ i ≤ r

2
, f

(
v

r+2
2

1

)
= 3

f
(
v

r+2
2

n−1

)
= f

(
v

r
2
+i

1

)
+ 2 for 1 ≤ i ≤ r

2
, f

(
v

r+2
2

+i

1

)
= f

(
v

r
2
2

)
+ 2 for 1 ≤ i ≤ r − 1

2

f
(
v

r
2
2

)
= f

(
v

r
2
+i

n−1

)
+ 2 for 1 ≤ i ≤ r

2

The labels of vertices of f(vi1) and f(vin−1) with 1 yields distinct edge labels where
1 ≤ i ≤ r, the remaining edge labels are as below

f ∗(vi1v
i
2) = (f(vi1))

2 (f(vin−1 + 2))2 for 1 ≤ i ≤ r

2

f ∗(vi2v
i
n−1) = (f(vin−1 + 2))2 (f(vi1 + 2))2 for 1 ≤ i ≤ r

2

f ∗(v r
2
+i

1 vi2
)

=
(
f(v

r
2
+i

1 )
)2 (

f(v
r
2
+i

n−1 + 2)
)2

for 1 ≤ i ≤ r

2

f ∗(v r+2
2

+i

2 v
r
2
+i

n−1

)
=

(
f(v

r
2
+i

n−1 + 2)
)2 (

f(v
r
2
+i

1 + 2)
)2

for 1 ≤ i ≤ r

2

Subcase 2: For cycle of length 5 with odd cpoies

f(v11) = 2, f(vi2) = f(vi1) + 2 for 1 ≤ i ≤ r − 1

2

f(vi+1
1 ) = f(vin−2) + 2 for 1 ≤ i ≤ r − 2

2

f(vin−1) = f(vi1) + 4 for 1 ≤ i ≤ r − 1

2
,

f(vi2) = f(vi1) + 2 for 1 ≤ i ≤ r − 1

2

f(vi3) = f(vin−1) + 2 for 1 ≤ i ≤ r − 1

2

f
(
v

r+1
2

1

)
= f

(
v

r−1
2

3

)
+ 2, f

(
v

r+1
2

3

)
= 3, f

(
v

r+1
2

n−1

)
= 7

f
(
v

r+1
2

+i

1

)
= f

(
v

r−1
2

+i

n−1

)
+ 2 for 1 ≤ i ≤ r − 1

2

f
(
v

r+3
2

2

)
= 9, f

(
v

r+1
2

+i

3

)
= f

(
v

r+3
2

+i

n−1

)
+ 2i for 1 ≤ i ≤ r − 1

2

f
(
v

r+1
2

+j

2

)
= f

(
v

r+3
2

+j

1

)
+ 2i for 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ r − 3

2
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The labels of vertices of f(vi1) and f(vin−1) with 1 yields distinct edge labels where
1 ≤ i ≤ r, the remaining edge labels are as below

f ∗(vi1v
i
2) = (f(vi1))

2 (f(vin−1 + 2))2 for 1 ≤ i ≤ r − 1

2

f ∗(vi2v
i
3) = (f(vi1 + 2))2 (f(vin−1 + 2))2 for 1 ≤ i ≤ r − 1

2

f ∗(vin−2v
i
n−1) = (f(vin−2))

2 (f(vi1 + 4))2 for 1 ≤ i ≤ r − 1

2
f ∗(vi3v

i
3+i) = (f(vin−1 + 2))2 (f(vi3 + 2i))2 for 1 ≤ i ≤ n− 4

f ∗(v r+1
2

1 v
r+1
2

2

)
=

(
f(v

r−1
2

n−2 + 2)
)2 (

f(v
r+1
2

1 + 2)
)2

f ∗(v r+1
2

2 v
r+1
2

3

)
= 9

(
f(v

r+1
2

1 + 2)
)2

f ∗(v r+1
3

2 v
r+1
2

n−1

)
= 9

(
f(v

r+1
2

n−1)
)2

f ∗(v r+1
2

1 v
r+1
2

2

)
= 25

(
f(v

r+1
2

n−1 + 2)
)2

f ∗(v r+3
2

2 v
r+3
2

3

)
=

(
f(v

r+1
2

n−1 + 2)
)2 (

f(v
r+3
2

n−1 + 2)
)2

f ∗(v r+3
3

2 v
r+3
2

n−1

)
=

(
f(v

r+3
2

n−1 + 2)
)2 (

f(v
r+3
2

n−2 + 2)
)2

f ∗(v r+3
3

+i

2 v
r+3
2

+i

2

)
=

(
f(v

r+1
2

+i

n−1 + 2)
)2 (

f(v
r+3
2

+i

n−2 + 2i)
)2

for 1 ≤ i ≤ r − 3

2

For r copies of cycle of length 3 with common cut vertex v, | V (G) |≥ (v11)
2 (v12)

2

are not square product graphs.
Consider a graph G containing r cycles of length 3 with fixed cut vertex labeled as
1, labeling of vertices carries distinct non negative integers and V (G) is bijective.
The cut vertex v is adjacent with all other vertices since the graph is C3 with r
copies. Hence, while labeling the edges the product of labels of vertices with the
fixed cut vertex 1 is not injective for | V (G) |≥ (v1)

2 (v2)
2. In the below figure,

f ∗(v1v2) = 36 and f ∗(vv21) = 36 which is not injective.
2
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Example 3.3: The square product labeling of even copies of C6, odd copies
of C6, even copies of C4, odd copies of C5 and r copies of C3 are shown in the
below figures.

Figure 3: Square product labeling of even copies of C6 and C4 and odd copies of
C6 and C5
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Figure 4: Square product labeling of r copies of C3

4 Conclusion

In this article, results on square product labeling for cactus graphs with cycle
blocks are established. Here the limitation is results can be established only for
r copies of cycle of any length with a common cutvertex except for r copies of
cycles of length 3 which are not square product graphs for | V (G) |≥ (v1)

2 (v2)
2.

In this article, the results are established only for cactus graphs with cycle blocks.
The results on square product labeling can also be extended to trees.
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