Anti Q-M-fuzzy normal subgroups

S.Palaniyandi * R.Jahir Hussain[†]

Abstract

The fuzzy set has been applied in wide area by many researchers. We define the concept of anti-homomorphism in Q-fuzzy subgroups and Q-fuzzy normal subgroups and establish some result in this research article and develop some theory of anti- homomorphism in Q-fuzzy subgroups, normal subgroups and also extend results on Q-fuzzy abelian subgroup and Q- fuzzy normal subgroup. Many research scholars completed their research in field of fuzzy subgroup, anti fuzzy subgroup, Q-fuzzy subgroup, anti Q-fuzzy subgroup, homomorphism, anti homomorphism etc.

Keywords: Q-M-Fuzzy subgroup, Q-M- Fuzzy Normal Subgroups, Anti Q-M- Fuzzy Normal Subgroups, group Q-M-Homomorphism and group anti Q-M-Homomorphism.

AMS Subject Classification: 03E72, 03E75, 08A72¹

^{*}PG & Research Department of Mathematics, Jamal Mohamed College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India. *palanijmc*85@gmail.com.

[†]PG & Research Department of Mathematics, Jamal Mohamed College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India. *hssn_jhr@yahoo.com*.

¹Received on September 15, 2022. Accepted on December 15, 2022. Published on March 20, 2023. DOI: 10.23755/rm.v46i0.1071. ISSN: 1592-7415. eISSN: 2282-8214. ©S.Palaniyandi et al. This paper is published under the CC-BY licence agreement.

1 Introduction

According to Zadeh.L.A Rosenfeld [1971] was introduce fuzzy sets. It has subsequently been employed in a variety of scientific domains, including engineering, social science, medicine, and pure and applied mathematics. Rosenfeld developed the concept of fuzzy subgroups Asaad [1991]. Biswas.R proposed antifuzzy subgroups in Biswas [1990]. Solairaju.A and Nagarajan.R pioneered the structure of Q-fuzzy groups Palaniappan and Muthuraj [2004]. Jacobson.N was the first to use the words M-group and M-subgroup in Jacobson [1951]. In this study, we present and discuss the concepts of group Q- M homomorphism, group anti Q- M homomorphism, and anti Q- M-fuzzy normal subgroup of M-group.

2 Preliminaries

Definition 2.1. Let $X \neq \phi$. Let X is fuzzy $\theta \subseteq \theta : X \in [0, 1]$.

Definition 2.2. *Zadeh* [1965] $A fuzzy \subseteq \theta \leq N$. *It is satisfying the axioms,*

- (i) $\theta(\alpha\beta) \ge \text{lower}\{\theta(\alpha), \theta(\beta)\}$
- (ii) $\theta(\alpha^{-1}) = \theta(\alpha), \forall \alpha, \beta \in N.$

Definition 2.3. Biswas [1990] Afuzzy $\subseteq \theta$ of a group G is said to be anti fuzzy $\subseteq G$ if it is satisfying the following conditions,

(i) $\theta(uv) \leq \operatorname{lower}\{\theta(u), \theta(v)\}$

(ii) $\theta(u^{-1}) = \theta(u), \forall u, v \in G.$

Definition 2.4. *Biswas* [1990] *Let* G: M and $\theta \subseteq G$. Then θ is called M-fuzzy $\subseteq G$ if $\forall u \in G$ and $m \in M$, then $\theta(mx) \leq \theta(u)$

Definition 2.5. *Jacobson* [1951] A *Q*-fuzzy set θ is $Q - fuzzy \leq G$ if $\forall u, v \in G$, and $\rho \in Q$

- (i) $\theta(uv, \rho) \ge \text{lower}\{\theta(u, \rho), \theta(v, \rho)\}$
- (ii) $\theta(u^{-1}, \rho) = \theta(u, \rho)$

Definition 2.6. Solairaju and Nagarajan [2009] Let fuzzy $\lambda \subseteq X$. For $t \in [0, 1] \subseteq \theta$ is denoted by $[\theta_t = \{u \in U : \theta_\lambda(u) \ge t\}]$

Definition 2.7. Sithar Selvam et al. [2014] A Q-fuzzy set θ is called $Q \leq G$ if $\forall u, v \in G$, and $\rho \in Q$ in anti Q fuzzy.

- (i) $\theta(uv, \rho) \leq \text{lower}\{\theta(u, \rho), \theta(v, \rho)\}$
- (ii) $\theta(u^{-1}, \rho) = \theta(u, \rho)$

Definition 2.8. Sithar Selvam et al. [2014] An antifuzzy normal $Q \leq G$. Then $G \nearrow \theta$ of G if $\forall x, y \in G$ and $\rho \in Q$, $\theta(uyx^{-1}, \rho) = \theta(v, \rho)$.

3 Anti Q-M- fuzzy normal subgroups and its level subsets

Definition 3.1. Let θ be anti fuzzy $Q - M - \leq M - groupG$, then $\theta \leq M(G)$ if $\forall u, v \in G, \rho \in Q$, and $m \in M$ such that $\theta(m(uvu^{-1}), \rho) = \theta(m(v), \rho)$ (or) $\theta(m(uv), \rho) = \theta(m(vu), \rho)$.

Definition 3.2. Let θ be antifuzzy $Q - M \leq M - groupG$. For any $t \in [0, 1]$, the subset θ_t is defined by $\theta_t = \{u \in G, \rho \in Q, m \in M\theta(m(u), \rho) \leq t\}$ and it is the subset of θ .

Theorem 3.1. If θ is a fuzzy $Q - M - \subseteq$ of a *M*-group *G*, then θ is an anti fuzzy $Q - M - \leq M - \operatorname{group} G$ iff the level subset $\theta_t, t \in [0, 1]$ is subgroup of *M*-group *G*.

Proof. Let us assume that θ is an $antifuzzy - Q - M - \leq M - groupG$. The level subset $\theta_t = \{u \in G, \rho \in Q, m \in M\theta(m(u), \rho) \leq t, t \in [0, 1]\}$. Let $u, v \in \theta_t$, then $\theta(mx, \rho) \leq t$ and $\theta(my, \rho) \leq t$ Now

$$\begin{aligned} \theta(m(uy^{-1}),\rho) &\leq upper\{\theta((mu),\rho),\theta(m(v^{-1}),\rho)\} \\ &= upper\{\theta(mu,\rho),\theta(mv,\rho)\} \\ &\leq upper\{t,t\} \end{aligned}$$

Thus

$$\theta(m(uv^{-1}),\rho) \le t$$

Hence $xy^{-1} \in \theta_t$. Therefore $\theta_t \leq M(G)$. Conversely, Let θ_t be a subgroup of a M-group G. Let $u, v \in \theta_t$. Then $\theta(mu, \rho) \leq t$ and $\theta(mv, \rho) \leq t$.

$$\Rightarrow \theta(m(uv^{-1}), \rho) \le t , Because\{uv^{-1} \in \theta_t\} \\= upper\{t, t\} \\= upper\{\theta(mu, \rho), \theta(mv, \rho)\}$$

Therefore

$$\theta(m(uv^{-1}), \rho) \le upper\{\theta(mu, \rho), \theta(mv, \rho)\}$$

Hence θ is an anti fuzzy $Q \leq M - groupG$.

Definition 3.3. Let θ be a anti fuzzy $Q - M \leq m - \text{group}G$. The set $N(\theta)$ is defined by $N(\theta) = \{\alpha \in G\theta(m(\alpha ua^{-1}), \rho) = \theta(m(u), \rho)\} \forall u \in G \text{ and } \rho \in Q, m \in M.$ and it is called an anti fuzzy *Q*-*M*-normalizer of θ .

Theorem 3.2. If θ is a fuzzy $Q - M \leq M - groupG$. Then θ is an anti fuzzy $Q - M - fuzzy \leq M - groupG$ iff the level subsets $\theta_t, t \in [0, 1] \leq M(G)$.

Proof. Let us assume that $\theta \leq Q - M - antifuzzynormalsubgroup of aM(G)$ and the level subsets $\theta_t, t \in [0, 1]$ is a subgroup of a M-group G. We take $u \in G$ and $\alpha \in \theta_t$, then $\theta(ma, \rho) \leq t$ Now $\theta(m(\alpha x a^{-1}), \rho) = \theta(ma, \rho) \leq t$. Since θ is an anti fuzzy normal Q-M $\leq M(G), \theta(m(uau-1), \rho) \leq t$ Therefore $u\alpha u^{-1} \in \theta_t$, hence $\theta_t \leq M(G)$.

Theorem 3.3. If θ is an $\leq Q - M - antifuzzynormal subgroup of <math>aM(G)$ Then

- (i) $N(\theta) \leq M(G)$.
- (ii) θ is an normal anti fuzzy $-Q-M \leq iff N(\theta) = G$.
- (iii) θ is an normal fuzzy ant $i Q M \leq N(\theta)$.

Proof. Let $\alpha, \beta \in N(\theta)$. (i) Then $\theta(m(\alpha u a^{-1}), \rho) = \theta(mu, \rho) \forall u \in G, \rho \in Q, m \in M$ and $\theta(m(\beta x \beta^{-1}), \rho) = \theta(mu, \rho) \forall u \in G, \rho \in Q, m \in M$. Now

$$\theta(m(\alpha\beta u(\alpha\beta)^{-1}),\rho) = \theta(m(\alpha\beta u\beta^{-1}\alpha^{-1}),\rho)$$
$$= \theta(m(\beta u\beta^{-1}),\rho)$$
$$= \theta(mu,\rho)$$

Then we have, $\theta(m(\alpha\beta u(\alpha\beta)^{-1}), \rho) = \theta(mu, \rho)$ $\Rightarrow \alpha\beta \in N(\theta)$ Therefore $N(\theta) \leq M(G)$. (ii) We know that

$$N\theta \subseteq G,\tag{1}$$

 θ is an normal fuzzy anti- $Q - M \leq G$. Let $\alpha \in G$, then $\theta(m(\alpha u \alpha^{-1}), \rho) = \theta(mu, \rho) \ \forall u \in G, \rho \in Q, m \in M$. Then

$$\alpha \in N(\theta) \Rightarrow G \subseteq N(\theta) \tag{2}$$

From (1)&(2), we get $N(\theta) = G$ Conversely, assume that $N(\theta) = G$ We have, $\theta(m(\alpha x \alpha^{-1}), \rho) = \theta(mx, \rho) \forall \alpha, x \in G, \rho \in Q, m \in M$. Therefore θ is an fuzzy normal anti $Q - M \leq M(G)$. (iii) Let θ be an fuzzy normal anti $Q - M \leq M$ We take $\alpha \in G$, then we have $\theta(m(\alpha u a^{-1}), \rho) = \theta(mu, \rho) \forall u \in G, \rho \in Q, m \in M$. Therefore $\alpha \in N(\theta) \Rightarrow G \subseteq N(\theta)$. Hence θ is an fuzzy normal anti $Q - M \leq N(\theta)$

Theorem 3.4. Let θ be an fuzzy normal anti $Q - M \leq M(G)$, then $h\theta h^{-1}$ is also an fuzzy normal anti $Q - M \leq M(G) \forall h \in G, \rho \in Q, m \in M$.

Proof. Given $\theta \leq M(G) \leq M(G)$

$$\begin{aligned} (i)(h\theta h^{-1})(m(uv),\rho) &= \theta(m(h^{-1}(uv)h),\rho) \\ &= \theta(m(h^{-1}(uhh^{-1}v)h),\rho) \\ &= \theta(m((h^{-1}uh)(h^{-1}vh)),\rho) \\ &\leq upper\{\theta(m(h^{-1}uh),\rho),\theta(m(h^{-1}vh),\rho)\} \\ &\leq upper\{h\theta h^{-1}(mu,\rho),h\theta h^{-1}(mv,\rho)\} \end{aligned}$$

 $\forall u, v \in G, \rho \in Q \text{ and } m \in M.$

$$\begin{aligned} (ii)h\theta h^{-1}(mu,\rho) &= \theta(m(h^{-1}uh),\rho) \\ &= \theta(m(h^{-1}uh)^{-1},\rho) \\ &= \theta(m(h^{-1}u^{-1}h),\rho) \\ &= h\theta h^{-1}(mu^{-1},\rho) \end{aligned}$$

 $\forall u, v \in G, \rho \in Q, m \in M.$ Therefore $h\theta h^{-1}$ is an fuzzy anti $Q - M \leq M(G)$.

Theorem 3.5. Let θ fuzzy anti $Q - M \leq M(G)$, then $h\theta h^{-1}$ fuzzy anti $Q - M \leq M(G)$, $\forall h \in G, \rho \in Q, m \in M$.

Proof. Given θ is an anti-Q-M-fuzzy normal subgroup of M-group G. Then $h\theta h^{-1} \leq G$. Now

$$h\theta h^{-1}(m(uvu^{-1}),\rho) = \theta(m(h^{-1}(uvu^{-1})h),\rho)$$

$$= \theta(m(uvu^{-1}),\rho)$$

$$= \theta(mv,\rho)$$

$$= \theta(m(hvh^{-1}),\rho)$$

$$= h\theta h^{-1}(mv,\rho)$$

Therefore $h\theta h^{-1}$ is also an fuzzy normal anti $Q - M \leq M(G)$.

Theorem 3.6. The disjoint two fuzzy normal anti $Q - M \le M(G)$ is also an anti fuzzy anti $Q - M \le M(G)G$.

Proof. Let α and β be two anti-Q-M-fuzzy subgroups of a M-group G. Then

Therefore $\{(\alpha\beta)(c(uv^{-1}), \rho)\} \leq \text{upper } \{(\alpha\beta)(cu, \rho), (\alpha\beta)(cv, \rho)\}$ Hence $\alpha\beta$ is an fuzzy normal anti $Q - M \leq M(G)$.

Theorem 3.7. If C and D are an anti fuzzy normal $Q-M \leq M(G)$. Then $A \cap B$ is anti fuzzy normal $Q-M \leq M(G)$.

Proof. For any $x, y \in G, q \in Q, m \in M$ We have

$$(C \cap D)(m(xyx^{-1}), q) = upper\{C(m(xyx^{-1}), q), D(m(xyx^{-1}), q)\}$$

= upper{C(my, q), D(my, q)}
= (C \cap D)(my, q)

Hence $C \cap$ is an anti fuzzy normal Q-M $\leq M(G)$.

4 Group Q-M- homomorphism and group anti Q-M- homomorphism

Definition 4.1. The function $f : G \times Q \to H \times Q$ is homorphism group Q-M (i) $f : G \to H$ is a homomorphism group and (ii) $f(m(uv), \rho) = (f(mv).f(mu), \rho) \forall u, v \in G, \rho \in Q, m \in M$. where G and H are M-groups.

Definition 4.2. The function $f : G \times Q \rightarrow H \times Q$ is anti homomorphism group of *Q*-*M* if

- (i) $f: G \to H$ is homomorphism group
- (ii) $f(m(uv), \rho) = (f(mx), f(mv), \rho) \forall u, v \in G, \rho \in Q, m \in M.$

Theorem 4.1. If the function $f : G \times Q \rightarrow H \times Q$ is a group anti Q-M-homomorphism

- (i) If θ is an anti Q-M-fuzzy normal subgroup of H, then $f^{-1}(\theta)$ is an fuzzy normal anti $Q M \leq M(G)$.
- (ii) If f is an epimorphism and θ is an fuzzy normal anti $Q M \leq M(G)$ then $f(\theta)$ is an anti normal fuzzy $Q-M \leq H$. Where G and H are M-groups.

Proof. (i) Given the function $f : G \times Q \rightarrow H \times Q$ is a group anti-Q-M-homomorphism and θ is an anti normal fuzzy Q-M $\leq H$. For all $u, v \in G, \rho \in Q, m \in M$ we have,

$$\begin{aligned} f^{-1}(\theta)(m(uvu^{-1}),\rho) &= & \theta(f(m(uvu^{-1})),\rho) \\ &= & \theta(fm(u^{-1}).f(mv).f(mu),\rho) \\ &= & \theta(f(mv),\rho) \\ &= & f^{-1}(mv,\rho) \end{aligned}$$

Hence $f^{-1}(\theta)$ is an fuzzy normal anti $Q - M \leq M(G)$.

(ii) Given θ is an fuzzy normal anti $Q - M \leq M(G)$. Then $f(\theta)$ is an anti Q-M-fuzzy subgroup of H. For any $\aleph, \beta \in H$, we have

$$\begin{array}{lll} f(\theta)(m(\alpha\beta\aleph^{-1}),\rho) &=& \inf \theta(mv,\rho) = inf\theta(m(uvu^{-1}),\rho) \\ f(v) &=& \alpha\beta\alpha^{-1} = inf\theta(mv,\rho) \\ f(u) = a, f(v) = \beta &=& f(\theta)(mb,\rho) \end{array}$$
 (Since f is an epimorphism)

Therefore $f(\theta)$ is an fuzzy normal anti $Q - M \leq H$.

Definition 4.3. Let A and B be two fuzzy anti $Q - M \leq M(G)$. The Product of A and B is defined by $AB(m(u), \rho) = infupper(A(mv, \rho), vz = u, B(mz, \rho))u \in G, \rho \in Q, m \in M$.

Theorem 4.2. If A and B are fuzzy normal anti $Q - M \leq M(G)$, then AB is an fuzzy normal anti $Q - M \leq G$.

S.Palaniyandi and R.Jahir Hussain

Proof. Given A and B are two fuzzy normal anti $Q - M \leq M(G)$.

Hence AB is anti fuzzy normal Q-M $\leq M(G)$.

5 Conclusions

In this research article, we gave some results of anti Q-M-fuzzy normal subgroup, Group Q-M homomorphism and Group anti Q-M homomorphism. This article used to further research in fuzzy algebra.

References

- M. Asaad. Groups and fuzzy subgroups. *Fuzzy sets and systems*, 39(3):323–328, 1991.
- R. Biswas. Fuzzy subgroups and anti fuzzy subgroups. *Fuzzy sets and Systems*, 35(1):121–124, 1990.
- N. Jacobson. Lectures in abstract algebra. eBook, 1951.
- N. Palaniappan and R. Muthuraj. Anti fuzzy group and lower level subgroups. *Antartica J.Math*, 1(1):71–76, 2004.

Anti Q-M-Fuzzy Normal Subgroups

- A. Rosenfeld. fuzzy groups. J. math. Anal. Appl., 35(3):512-517, 1971.
- P. Sithar Selvam, T. Priya, K. Nagalakshmi, and T. Ramachandran. On some properties of anti-q-fuzzy normal subgroups. *Gen. Math. Notes*, 22(1):1–10, 2014.
- A. Solairaju and R. Nagarajan. A new structure and construction of q-fuzzy groups. *Advances in Fuzzy Mathematics*, 4(1):23–29, 2009.
- L. Zadeh. Fuzzy setl. Information and Control, 8(3):338-353, 1965.