# **Transversal core of intuitionistic fuzzy** *k*-partite hypergraphs

Myithili K.K\* Keerthika R<sup>†</sup>

#### Abstract

In graph theory, a transversal is a set of vertices incident to every edge in a graph but in Intuitionistic Fuzzy k-Partite Hypergraph(IFk-PHG), the transversal is a hyperedge which cuts every hyperedges. In this article, Intuitionistic Fuzzy Transversal(IFT), minimal IFT, locally minimal IFT, IFTC(Intuitionistic Fuzzy Transversal Core) of IFk-PHG has been defined. It has been proved that every IFk-PHG has a nonempty IFT. Also few of the properties relating to the transversal of IFk-PHG were discussed.

**Keywords**: IFT; minimal IFT; locally minimal IFT; IFTC of IF*k*-PHG.

2020 AMS subject classifications: 34K36, 57Q65, 05C65,93B20.

<sup>\*</sup>Associate Professor (Department of Mathematics(CA), Vellalar College for Women, Erode-638012, Tamil Nadu, India.); mathsmyth@gmail.com.

<sup>&</sup>lt;sup>†</sup>Assistant Professor (Department of Mathematics, Vellalar College for Women, Erode-638012, Tamil Nadu, India.); keerthibaskar18@gmail.com.

<sup>&</sup>lt;sup>1</sup>Received on September 15, 2022. Accepted on December 15, 2022. Published on March 20, 2023. DOI: 10.23755/rm.v46i0.1076. ISSN: 1592-7415. eISSN: 2282-8214. ©Myithili K.K et. This paper is published under the CC-BY licence agreement.

## **1** Introduction

Euler was the first author who found graph theory in 1736. The Graph theoretical approach is widely used to solve numerous issues in different areas like computer science, optimization, algebra and number theory. As an application part, the concept of graph has been extended to hypergraph, an edge with more than one or two vertices. An idea of graph and hypergraph was popularized by Berge [1976] in 1976. Fuzzy graph and fuzzy hypergraph concepts are developed by the authors in J.N.Mordeson and Nair [2000]. In K.T.Atanassov [1999], the author wrote ideas of Intuitionistic Fuzzy Sets(IFS). According to K.T.Atanassov [2002], K.T.Atanassov [2012], the researcher putforth ideas of intuitionistic fuzzy relations and cartesian products are defined.

In Myithili and Keerthika [2020a], the authors proposed the notion of k-partite hyperedges in IFHGs(Intuitionistic Fuzzy Hypergraphs). Certain operations like Union, Intersection, Ringsum, Cartesian Product were discussed in Myithili and Keerthika [2020b]. It has numerous application problems in decision-making. In Myithili and Parvathi [2015], Myithili and Parvathi [2016], Myithili et al. [2014] transversals and its properties on intuitionistic fuzzy directed hypergraphs were discussed.

The authors in Goetschel [1995], Goetschel [1998], Goetschel et al. [1996] initiated the concepts like fuzzy transversal and fuzzy coloring in fuzzy hypergraph. In this article an attempt has been made to analyze the transversal and its related properties in IF*k*-PHGs.

## 2 Symbolic representation

MNMV-membership and non-membership values FSV-Finite set of vertices FIFS-family of intuitionistic fuzzy subsets IFH-intuitionistic fuzzy hyperedge ONV-Open Neighborhood of the vertex CNV-Closed Neighborhood of the vertex  $\aleph = (\lor, \Xi, \psi)$  - Intuitionistic fuzzy(IF) k-partite hypergraph with edge set  $\Xi$ , vertex set  $\lor$  and k-partite hyperedge  $\psi$   $h(\aleph)$  - Height of IFk-PHG  $F_k(\aleph)$  - Fundamental sequence (FS) of IFk-PHG  $c(\aleph)$  - Core set(CS) of IFk-PHG

 $I_k(\aleph)$  - Induced fundamental sequence(IFS) of IFk-PHG

 $\aleph^{(a_i,b_i)}$  -  $(a_i,b_i)$ -level of IFk-PHG

 $(a_i, b_i)$  - Edge membership(EM) and non-membership values(ENMV)

 $\mathscr{TR}(\aleph)$  - minimal intuitionistic fuzzy transversal(MIFT) of IFk-PHG

## **3** Preliminaries

**Definition 3.1.** *Myithili and Keerthika* [2020a] *The IFk-PHG*  $\aleph$  *is an ordered triple*  $\aleph = (\lor, \Xi, \psi)$  *where,* 

- $\vee = \{g_1, g_2, g_3, \cdots, g_n\}$  is a FSV,
- $\Xi = \{\Xi_1, \Xi_2, \Xi_3, \cdots, \Xi_m\}$  is a FIFS of  $\lor$ ,
- $\Xi_j = \{(g_i, \omega_j(g_i), \nu_j(g_i)) : \omega_j(g_i), \nu_j(g_i) \ge 0, \omega_j(g_i) + \nu_j(g_i) \le 1\}, 1 \le j \le m,$
- $\Xi_j \neq \emptyset$ ,  $1 \le j \le m$ ,
- $\bigcup_{j} supp(\Xi_j) = \lor, 1 \le j \le m.$

For all  $g_i \in \Xi \exists k$  - disjoint sets  $\psi_i$ ,  $i = 1, 2, \dots, k$  and no two vertices in the same set are adjacent such that  $\Xi_k = \bigcap_{i=1}^k \psi_i = \emptyset$ 

**Definition 3.2.** *Myithili and Keerthika* [2020a] *Let an IFk-PHG be*  $\aleph = (\lor, \Xi, \psi)$ . *The height of IFk-PHG is defined by*  $h(\aleph) = \{max(min(\omega_{k_{ij}})), max(max(\nu_{k_{ij}}))\}$ for all  $1 \le i \le m$  and  $1 \le j \le n$ . Also  $\omega_{k_{ij}}$  and  $\nu_{k_{ij}}$  are MNMV of the k-partite hyperedge  $\psi_{ij}$ .

**Definition 3.3.** *Myithili and Keerthika* [2020*a*] *Let*  $\aleph$  *be an IFk-PHG. Suppose*  $\psi_j, \psi_k \in \psi$  and  $0 < \delta, \varepsilon \leq 1$ . The  $(\delta, \varepsilon)$ -level is defined by  $(\psi_j, \psi_k)^{(\delta, \varepsilon)} = \{g_i \in \forall | \min(\omega_{k_{ij}}^{\delta}(g_i)) \geq \delta, \max(\nu_{k_{ij}}^{\varepsilon}(g_i)) \leq \varepsilon\}.$ 

**Definition 3.4.** *Myithili and Keerthika* [2020a] Let  $\aleph$  be *IFk-PHG*,  $\aleph^{a_i,b_i} = \langle \vee^{a_i,b_i}, \Xi^{a_i,b_i} \rangle$ be the  $(a_i, b_i)$ -level of  $\aleph$ . The sequence of real numbers  $\{a_1, a_2, \cdots, a_k; b_1, b_2, \cdots, b_k\}$  $\ni 0 \le a_i \le h_{\omega}(\aleph)$  and  $0 \le b_i \le h_{\nu}(\aleph)$ , satisfies:

(i) If  $a_1 < \delta \le 1 \& 0 \le \varepsilon < b_1$  then  $\psi^{\delta,\varepsilon} = \emptyset$ , (ii) If  $a_{i+1} \le \delta \le a_i$ ;  $b_i \le \varepsilon \le b_{i+1}$  then  $\psi^{\delta,\varepsilon} = \psi^{a_i,b_i}$ , (iii)  $\psi^{a_i,b_i} \sqsubset \psi^{a_{i+1},b_{i+1}}$  is fundamental sequence of IFk-PHG and it is denoted as  $F_k(\aleph)$ .

**Definition 3.5.** *Myithili and Keerthika* [2020a] Let  $c(\aleph) = {\aleph^{a_1,b_1}, \aleph^{a_2,b_2}, \dots, \aleph^{a_k,b_k}}$ be core set of  $\aleph$ . The analogous set of  $(a_i, b_i)$ -level hypergraphs is  $\aleph^{a_1,b_1} \subset \aleph^{a_2,b_2} \subset \dots \subset \aleph^{a_k,b_k}$  is said to be  $\aleph$ -IFS and it is denoted by  $I_k(\aleph)$ . The  $(a_k, b_k)$ level is known as support level of  $\aleph$ .  $\aleph^{a_k,b_k}$  is known as the support of  $\aleph$ .

**Definition 3.6.** *Myithili and Keerthika* [2020a] Let  $\aleph = (\lor, \Xi, \psi) \& \aleph' = (\lor', \Xi', \psi')$  are IFk-PHGs,  $\aleph$  is known as partial IFk-PHG of  $\aleph'$ , if

$$\boldsymbol{\vee}^{'} = \begin{cases} \min\left(supp\left(\omega_{k_{ij}}\right)\right) \mid \omega_{k_{ij}} \in \boldsymbol{\psi}^{'}\\ \max\left(supp\left(\nu_{k_{ij}}\right)\right) \mid \nu_{k_{ij}} \in \boldsymbol{\psi}^{'} \end{cases}$$

the partial IFk-PHG generated by  $\psi'$  and is represented as  $\aleph \subseteq \aleph'$ . Also, if  $\aleph \subseteq \aleph'$  and  $\aleph \neq \aleph'$  exists then  $\aleph \subset \aleph'$ .

**Definition 3.7.** Myithili and Keerthika [2020a] Let  $\aleph$  be the IFk-PHG,  $c(\aleph) = {\{\aleph^{a_1,b_1}, \aleph^{a_2,b_2}, \dots, \aleph^{a_k,b_k}\}}$ .  $\aleph$  is called as ordered if  $c(\aleph)$  is ordered (i.e)  $\aleph^{a_1,b_1} \subset \aleph^{a_2,b_2} \subset \dots \subset \aleph^{a_k,b_k}$ . The IFk-PHG is known as simply ordered if  ${\{\aleph^{a_i,b_i}|i=1,2,\dots,k\}}$  is simply ordered, (i.e) if it is ordered and if  $\psi \in \aleph^{a_{i+1},b_{i+1}} \setminus \aleph^{a_i,b_i}$  then  $\psi \not\subseteq \aleph^{a_i,b_i}$ .

### 4 Main results

**Definition 4.1.** Consider an IFk-PHG &. An IFT  $\mathscr{T}$  of IFk-PHG is an IF subset of  $\lor$  with  $\mathscr{T}^{(\psi_j,\psi_k)} \cap \mathscr{A}^{(\psi_j,\psi_k)} \neq \emptyset$  for each  $\mathscr{A} \in \psi$  where  $\psi_j = min(\omega_{k_{ij}})$  and  $\psi_k = max(\nu_{k_{ij}}) \forall 1 \le i \le m, 1 \le j \le n$ . Also  $\omega_{k_{ij}}$  and  $\nu_{k_{ij}}$  is the MNMV of  $k^{th}$  partition of  $j^{th}$  edge in  $i^{th}$  vertex.

**Definition 4.2.** A minimal IFT  $\mathscr{T}$  for IFk-PHG be a transversal of  $\aleph$ , which satisfies the condition that if  $\mathscr{T}_1 \subset \mathscr{T}$ , then  $\mathscr{T}_1$  is not IFT of  $\aleph$ . Note: The set of minimal IFT of IFk-PHG is denoted as  $\mathscr{TR}(\aleph)$ . Always  $\mathscr{TR}(\aleph) \neq \emptyset$ .

**Example 4.1.** An IFH (intuitionistic fuzzy hypergraph) with  $\lor = \{g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8\}$ ,  $\Xi = \{\Xi_1, \Xi_2, \Xi_3, \Xi_4\}$  has been considered.

#### Transversal Core of Intuitionistic Fuzzy k-Partite Hypergraphs

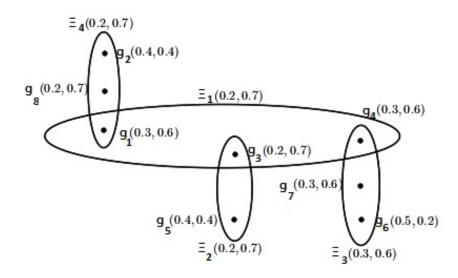


Figure 1: Intuitionistic Fuzzy Hypergraph

Using the above figure we can construct an IFk-PHG  $\aleph$ , with  $\psi = \{\psi_1, \psi_2, \psi_3\}$  disjoint hyperedges which are represented below as incidence matrix

|                | $\psi_1$                   | $\psi_2$                   | $\psi_3$                   |
|----------------|----------------------------|----------------------------|----------------------------|
| $\mathbf{g}_1$ | $\langle 0.3, 0.6 \rangle$ | $\langle 0,1 angle$        | $\langle 0,1\rangle$       |
| $\mathbf{g}_2$ | $\langle 0,1  angle$       | $\langle 0.4, 0.4 \rangle$ | $\langle 0,1 angle$        |
| <b>g</b> 3     | $\langle 0,1  angle$       | $\langle 0.2, 0.7 \rangle$ | $\langle 0,1 angle$        |
| $g_4$          | $\langle 0,1  angle$       | $\langle 0,1 angle$        | $\langle 0.3, 0.6 \rangle$ |
| $\mathbf{g}_5$ | $\langle 0.4, 0.4 \rangle$ | $\langle 0,1 angle$        | $\langle 0,1 angle$        |
| <b>g</b> 6     | $\langle 0,1  angle$       | $\langle 0.5, 0.2 \rangle$ | $\langle 0,1 angle$        |
| <b>g</b> 7     | $\langle 0.3, 0.6 \rangle$ | $\langle 0,1 angle$        | $\langle 0,1 angle$        |
| $\mathbf{g}_8$ | $\langle 0,1 \rangle$      | $\langle 0,1 angle$        | $\langle 0.2, 0.7 \rangle$ |

The minimal IFT of IFk-PHG is attained as follows,

Myithili K.K, Keerthika R

|                | $\mathcal{T}_1$            | $\mathcal{T}_2$            |
|----------------|----------------------------|----------------------------|
| $\mathbf{g}_1$ | $\langle 0.3, 0.6 \rangle$ | $\langle 0,1\rangle$       |
| $\mathbf{g}_2$ | $\langle 0,1 angle$        | $\langle 0,1  angle$       |
| $g_3$          | $\langle 0.2, 0.7 \rangle$ | $\langle 0.2, 0.7 \rangle$ |
| $g_4$          | $\langle 0,1 angle$        | $\langle 0,1 \rangle$      |
| <b>g</b> 5     | $\langle 0,1 angle$        | $\langle 0,1  angle$       |
| $\mathbf{g}_6$ | $\langle 0,1 angle$        | $\langle 0,1  angle$       |
| <b>g</b> 7     | $\langle 0,1 angle$        | $\langle 0.3, 0.6 \rangle$ |
| <b>g</b> 8     | $\langle 0.2, 0.7 \rangle$ | $\langle 0.2, 0.7 \rangle$ |

The corresponding graph is shown below.

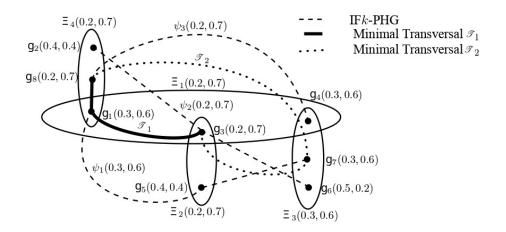


Figure 2:  $\aleph$  and minimal IFT of  $\aleph$ 

**Definition 4.3.** If  $\mathscr{T}$  is an IFS with  $\mathscr{T}^{(a_i,b_i)}$  as minimal IFT (MIFT) of  $\aleph^{(a_i,b_i)}$ for each  $(a_i,b_i) \in (0,1)$  then  $\mathscr{T}$  is called as locally minimal IFT (LMIFT) of IFk-PHG. The set containing LMIFT of IFk-PHG is written as  $\mathscr{TR}^*(\aleph)$ 

**Theorem 4.1.** If  $\mathscr{T}$  is an IFT of  $\aleph$  then  $h(\mathscr{T}) \ge h(\psi_j)$  for  $\psi_j \in \psi$ . Also, if  $\mathscr{T}$  is the minimal IFT of IFk-PHG, then

 $h(\mathscr{T}) = \{ max(min(\omega_{k_{ii}})), max(max(\nu_{k_{ii}})) \mid \omega_{k_{ii}}, \nu_{k_{ii}} \in \psi \} = h(\aleph).$ 

**Theorem 4.2.** Every IFk-PHG has a nonempty IFT. Note: Every IFT of IFk-PHG contains a MIFT.

**Theorem 4.3.** If  $\mathscr{T}' \in \mathscr{TR}(\aleph)$  and for every  $g \in \lor, \mathscr{T}'(g) \in F_k(\aleph)$ , then  $F_k(\mathscr{TR}(\aleph)) \subset F_k(\aleph).$ 

**Theorem 4.4.**  $\mathcal{TR}(\aleph)$  is sectionally elementary.

Let  $F_k(\mathscr{TR}(\mathscr{H})) = a_1, a_2, \cdots, a_k; b_1, b_2, \cdots, b_k$ . Assume that Proof.  $\mathscr{T}' \in \mathscr{TR}(\mathscr{H})$  and some  $\delta, \varepsilon \in (a_i, b_i)$  such that  $\mathscr{T}^{(a_i, b_i)} \subset \mathscr{T}^{(\delta, \varepsilon)}$ . Since  $\mathscr{TR}(\aleph^{a_i,b_i}) = \mathscr{TR}(\aleph^{\delta,\varepsilon}), \exists \text{ some } \mathscr{A} \in \mathscr{TR}(\mathscr{H}) \ni \mathscr{A}^{a_i,b_i} = \mathscr{T}^{\delta,\varepsilon}.$  Then  $\mathscr{T}^{\delta,\varepsilon} \subset \mathscr{A}^{a_i,b_i}$  implies the IFS  $\vee(q_i)$  defined by

$$\forall (g_i) = \begin{cases} (\delta, \varepsilon) & if \ x \in \mathscr{A}^{a_i, b_i} \setminus \mathscr{T}^{a_i, b_i} \\ \mathscr{A}(g_i) & Otherwise \end{cases}$$

is an IFT of IFk-PHG. Here  $\lor < \mathscr{A}$ , implies the contradiction of minimality (CM) of  $\mathscr{A}$ .

**Theorem 4.5.** For every  $\mathscr{A} \in \mathscr{TR}(\aleph)$ ,  $\mathscr{A}^{a_1,b_1}$  is a minimal IFT of  $\aleph^{a_1,b_1}$ .

**Proof.** For any IF*k*-PHG  $\aleph = (\lor, \Xi, \psi)$ , consider a minimal IFT  $\mathscr{T}$  of  $\aleph^{a_1, b_1}$ such that  $\mathscr{T} \subset \mathscr{A}^{a_1,b_1}$ .

Define the IFS  $\lor(q_i)$  where

$$\forall (g_i) = \begin{cases} (a_2, b_2) & if \ x \in \mathscr{A}^{a_1, b_1} \setminus \mathscr{T} \\ \mathscr{A}(g_i) & Otherwise \end{cases}$$

By the above theorem,  $\lor$  is an IFT of IF*k*-PHG, CM of  $\mathscr{A}$ .

**Definition 4.4.** Let  $\aleph$  be IFk-PHG. The Intuitionistic Fuzzy Transversal Core (IFTC) of  $\aleph$  is  $\aleph' = (\vee', \Xi', \psi')$  with the following condition that (i) min  $\mathscr{TR}(\aleph) = \min \mathscr{TR}(\aleph')$ , (*ii*)  $\aleph' = \bigcup \min \mathscr{TR}(\aleph)$ ,

(iii)  $\psi \setminus \psi'$  is exactly the set containing vertices of  $\aleph$  which does not belong to  $\mathscr{TR}(\aleph)$ , where  $\psi'$  is the remaining hyperedge set, after deleting hyperedges that are correctly contained in another hyperedge.

The remarks of the statement is,

(i) For any IFk-PHG without spike hyperedges,  $\exists$  transversal core which are always unique.

(ii) The definition also holds good for IFk-PHGs with spike (a hyperedge with single vertex) hyperedges.

#### Myithili K.K, Keerthika R

**Definition 4.5.** In IFk-PHG, the ONV  $g_i$  is the set containing adjacent vertices of  $g_i$  except itself in a k-partite hyperedge and is denoted as  $N_k(g_i)$ .

**Example 4.2.** Consider an IFk-PHG with  $\forall = \{g_1, g_2, g_3, g_4, g_5, g_6, g_7\},$   $\Xi = \{\Xi_1, \Xi_2, \Xi_3\}$  where,  $\Xi_1 = \{g_1 \langle 0.5, 0.2 \rangle, g_2 \langle 0.3, 0.4 \rangle, g_3 \langle 0.6, 0.3 \rangle\},$   $\Xi_2 = \{g_2 \langle 0.3, 0.4 \rangle, g_4 \langle 0.2, 0.5 \rangle, g_5 \langle 0.3, 0.4 \rangle\},$   $\Xi_3 = \{g_3 \langle 0.6, 0.3 \rangle, g_6 \langle 0.4, 0.3 \rangle, g_7 \langle 0.1, 0.7 \rangle\}$  with  $\psi_1 = \{g_1 \langle 0.5, 0.2 \rangle, g_4 \langle 0.2, 0.5 \rangle, g_7 \langle 0.1, 0.7 \rangle\}, \psi_2 = \{g_2 \langle 0.3, 0.4 \rangle, g_6 \langle 0.4, 0.3 \rangle\},$   $\psi_3 = \{g_3 \langle 0.6, 0.3 \rangle, g_5 \langle 0.3, 0.4 \rangle\}$ Here  $g_1$  and  $g_7$  are the ONV  $g_4$  in  $\psi_1$ .

**Definition 4.6.** In IFk-PHG, the CNV  $g_i$  is the set containing adjacent vertices of  $g_i$  including the vertex in a k-partite hyperedge and is denoted as  $N_k[g_i]$ .

**Example 4.3.** From the above example it is clear that the Closed Neighborhood of the vertex  $g_3$  is  $g_3$  and  $g_5$  in  $\psi_3$ .

**Theorem 4.6.** In  $\aleph$ , the following claims are related (i)  $\mathscr{T}$  is an IFT of IFk-PHG, (ii)  $\mathscr{T}^{a_i,b_i} \cap \mathscr{A}^{a_i,b_i} \neq \emptyset$ , for all IFH  $\mathscr{A} \in \psi$  and every  $(a_i, b_i)$  with  $0 < a_i \le h_{\omega}(\aleph)$ ,  $0 < b_i \le h_{\nu}(\aleph)$ , (iii)  $\mathscr{T}^{a_i,b_i}$  is an IFT of  $\aleph^{a_i,b_i}$ , for each  $(a_i, b_i)$  with  $0 < a_i < \delta$ ,  $0 < b_i < \varepsilon$ .

**Proof.** From the definition, "A minimal IFT  $\mathscr{T}$  for IFk-PHG is a transversal of  $\aleph$ , which satisfies the property that if  $\mathscr{T}_1 \subset \mathscr{T}$ , then  $\mathscr{T}_1$  is not an IFT of  $\aleph$ " the result is immediate.

**Theorem 4.7.** For a simple IFk-PHG,  $\mathscr{TR}(\mathscr{TR}(\aleph)) = \aleph$ .

**Theorem 4.8.** For any IFk-PHG,  $\mathscr{TR}(\mathscr{TR}(\aleph)) \subseteq \aleph$ .

**Proof.** From definition 4.4,  $\exists a \aleph'$ (partial hypergraph) of a simple IF*k*-PHG  $\exists \mathscr{TR}(\aleph') = \mathscr{TR}(\aleph)$ . From Theorem 4.7,  $\mathscr{TR}(\mathscr{TR}(\aleph)) = \mathscr{TR}(\mathscr{TR}(\aleph'))$  implies  $\aleph' \subset \aleph$ .

**Theorem 4.9.** Let  $\aleph$  be an IFk-PHG and suppose that  $\mathscr{T} \in \mathscr{TR}(\aleph)$ . If  $\aleph' \subseteq supp(\mathscr{T}) \subseteq \aleph$ , then  $\exists$  a hyperedge of IFk-PHG  $\mathscr{A}$ ,  $(a_i, b_i) \in \mathscr{A}$  represents the MNMV of  $\mathscr{A} \ni$ (i)  $(a_i, b_i) = h(\mathscr{A}) = h(\mathscr{T}^{a_i, b_i}) > 0$ , (ii)  $\mathscr{T}_{h(\mathscr{A})} \cap \mathscr{A}_{h(\mathscr{A})} = \aleph$ .

**Proof.** Let  $0 < h(\mathscr{T}^{a_i,b_i}) \le 1$  and  $\psi'$  be the set of all IF k-partite hyperedges where  $h(\tau^{a_i,b_i}) \ge h(\mathscr{T}^{a_i,b_i})$  for each  $\tau \in \psi'$ .

#### Transversal Core of Intuitionistic Fuzzy k-Partite Hypergraphs

Since  $\mathscr{T}^{a_i,b_i}$  is an IFT of  $\aleph^{a_i,b_i}$  and  $\aleph' \subseteq \mathscr{T}^{a_i,b_i}$  is nonempty. Further, for each  $\tau \in \psi', h(\tau) \ge h(\tau^{a_i,b_i}) \ge h(\mathscr{T}^{a_i,b_i})$  is true. Also, assume that  $\mathscr{T}^{a_i,b_i}$  is the MIFT, then for all  $\tau \in \psi', h(\tau) > h(\mathscr{T}^{a_i,b_i})$  and  $\exists \aleph_{\tau} \neq \aleph$  with  $\aleph_{\tau} \in \tau_{h(\tau)} \cap \mathscr{T}_{h(\tau)}$ . Define an IF*k*-PHG  $\aleph_1 \ni$ 

$$\aleph_{1}(U) = \begin{cases} \mathscr{T}(U) \text{ whenever } U \neq \aleph', \\ \min(h(\mathscr{A})/h(\mathscr{A}) < h(\mathscr{T}^{a_{i},b_{i}})), \max(h(\mathscr{A})/h(\mathscr{A}) < h(\mathscr{T}^{a_{i},b_{i}})) \\ \text{ whenever } U = \aleph' \end{cases}$$

Hence  $\aleph_1$  is an IFT of IF*k*-PHG and  $h(\aleph_1^{a_i,b_i}) < h(\mathscr{T}^{a_i,b_i})$ , It does not meet the basic requirement of  $\mathscr{T}$ . For each  $\tau \in \psi'$  satisfies the first part of the theorem 4.9 and has  $\aleph_{\tau}$  which is not in  $\aleph$  with  $\aleph_{\tau} \in \tau_{h(\tau)} \cap \mathscr{T}_{h(\tau)}$ . The procedure is repeated, and the argument of (i) provides a contradiction and bringing close to the proof.

**Theorem 4.10.** Let  $\aleph$  be an IFk-PHG. Then,  $\exists \mathscr{T} \in \mathscr{TR}(\aleph)$  with  $\aleph' \subseteq supp(\mathscr{T}) \subseteq \aleph$ , if and only if for  $\mathscr{A} \in \psi$  it meets the following requirements: (i)  $(a_i, b_i) = h(\mathscr{A})$ , (ii) The level cut  $(a_j, b_j)$  of  $h(\mathscr{A}')$  is not a subhypergraph of the level cut  $(a_i, b_i)$ of  $h(\mathscr{A})$ , for all  $\mathscr{A}' \in \psi$  with  $h(\mathscr{A}') > h(\mathscr{A})$ ,

(iii) The level cut  $(a_i, b_i)$  of  $h(\mathscr{A})$  does not contain any other hyperedge of  $\aleph_{h(\mathscr{A})}$ , where  $(a_i, b_i)$  denotes MNMV of  $\mathscr{A}$ .

#### **Proof.** Necessary Part:

(i) Let  $\mathscr{T} \in \mathscr{TR}(\aleph)$  and  $0 < h(\mathscr{T}^{a_i,b_i}) \leq 1$ . Condition (i) is followed from Theorem 4.9.

(ii) Suppose that for each  $\mathscr{A}$  satisfying (i)  $\exists \mathscr{A}' \in \psi \ni h(\mathscr{A}') > h(\mathscr{A})$  and  $\mathscr{A}'_{h(\mathscr{A}')} \subseteq \mathscr{A}_{h(\mathscr{A})}$ , then  $\exists U \neq \aleph'$ , with  $U \in \mathscr{A}'_{h(\mathscr{A}')} \cap \mathscr{T}_{h(\mathscr{A}')} \subseteq \mathscr{A}_{h(\mathscr{A})} \cap \mathscr{T}_{h(\mathscr{A})}$  which differs from the concept of Theorem 4.9.

(iii) Assume for each  $\mathscr{A}$  satisfying (i) and (ii) then  $\exists \mathscr{A}' \in \psi$  so that  $\emptyset \neq \mathscr{A}'_{h(\mathscr{A})} \subset \mathscr{A}_{h(\mathscr{A})}$ . Since  $\mathscr{A}'_{h(\mathscr{A})} \neq \emptyset$  and by (ii), we have  $h(\mathscr{A}') = h(\mathscr{A}) = (a_i, b_i)$ .

If  $(a_j, b_j) = h(\mathscr{A}')$  and  $\mathscr{A}'' \in \psi$  such that  $\emptyset \neq \mathscr{A}''_{h(\mathscr{A})} \subset \mathscr{A}'_{h(\mathscr{A})} \subset \mathscr{A}_{h(\mathscr{A})}$ . The process is continued and the chain ends finitely, without loss of abstraction assume  $(a_i, b_i) < h(\mathscr{A})$ . But,  $\exists U \neq \aleph' \ni U \in \mathscr{A}'_{h(\mathscr{A})} \cap \mathscr{T}_{h(\mathscr{A})} \subseteq \mathscr{A}_{h(\mathscr{A})} \cap \mathscr{T}_{h(\mathscr{A})}$ , which contradicts Theorem 4.9.

Sufficient Part:

Let  $\mathscr{A} \in \psi$  satisfy the condition (i), (ii) and (iii). By condition (i), the process is trivial. By condition (ii) and (iii)  $\exists U \in \mathscr{A}'_{h(\mathscr{A}')} \setminus \mathscr{A}_{h(\mathscr{A})}$  for every  $\mathscr{A}' \in \psi$  $\ni \mathscr{A}' \neq \mathscr{A}$  and  $h(\mathscr{A}') \geq h(\mathscr{A})$ . Let  $\bigvee_{\mathscr{A}}$  be the set of all vertices of  $\aleph \ni$  $\bigvee_{\mathscr{A}} \cap \mathscr{A}_{h(\mathscr{A})} = \emptyset$ .

The initial sequence of transversals are constructed. So  $\tau_s \subseteq \forall$  for all s,

 $1 \leq s < i$  and  $\tau_i \subseteq \vee_{\mathscr{A}} \cup \vee_i$ . Hence,  $\vee_i \in \tau_i$  for each *i*. The process is terminated till it reaches a minimal IFT with  $(a_i, b_i) = h(\mathscr{A}) = h(\mathscr{F}^{a_i, b_i})$ .

**Theorem 4.11.** Let  $\aleph$  be an IFk-PHG with  $F_k(\aleph) = \{a_1, a_2, \cdots, a_k; b_1, b_2, \cdots, b_k\}$ so that  $0 \le a_i \le h_{\omega}(\aleph), 0 \le b_i \le h_{\nu}(\aleph)$ . Also,  $\aleph^{a_i,b_i} \subseteq \mathscr{A}'$ , be the elementary IFk-PHG if and only if  $h(\mathscr{A}') = (a_i, b_i)$  and  $supp(\mathscr{A}')$  is a hyperedge of  $\aleph^{a_i,b_i}$ . Then  $\mathcal{TR}(\mathcal{TR}(\aleph))$  is the partial IFk-PHG of  $\aleph^{a_i,b_i}$ .

**Proof.** From Theorem 4.5 and by the construction of minimal IFT, the  $(a_i, b_i)$ level hypergraph of  $\mathscr{TR}(\aleph)$  is  $\mathscr{TR}(\aleph^{a_i,b_i})$  which means that  $(\mathscr{TR}(\aleph))^{a_i,b_i} = \mathscr{TR}(\aleph^{a_i,b_i})$ . Let  $\tau$  belongs to  $\mathscr{TR}(\mathscr{TR}(\aleph))$ . From Theorem 4.9,  $h(\tau(\vee_i)) > 0$ , this implies that  $\exists \ \mathcal{T} \in \mathscr{TR}(\aleph)$  with  $h(\tau(\vee_i)) = h(\mathscr{T})$ . From Theorem 4.1,  $h(\mathscr{T}) = (max(min(\omega_{k_{ij}})), max(max(\nu_{k_{ij}}))) = h(\aleph)$  for all minimal IFT  $\mathscr{T}$ . Hence  $\tau$  is elementary with  $h(a_i, b_i)$ . Since  $supp(\tau) = \tau^{a_i, b_i}$ , Theorem 4.5 suggest that  $supp(\tau)$  is the minimal IFT of  $(\mathscr{TR}(\aleph))^{a_i, b_i}$ . It is obvious that  $supp(\tau)$  is a hyperedge of  $\aleph^{a_i, b_i}$ . Hence  $\tau$  is a hyperedge of  $\aleph^{a_i, b_i}$ .

**Theorem 4.12.** Let  $\aleph$  be an IFk-PHG with  $\aleph^{a_i,b_i}$  is a simple. Then  $\mathscr{TR}(\mathscr{TR}(\mathscr{H})) = \aleph^{a_i,b_i}$ .

**Proof.** By the above theorem,  $\mathscr{TR}(\mathscr{TR}(\aleph)) \subseteq \aleph^{a_i,b_i}$ . Let  $\tau$  be an elementary with  $h(\mathscr{T}) = (a_i, b_i)$  and  $supp(\tau) \in \aleph^{a_i,b_i}$ . By Theorem 4.11,  $supp(\tau)$  is a minimal IFT of  $(\mathscr{TR}(\aleph))^{a_i,b_i}$ . Since each minimal IFT of  $\mathscr{TR}(\aleph)$  is elementary by definition of minimal IFT the process ends at  $(a_i, b_i)$ -level and  $\tau \in \mathscr{TR}(\mathscr{TR}(\aleph))$ .

Hence  $\aleph^{a_i,b_i} \subseteq \mathscr{TR}(\mathscr{TR}(\aleph))$  which implies  $\aleph^{a_i,b_i} = \mathscr{TR}(\mathscr{TR}(\aleph))$ .

## 5 Conclusion

In this article, some interesting concepts like IFT, minimal IFT, locally minimal IFT and IFTC of IFk-PHGs were discussed. It is important to note that IFTC exists for both spike and non-spike intuitionistic fuzzy k-partite hyperedges. In future, the authors planned to work on Robotics with multi-task concept as an application part of IFk-PHG.

## References

- C. Berge. Graphs and Hypergraphs. North Holland, New York, 1976.
- R. H. Goetschel. Introduction to fuzzy hypergraphs and hebbian structures. *Fuzzy Sets and Systems*, 76:113–130, 1995.

- R. H. Goetschel. Fuzzy colorings of fuzzy hypergraphs. *Fuzzy Sets and Systems*, 94:185–204, 1998.
- R. H. Goetschel, W. L. Craine, and W. Voxman. Fuzzy transversals of fuzzy hypergraphs. *Fuzzy Sets and Systems*, 84:235–254, 1996.
- J.N.Mordeson and P. Nair. *Fuzzy Graphs and Fuzzy Hypergraphs*. Physica Verlag, New York, 2000.
- K.T.Atanassov. Intuitionistic Fuzzy Sets Theory and Applications. Physica Verlag, New York, 1999.
- K.T.Atanassov. On index matrix representation of the intuitionistic fuzzy graphs. *Notes on Intuitonistic Fuzzy Set*, 4:73–78, 2002.
- K.T.Atanassov. On Intuitionistic Fuzzy Sets Theory. Springer, New York, 2012.
- K. Myithili and R. Keerthika. Types of intuitionistic fuzzy *k*-partite hypergraphs. *AIP Conference Proceedings*, 2261:030012–1–030012–13, 2020a.
- K. Myithili and R. Keerthika. Properties of strong and complete intuitionistic fuzzy *k*-partite hypergraphs. *Turkish Journal of Computer and Mathematics Education*, 11(2):784–791, 2020b.
- K. Myithili and R. Parvathi. Transversals of intuitionistic fuzzy directed hypergraphs. *Notes on Intuitionistic Fuzzy Sets*, 21(3):66–79, 2015.
- K. Myithili and R. Parvathi. Properties of transversals of intuitionistic fuzzy directed hypergraphs. *Advances in Fuzzy Sets and Systems*, 21(1):93–105, 2016.
- K. Myithili, R. Parvathi, and M. Akram. Certain types of intuitionistic fuzzy directed hypergraphs. *International Journal of Machine Learning and Cybernetics*, 2:1–9, 2014.