Anti-homomorphism in Q-fuzzy subgroups and normal subgroups

R.Jahir Hussain* S.Palaniyandi[†]

Abstract

The fuzzy set has been applied in wide area by many researchers. We define the concept of anti-homomorphism in Q-fuzzy subgroups and Q-fuzzy normal subgroups and establish some result in this research article and develop some theory of anti-homomorphism in Q-fuzzy subgroups, normal subgroups and also extend results on Q-fuzzy abelian subgroup and Q- fuzzy normal subgroup. Many researchers have explored the fuzzy set extensively. We propose the notion of anti-homomorphism in Q is fuzzy subgroups and normal subgroups. It is establish some findings in this study article and build the theory of anti-homomorphism in Q-fuzzy subgroups, normal subgroups. It is also extend results on Q-fuzzy abelian subgroup.

Keywords: Fuzzy, subgroup, Q-fuzzy, fuzzy abelian, fuzzy normal subgroup, anti-homomorphism,.

AMS Subject Classification: 03E72, 03E75, 08A72¹

^{*}PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India.; hssn_jhr@yahoo.com.

[†]PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India.; palanijmc85@gmail.com. ¹Received on September 15, 2022. Accepted on December 15, 2022. Published on March 20, 2023. DOI: 10.23755/rm.v46i0.1073. ISSN: 1592-7415. eISSN: 2282-8214. ©R.Jahir Hussain et al. This paper is published under the CC-BY licence agreement.

1 Introduction

Zadeh L.A. Zadeh [1965] introduced the fuzzy set concept. Numerous scholars have used the fuzzy set in several different contexts. Fuzzy subgroups are first discussed by Rosenfeld Rosenfeld [1971]. Biswas.R Biswas [1990] was introduced, the anti-fuzzy subgroups. The novel structure of Q-fuzzy subgroups was introduced by Solairaju.A and Nagarajan.R Solairaju and Nagarajan [2009]. Fuzzy subgroups and fuzzy homomorphisms were defined by Choudhury, F.P., Chakraborty, A. B, and Khare Choudhury et al. [1988] Sheik Anti-homomorphism in fuzzy subgroups was defined by Abdullah A. and Jeyaraman K. Sheik Abdullah and Jeyaraman [2010]. In this study, we demonstrate various results and define the notion of anti-homomorphism in Q-fuzzy subgroups and fuzzy normal subgroups.

2 Preliminaries

Definition 2.1. Zadeh [1965] A function of fuzzy subset $\delta \neq S$ is $\delta : S \rightarrow [0, 1]$.

Definition 2.2. Rosenfeld [1971] A fuzzy subset δ of a group J = J (fuzzy subgroup) if it is satisfying the following conditions,

(i)
$$\delta(\varrho) \ge \min\{\delta(\varrho), \delta(\gamma)\}\$$

(*ii*)
$$\delta(\varrho^{-1}) = \delta(\varrho), \forall \varrho, \gamma \in J.$$

Definition 2.3. Solairaju and Nagarajan [2009] A Q-fuzzy set $\delta = J$ if $\forall \rho$, gammaf $\in J$, and $\kappa \in Q$

(i) $\delta(\rho\gamma, \kappa) \ge \min\{\delta(\rho, \kappa), \delta(\gamma, \kappa)\}$

(ii)
$$\delta(\varrho^{-1}, \kappa) = \delta(\varrho, \kappa)$$

Definition 2.4. Zadeh [1965] $\nu \subseteq S$ (fuzzy subset of a set). For $\beta \in [0, 1]$, the level subset of δ is defined by

$$\delta_{\beta} = \{ e \in S : \delta_{\nu}(\varrho) \ge \beta \}$$

Definition 2.5. Solairaju and Nagarajan [2009] $\nu \subseteq S$. For $\beta \in [0, 1]$, the set $\delta_{\beta} = \{e \in S, \kappa \in Q : \delta_{\nu}(\varrho, \kappa) \geq \beta\}$ is called a $Q \subseteq \delta$.

Definition 2.6. Palaniappan and Muthuraj [2004] Consider $\delta < J$. The fuzzy subgroup δ is said to be fuzzy normal subgroup if $\delta(\varrho\gamma) = \delta(fe), \forall \varrho, \gamma \in J$.

Definition 2.7. Palaniappan and Muthuraj [2004] A fuzzy subgroup δ of a group J is a Q-fuzzy normal subgroup if $\delta(\varrho\gamma, \kappa) = \delta(\gamma\varrho, \kappa)$, \forall varrho $\gamma \in J$, and $\kappa \in Q$.

Anti-homomorphism in Q-fuzzy subgroups and normal subgroups

Definition 2.8. Choudhury et al. [1988] Let (J_1, \bullet) and $J_2, \bullet)$ be the function $g: J_1 \to J_2$ is called a group homomorphism if $g(\varrho\gamma) = g(\varrho) . g(\gamma), \forall \varrho, \gamma \in J_1$.

Definition 2.9. Sheik Abdullah and Jeyaraman [2010] Let (J_1, \bullet) and J_2, \bullet) be the function $g : J_1 \to J_2$ is called a group anti homomorphism if $g(\varrho\gamma) = g(\gamma) \cdot g(\varrho), \forall \varrho, \gamma \in J_1$.

Definition 2.10. Sheik Abdullah and Jeyaraman [2010] Let $g : J_1 \to J_2$ is called anti automorphism if $g(\varrho\gamma) = g(f) \cdot g(\varrho) \forall \varrho, \gamma \in J_1$.

Definition 2.11. Sheik Abdullah and Jeyaraman [2010] The function δ is a fuzzy characteristic subgroup of a group J if $\delta(h(\varrho)) = \delta(\varrho)$.

3 Some results On Q -fuzzy subgroups in anti- homomorphism

Theorem 3.1. Let $g: J \to J^*$ be an anti-homomorphism, if δ^* is a $Q < J^*$. Then $g^{-1}(\delta^*)$ is a Q < J.

Proof. Let $e, \gamma \in J$. Then

$$g^{-1}(\delta^{*})(\varrho\gamma, \kappa) = \delta^{*}(h(\varrho\gamma, \kappa))$$

= $\delta^{*}\{g(\gamma, \kappa).g(\varrho, \kappa)\}$
 $\geq \min\{\delta^{*}(h(\gamma, \kappa)), \delta^{*}(h(\varrho, \kappa))\}$
= $\min\{(h^{-1}\delta^{*})(\gamma, \kappa), (h^{-1}\delta^{*})(\varrho, \kappa)\}$ (1)

and

$$g^{-1}(\delta^*)(\varrho^{-1}, \kappa) = \delta^*(h(\varrho^{-1}, \kappa))$$

= $\delta^*(h(\varrho, \kappa))$
= $g^{-1}(\delta^*)(\varrho, \kappa)$ (2)

From (1) and (2), $g^{-1}(\delta^*)$ is a Q < J.

Theorem 3.2. If δ is a Q < J and $g : S \to S^*$ is an anti-homomorphism, then $g^{-1}(\delta)$ is a Q-fuzzy normal subgroup of S^* .

Proof. For every $\rho, \gamma \in S$. We get,

$$g^{-1}(\delta)(\varrho, \kappa) = \delta(h(\varrho, \kappa))$$

= $\delta\{g(\gamma, \kappa), g(\varrho, \kappa)\}$
= $\delta(h(\gamma \varrho, \kappa))$
= $g^{-1}(\delta)(\gamma \varrho, \kappa)$

Hence $g^{-1}(\delta)$ is a Q < J.

Theorem 3.3. A fuzzy characteristic subgroup of a Q < Q. It is a fuzzy normal subgroup.

Proof. Given g is an anti automorphism of S. For all $\rho, \gamma \in S$, and $\kappa \in Q$. Then

$$g(\varrho\gamma) = g(\gamma) . g(\varrho)$$
, for every $e, \gamma \in S$

Now,

$$\delta(\varrho\gamma, \kappa) = \delta(h(\varrho\gamma, \kappa))$$
$$= \delta\{g(f, \kappa), g(\varrho, \kappa)\}$$

Since δ is a characteristics $\mathbf{Q} < S$. Then $\delta(\varrho \gamma, \kappa) = \delta\{g(\gamma, \kappa), g(\varrho, \kappa)\}$ Since g is anti automorphism of S,

$$\begin{split} \delta\left(\varrho\gamma,\,\kappa\right) &= \,\delta(h(fe,\,\kappa)) \\ &= \,\delta(\gamma\varrho,\,\kappa),\,for\,all\,\varrho,\,\gamma\,\in\,S,\,and\,\kappa\,\in\,Q \end{split}$$

 δ is a characteristics Q <S. Hence δ is a Q <S.

Definition 3.1. The Q-fuzzy subgroup δ of a group S is called a Q -fuzzy abelian subgroup of S if $H = \{ \varrho \in S : \delta(\varrho, \kappa) = \delta(i, \kappa) \}, \forall \varrho, \gamma \in S, and \kappa \in Q.$

Theorem 3.4. The commutative property satisfies all anti-homomorphism preimages of a Q-fuzzy commutative subgroup.

Proof. If δ is a Q < S. To prove δ is a Q=[S, S]Let us consider ν is a $Q = [S^*, S^*]$ (Q fuzzy commutative subgroup of S^*). Since δ is a $Q = [S^*, S^*]$ and ν is $Q = [S^*, S^*]$ Then $V = \{\gamma \in S^*, \kappa \in Q : \nu(\gamma, \kappa) = \nu(i^*, \kappa)\}$ is a $Q = [S^*, S^*]$, where i^* is the identify element of S^* .

Let $T = \{ \varrho \in S, \kappa \in Q : \delta(\varrho, \kappa) = \delta(i, \kappa) \}$ where *i* is the identify element of *S*.

Take $\varrho, \gamma \in T$ this implies $\varrho\gamma \in T \subseteq S$. Then

$$\begin{split} \delta\left(\varrho\gamma,\,\kappa\right) &= \,\delta(i,\,\kappa)\\ \nu\left(h\left(\varrho\gamma,\,\kappa\right)\right) &= \,\nu(h\left(i,\kappa\right))\\ &= \,\nu\left(i^*,\kappa\right)\\ \nu\left\{g\left(\gamma,\,\kappa\right).g\left(\varrho,\,\kappa\right)\right\} &= \,\nu\left(i^*,\kappa\right) \end{split}$$

Since $g(\gamma, \kappa) . g(\varrho, \kappa) \in V$ and V is abelian,

$$g(f, \kappa) g(\varrho, \kappa) = g(\varrho, \kappa) g(\gamma, \kappa)$$

$$\nu(h(\gamma, \kappa) g(\varrho, \kappa)) = \nu(h(\varrho, \kappa) g(\gamma, \kappa))$$

$$\nu(\gamma(\gamma \varrho, \kappa)) = \nu(\gamma(\varrho\gamma, \kappa)), \text{ since } g \text{ is anti } -homomorphism.$$

$$\delta(\varrho\gamma, \kappa) = \delta(\gamma \varrho, \kappa)$$

$$\delta(i, \kappa) = \delta(\gamma \varrho, \kappa)$$

i.e $(\gamma \varrho, \kappa) = \delta(i, \kappa)$, this implies $fe \in T$ and $\kappa \in Q$. For all $\varrho, \gamma \in T$, $\varrho\gamma \in T$ and $\gamma \varrho \in T$. This implies $\varrho\gamma = \gamma \varrho$ T satisfies commutative. Therefore δ satisfies commutative property.

Theorem 3.5. Anti-homomorphism image of a *Q*-fuzzy commutative subgroup is also satisfies commutative level.

Proof. Let ν be a Q-fuzzy subgroup of S^* . To prove: ν is a Q-fuzzy commutative subgroup of S^* . Let g be an anti-homomorphism from S to S^* . Since δ is a Q=[S, S]. Then $T = \{\varrho \ inS, \ \kappa \in Q : \delta(\varrho, \ \kappa) = \delta(i, \ \kappa)\}$ is an commutative Q-fuzzy subgroup of S^* where i is the identity element of S. Let ν be the Q-fuzzy subgroup of S^* . Let $V = \{x \in S^*, \ \kappa \in Q : \nu(\varrho, \ \kappa) = \delta(i^*, \ \kappa)\}$ where i^* is the identity element S^* . Let $e, \ \gamma \ in \ V \subseteq S^*$

$$\begin{split} \nu \left(\varrho \gamma, \, \kappa \right) &= \nu(i^*, \, \kappa) \\ Sup \, \delta \left(r, \, \kappa \right) &= Sup \, \delta \left(r, \, \kappa \right) \\ r \in g^{-1}(\varrho \gamma) \quad , \quad r \in g^{-1}(i^*) \\ \delta \left(\varrho \gamma, \, \kappa \right) &= \delta(i, \, \kappa) \end{split}$$

Then $\rho\gamma \in T$ and T is an commutative Q - fuzzy subgroup.

$$\begin{array}{rcl} (\varrho\gamma,\kappa) &=& (\gamma\varrho,\,\kappa)\\ \delta\left(\varrho\gamma,\kappa\right) &=& \delta(\gamma\varrho,\,\kappa)\\ Sup\,\delta\left(r,\,\kappa\right) &=& Sup\,\delta\left(r,\,\kappa\right)\\ r\in g^{-1}(\varrho\gamma) &, & r\in g^{-1}(\gamma\varrho)\\ \nu\left(\varrho\gamma,\kappa\right) &=& \nu(\gamma\varrho,\,\kappa)\\ \nu\left(i^*,\kappa\right) &=& \nu(\gamma\varrho,\,\kappa) \end{array}$$

 \square

That is $\nu (\rho\gamma, \kappa) = \nu (i^*, \kappa)$, this implies $\gamma \rho \in V$ and $\kappa \in Q$. For all $\rho, \gamma \in V, \rho\gamma \in V$ This implies $\gamma \rho \in V$ and $\rho\gamma = \gamma \rho$. Then $V = [S^*, S^*]$ (commutative subgroup of S^*). Therefore $\nu = [S^*, S^*]$. Where Q fuzzy commutative subgroup of S^* .

4 Conclusions

Many results can be found from the research article. But, in this paper we found few concepts of anti-homomorphism in Q-fuzzy subgroups. Further this paper used to developing the concept of Q-fuzzy abelian subgroup. There are so many concepts can be availed by future research work.

References

- R. Biswas. Fuzzy subgroups and anti fuzzy subgroups. *Fuzzy sets and Systems*, 35(1):121–124, 1990.
- F. Choudhury, A. Chakraborty, and S. Khare. A note on fuzzy subgroups and fuzzy homomorphism. *J. Math. Anal. Appl*, 131(2):537–553, 1988.
- N. Palaniappan and R. Muthuraj. Anti fuzzy group and lower level subgroups. *Antartica J.Math*, 1(1):71–76, 2004.
- A. Rosenfeld. fuzzy groups. J. math. Anal. Appl., 35(3):512-517, 1971.
- A. Sheik Abdullah and K. Jeyaraman. Anti- homomorphism in fuzzy subgroups. *International Journal of Computer Applications*, 12(8):0975–8887, 2010.
- A. Solairaju and R. Nagarajan. A new structure and construction of q-fuzzy groups. *Advances in Fuzzy Mathematics*, 4(1):23–29, 2009.
- L. Zadeh. Fuzzy setl. Information and Control, 8(3):338–353, 1965.