Strong interval - valued Pythagorean fuzzy soft graphs

Mohammed Jabarulla Mohamed*
Sivasamy Rajamanickam ${ }^{\dagger}$

Abstract

A Strong interval - valued Pythagorean fuzzy soft sets (SIVPFSS) an extending the theory of Interval-valued Pythagorean fuzzy soft set (IVPFSS). Then we Propose Strong interval valued Pythagorean fuzzy soft graphs (SIVPFSGs). We also present several different types of operations on Strong interval- valued Pythagorean fuzzy soft graphs and explore of their analysis. Keywords: Strong Interval-valued Pythagorean fuzzy graph; Strong Interval-valued Pythagorean fuzzy soft graph; 2020 AMS subject classifications: 05C72, 06D72, 12D15. ${ }^{1}$

[^0]M. Mohammed Jabarulla and R. Sivasamy

1 Introduction

Fuzzy set is a analytical imitation to grips the exciting and insufficient details. consider a differentiating that uncertainty is also independently, FS was continued to intuitionistic fuzzy set (IFS) by Atanassov and Gargov [1989]. If assigned a membership value α and a non membership value β to the conditions, satisflying this results $\alpha+\beta \leq 1$ and uncertainty elements, $\gamma=1-\alpha-\beta$. In decision-making problems, the membership value 0.7 and non membership value 0.4 for some information, then IF fails in this situation because $0.7+0.4>1$, but $(0.7)^{2}+(0.4)^{2} \leq 1$. To overcome this situation, the notion of Pythagorean fuzzy set (PFS) was satisfying the condition $\alpha^{2}+\beta^{2} \leq 1$. A PFS has more potential as compared to IFS is solving decision-making problems. The Pythagorean fuzzy number (PFG) was determinate by Zhang (see S.Shahzadi and Akram [2020]). Zhang provided the Pythagorean fuzzy weighted averaging operator.

The theory of IVFS was introduced by Zadeh [1965] as a perpetuation of fuzzy sets. Because they present more adequate description for uncertainty, intervalvalued fuzzy sets more useful than conventional fuzzy sets. Soft set theory was started by Molodstov [1999] for the parameterized point of view for uncertainty modeling and soft computing. The iterpretation of IFSGs was given by Akram [2011]. The explanation of novel intuitionistic fuzzy soft multiple - decisionmaking methods of grips by Akram. Pythagorean fuzzy soft graphs with applications was proposed by S.Shahzadi and Akram [2020].The SIVPFSG is defined and some results on SIVPFSG are studied. Also explore of their analysis.

2 Preliminaries

Definition 2.1. An IVFSG over the set Vis given by ordered 4 tuple $\tilde{\xi}=\left(\xi^{*}, X, Y, A\right)$ such that
(i) A is of parameters.
(ii) (X, A) is an IVFSS over V.
(iii) (Y, A) is an IVFSS over E.
(iv) $(X(e), Y(e))$ is an IVFSG for all $e \in A$.

That is,
$\alpha_{Y(e)}^{-}((p q)) \leq \min \left(\alpha_{X(e)}^{-}(p), \alpha_{X(e)}^{-}(q)\right)$ and
$\alpha_{Y(e)}^{+}((p q)) \leq \min \left(\alpha_{X(e)}^{+}(p), \alpha_{X(e)}^{+}(q)\right)$ forall $p q \in E$.
We denote $\xi^{*}=(V, E)$ a crisp graph $H(e)=(X(e), Y(e))$ an IVFSG and $\tilde{\xi}=\left(\xi^{*}, X, Y, A\right)$ an IVFSG.

Definition 2.2. An IVFSG over the set V is defined to be a pair $\xi=(X, Y)$ where 1) The conditions $\widetilde{\alpha_{X}}: V \rightarrow D[0,1]$ and $\widetilde{\beta_{X}}: V \rightarrow D[0,1]$ denote the degree of
membership and non membership of the element $p \in V$. such that

$$
0 \leq \widetilde{\alpha_{X}}(p)+\widetilde{\beta_{X}}(p) \leq 1 \forall(p, q) \in V .
$$

2) The conditions $\widetilde{\alpha_{Y}}: E \subseteq V \times V \rightarrow D[0,1]$ and $\widetilde{\beta_{Y}}: E \subseteq V \times V \rightarrow D[0,1]$ defined by
$\alpha_{Y L}^{-}((p, q)) \leq \min \left(\alpha_{X L}^{-}(p), \alpha_{X L}^{-}(q)\right)$ and $\beta_{Y L}^{-}((p, q)) \geq \max \left(\beta_{X L}^{-}(p), \alpha_{X L}^{-}(q)\right)$,
$\alpha_{Y U}^{+}((p, q)) \leq \min \left(\alpha_{X U}^{+}(p), \alpha_{X U}^{+}(q)\right)$ and $\beta_{Y U}^{+}((p, q)) \geq \max \left(\beta_{X U}^{+}(p), \alpha_{X U}^{+}(q)\right)$, such that $0 \leq \alpha_{Y U}^{2}(p, q)+\beta_{Y U}^{2}(p, q) \leq 1 \forall(p, q) \in E$.
We the notation pq for (p, q) an element of E.
Definition 2.3. An IVPFSG over the set V is given by $\tilde{\xi}=\left(\xi^{*}, X, Y, A\right)$ such that 1) The conditions $\widetilde{\alpha_{X}}: V \rightarrow D[0,1]$ and $\widetilde{\beta_{X}}: V \rightarrow D[0,1]$ standered for the degree of membership and non membership of the element $p \in V$. such that

$$
0 \leq \widetilde{\alpha_{X}}(p, q)+\widetilde{\beta_{X}}(p, q) \leq 1 \forall(p, q) \in V
$$

2)(i) A is set of parameters
(ii) (X, A) is an IVPFSS over V.
(iii) (Y, A) is an IVPFSS over E.
(iv) $(X(e), Y(e))$ is an IVPFSG for all $e \in A$.

The conditions $\widetilde{\alpha_{Y}}: E \subseteq V \times V \rightarrow D[0,1]$ and $\widetilde{\beta_{Y}}: E \subseteq V \times V \rightarrow D[0,1]$ defined by
$\alpha_{Y U}^{+}((p, q)) \leq \min \left(\alpha_{X U}^{+}(p), \beta_{X U}^{+}(q)\right)$ and $\beta_{Y U}^{+}((p, q)) \geq \max \left(\beta_{X U}^{+}(p), \beta_{X U}^{+}(q)\right)$, $\alpha_{Y}^{-}((p, q)) \leq \min \left(\alpha_{X}^{-}(p), \beta_{X}^{-}(q)\right)$ and $\beta_{Y}^{-}((p, q)) \geq \max \left(\beta_{X}^{-}(p), \beta_{X L}^{-}(q)\right)$, such that $0 \leq \alpha_{Y U}^{2}(p, q)+\beta_{Y U}^{2}(p, q) \leq 1 \forall(p, q) \in E$.

3 Strong intervel-valued Pythagorean fuzzy Graphs

Definition 3.1. An SIVPFSG over the set V is given by $\tilde{\xi}=\left(\xi^{*}, X, Y, A\right)$ such that

1) The conditions $\widetilde{\alpha_{X}}: V \rightarrow D[0,1]$ and $\widetilde{\beta_{X}}: V \rightarrow D[0,1]$ denote the degree of membership and non membership of the element $x \in V$. such that

$$
0 \leq \widetilde{\alpha_{X}}(p, q)+\widetilde{\beta_{X}}(p, q) \leq 1 \forall(p, q) \in V
$$

2)(i) A is set of parameters
(ii) (X, A) is an SIVPFSS over V.
(iii) (Y, A) is an SIVPFSS over E.
(iv) $(X(e), Y(e))$ is an SIVPFSG for all $e \in A$.

The conditions $\widetilde{\alpha_{Y}}: E \subseteq V \times V \rightarrow D[0,1]$ and $\widetilde{\beta_{Y}}: E \subseteq V \times V \rightarrow D[0,1]$ defined by

```
\(\alpha_{Y U}^{+}((p, q))=\min \left(\alpha_{X U}^{+}(p), \beta_{X U}^{+}(q)\right)\) and \(\beta_{Y U}^{+}((p, q))=\max \left(\beta_{X U}^{+}(p), \beta_{X U}^{+}(q)\right)\),
\(\alpha_{Y L}^{-}((p, q))=\min \left(\alpha_{X L}^{-}(p), \alpha_{X L}^{-}(q)\right)\) and \(\beta_{Y L}^{-}((p, q))=\max \left(\alpha_{X L}^{-}(p), \beta_{X L}^{-}(q)\right)\),
such that \(0 \leq \alpha_{Y U}^{2}(p, q)+\beta_{Y U}^{2}(p, q) \leq 1 \forall(p, q) \in E\).
```

Example 3.1. If $\xi^{*}=(X, Y)$ is a simple graph with $X=\{a, b, c, d\}$ and $Y=$ $\{a b, b c, c d, a d\}$. Let $A=\left\{e_{1}, e_{2}\right\}$ be a parameter set and (X, A) be an SIVPFSS V determine

$$
\begin{aligned}
& X_{1}(e)=\{\langle a,[0.3,0.4][0.2,0.7]\rangle,\langle b,[0.2,0.5][0.3,0.7]\rangle,\langle c,[0.1,0.6][0.2,0.5]\rangle \\
&\text { and }\langle D[0.2,0.7][0.3,0.5]\rangle\} \\
& X_{2}(e)=\{\langle a,[0.2,0.7][0.3,0.5]\rangle,\langle b[0.1,0.6][0.2,0.5]\rangle,\langle c,[0.3,0.4][0.2,0.7]\rangle\}
\end{aligned}
$$

Take (Y, A) be an SIVPFSS E determine

$$
\begin{aligned}
& Y_{1}(e)=\{\langle a b[0.2,0.5][0.3,0.7]\rangle,\langle b c[0.1,0.6][0.3,0.7]\rangle,\langle a d[0.2,0.7][0.3,0.7]\rangle, \\
& \text { and }\langle\langle d[0.1,0.6][0.3,0.5]\rangle\} \\
& Y_{2}(e)=\{\langle a b[0.1,0.5][0.4,0.6]\rangle,\langle b c[0.1,04][0.4,0.8]\rangle,\langle a c[0.1,0.3][0.4,0.8]\rangle\}
\end{aligned}
$$

It is clearly seen that $H\left(e_{1}\right)=\left(X\left(e_{1}\right), Y\left(e_{1}\right)\right)$ and $H\left(e_{2}\right)=\left(X\left(e_{2}\right), Y\left(e_{2}\right)\right)$ are SIVPFSGs comparable to the parameters e_{1} and e_{2} accordingly, by Figure 1. Hence $\tilde{\xi}=\left(\xi^{*}, X, Y, A\right)$ SIVPFSGs.

Figure 1: SIVPFSGs \check{G}.

Definition 3.2. If $\tilde{\xi}_{1}=\left(\xi_{1}^{*}, X_{1}, Y_{1}, A\right)$ and $\tilde{\xi}_{2}=\left(\xi_{2}^{*}, X_{2}, Y_{2}, B\right)$ be double SIVPFSGs of $\xi_{1}^{*}=\left(X_{1}, Y_{1}\right)$ and $\xi_{2}^{*}=\left(X_{2}, Y_{2}\right)$ accordingly. The cross product of $\tilde{\xi}_{1}$ and

```
\(\tilde{\xi}_{2}\) is denoted by \(\tilde{\xi}_{1} \times \tilde{\xi}_{2}=\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)\) and is defined by
1) \(\left(\alpha_{X_{1} L} \times \alpha_{X_{2} L}\right)\left(p_{1}, p_{2}\right)=\min \left(\alpha_{X_{1} L}\left(p_{1}\right), \beta_{X_{2} L}\left(p_{2}\right)\right)\),
\(\left(\alpha_{X_{1} U} \times \alpha_{X_{2} U}\right)\left(p_{1}, p_{2}\right)=\min \left(\alpha_{X_{1} U}\left(p_{1}\right), \alpha_{X_{2} U}\left(p_{2}\right)\right)\),
\(\left(\beta_{X_{1} L} \times \beta_{X_{2} L}\right)\left(p_{1}, p_{2}\right)=\min \left(\beta_{X_{1} L}\left(p_{1}\right), \beta_{X_{2} L}\left(p_{2}\right)\right)\),
\(\left(\beta_{X_{1} U} \times \beta_{X_{2} U}\right)\left(p_{1}, p_{2}\right)=\max \left(\beta_{X_{1} U}\left(p_{1}\right), \beta_{X_{2} U}\left(p_{2}\right)\right), \forall p_{1} \in V_{1}, p_{2} \in V_{2}\).
2) \(\left(\alpha_{Y_{1} L} \times \alpha_{Y_{2} L}\right)\left(p, p_{2}\right)\left(p, q_{2}\right)=\min \left(\alpha_{Y_{1} L}(p), \alpha_{Y_{2} L}\left(p_{2}, q_{2}\right)\right)\),
\(\left(\alpha_{Y_{1} U} \times \alpha_{Y_{2} U}\right)\left(p, p_{2}\right)\left(p, p_{2}\right)=\min \left(\alpha_{Y_{1} U}(p), \alpha_{Y_{2} U}\left(p_{2}, q_{2}\right)\right)\),
\(\left(\beta_{Y_{1} L} \times \beta_{Y_{2} L}\right)\left(p, p_{2}\right)\left(p, q_{2}\right)=\max \left(\beta_{Y_{1} L}(p), \beta_{Y_{2} L}\left(p_{2}, q_{2}\right)\right)\),
\(\left(\beta_{Y_{1} U} \times \beta_{Y_{2} U}\right)\left(p, p_{2}\right)\left(p, q_{2}\right)=\max \left(\beta_{Y_{1} U}(p), \beta_{Y_{2} U}\left(p_{2}, q_{2}\right)\right), \forall p \in V_{1}, p_{2} q_{2} \in E_{2}\).
3) \(\left(\alpha_{Y_{1} L} \times \alpha_{Y_{2} L}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\alpha_{Y_{1} L}\left(p_{1} q_{1}\right), \alpha_{Y_{2} L}(r)\right)\),
\(\left(\alpha_{Y_{1} U} \times \alpha_{Y_{2} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\alpha_{Y_{1} U}\left(p_{1} q_{1}\right), \alpha_{Y_{2} U}(r)\right)\),
\(\left(\beta_{Y_{1} L} \times \beta_{Y_{2} L}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\max \left(\beta_{Y_{1} L}\left(p_{1} q_{1}\right), \beta_{Y_{2} L}(r)\right)\),
\(\left(\beta_{Y_{1} U} \times \beta_{Y_{2} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\max \left(\beta_{Y_{1} U}\left(p_{1} q_{1}\right), \beta_{Y_{2} U}(r)\right), \forall r \in V_{2}, p_{1} q_{1} \in E_{1}\).
```

Example 3.2. Let Consider a graph $\xi_{1}^{*}=\left(X_{1}, Y_{1}\right)$ and $\xi_{2}^{*}=\left(X_{2}, Y_{2}\right)$ be two graphs such that $X_{1}=\left\{a_{1}, b_{1}, c_{1}, d_{1}\right\}, Y_{1}=\left\{a_{1} b_{1}, c_{1} d_{1}\right\}$ and $X_{2}=\left\{a_{2}, b_{2}, c_{2}, d_{2}\right\}$, $Y_{2}=\left\{a_{2} b_{2}, c_{2} d_{2}\right\}$. Let $A=e_{1}$ be a set of parameters and let $\left(X_{1}, A\right)$ and $\left(Y_{1}, A\right)$ be two SIVPFSSs over X_{1} and Y_{1} accordingly, defined by

Figure 2: SIVPFSGs $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$.

$$
\begin{aligned}
& X_{1}(e)=\left\{\left\langle a_{1}[0.2,0.5][0.4,0.8]\right\rangle,\left\langle b_{1}[0.1,0.4][0.4,0.5]\right\rangle,\left\langle c_{1}[0.2,0.6][0.3,0.5]\right\rangle,\right. \\
&\text { and } \left.\left\langle d_{1}[0.1,0.5][0.4,0.6]\right\rangle\right\} \\
& Y_{1}(e)=\left\{\left\langle a_{1} b_{1}[0.1,0.4][0.4,0.8]\right\rangle,\left\langle c_{1} d_{1}[0.1,0.5][0.4,0.6]\right\rangle\right\}
\end{aligned}
$$

Figure 3: Cross product of $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$.

Take $B=e_{2}$ be a set of parameters and let $\left(X_{2}, B\right)$ and $\left(Y_{2}, B\right)$ be two SIVPFSSs over X_{2} and Y_{2} accordingly, Find out

$$
\begin{aligned}
X_{2}(e)= & \left\{\left\langle a_{2}[0.1,0.4][0.2,0.6]\right\rangle,\left\langle b_{2}[0.3,0.3][0.7,0.3]\right\rangle,\left\langle c_{2}[0.3,0.7][0.4,0.5]\right\rangle,\right. \\
& \text { and } \left.\left\langle d_{2}[0.3,0.4][0.1,0.6]\right\rangle\right\} \\
Y_{2}(e)= & \left\{\left\langle a_{2} b_{2}[0.1,0.4][0.7,0.6]\right\rangle,\left\langle c_{2} d_{2}[0.3,0.7][0.4,0.6]\right\rangle\right\}
\end{aligned}
$$

Clearly $H\left(e_{1}\right)=\left(X\left(e_{1}\right), Y\left(e_{1}\right)\right)$ and $\left.H\left(e_{2}\right)=\left(X\left(e_{2}\right)\right), Y\left(e_{2}\right)\right)$ are SIVPFSGs. Hence $\tilde{\xi}_{1}=\left(\xi_{1}^{*}, X_{1}, Y_{1}, A\right)$ and $\tilde{\xi}_{2}=\left(\xi_{2}^{*}, X_{2}, Y_{2}, B\right)$ are SIVPFSGs ξ_{1}^{*} and ξ_{2}^{*}, accordingly, as shown in the Figure 2.
Definition 3.3. If $\tilde{\xi}_{1}=\left(\xi_{1}^{*}, X_{1}, Y_{1}, A\right)$ and $\tilde{G}_{2}=\left(\xi_{2}^{*}, X_{2}, Y_{2}, B\right)$ be two SIVPFSGs of $\xi_{1}^{*}=\left(X_{1}, Y_{1}\right)$ and $\xi_{2}^{*}=\left(X_{2}, Y_{2}\right)$ accordingly. The composition of $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ is standed by $\tilde{\xi}_{1} \circ \tilde{\xi}_{2}=\left(X_{1} \circ X_{2}, Y_{1} \circ Y_{2}\right)$ and is defined by

1) $\left(\alpha_{X_{1} L} \circ \alpha_{X_{2} L}\right)\left(p_{1}, p_{2}\right)=\min \left(\alpha_{X_{1} L}\left(p_{1}\right), \beta_{X_{2} L}\left(p_{2}\right)\right)$,
$\left(\alpha_{X_{1} U} \circ \alpha_{X_{2} U}\right)\left(p_{1}, p_{2}\right)=\min \left(\alpha_{X_{1} U}\left(p_{1}\right), \alpha_{X_{2} U}\left(p_{2}\right)\right)$,
$\left(\beta_{X_{1} L} \circ \beta_{X_{2} L}\right)\left(p_{1}, p_{2}\right)=\min \left(\beta_{X_{1} L}\left(p_{1}\right), \beta_{X_{2} L}\left(p_{2}\right)\right)$,
$\left(\beta_{X_{1} U} \circ \beta_{X_{2} U}\right)\left(p_{1}, p_{2}\right)=\max \left(\beta_{X_{1} U}\left(p_{1}\right), \beta_{X_{2} U}\left(p_{2}\right)\right), \forall p_{1} \in V_{1}, p_{2} \in V_{2}$.
2) $\left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(p, p_{2}\right)=\min \left(\alpha_{Y_{1} L}(p), \alpha_{Y_{2} L}\left(p_{2}, q_{2}\right)\right)$,
$\left(\alpha_{Y_{1} U} \circ \alpha_{Y_{2} U}\right)\left(p, p_{2}\right)=\min \left(\alpha_{Y_{1} U}(p), \alpha_{Y_{2} U}\left(p_{2}, q_{2}\right)\right)$,
$\left(\beta_{Y_{1} L} \circ \beta_{Y_{2} L}\right)\left(p, q_{2}\right)=\max \left(\beta_{Y_{1} L}(p), \beta_{Y_{2} L}\left(p_{2}, q_{2}\right)\right)$,
$\left(\beta_{Y_{1} U} \circ \beta_{Y_{2} U}\right)\left(p, q_{2}\right)=\max \left(\beta_{Y_{1} U}(p), \beta_{Y_{2} U}\left(p_{2}, q_{2}\right)\right), \forall p_{1} \in V_{1}, p_{2} q_{2} \in E_{2}$.

$$
\begin{aligned}
& \text { 3) }\left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\alpha_{Y_{1} L}\left(p_{1} q_{1}\right), \alpha_{Y_{2} L}(r)\right) \text {, } \\
& \left(\alpha_{Y_{1} U} \circ \alpha_{Y_{2} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\alpha_{Y_{1} U}\left(p_{1} q_{1}\right), \alpha_{Y_{2} U}(r)\right) \text {, } \\
& \left(\beta_{Y_{1} L} \circ \beta_{Y_{2} L}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\max \left(\beta_{Y_{1} L}\left(p_{1} q_{1}\right), \beta_{Y_{2} L}(r)\right), \\
& \left(\beta_{Y_{1} U} \circ \beta_{Y_{2} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\max \left(\beta_{Y_{1} U}\left(p_{1} q_{1}\right), \beta_{Y_{2} U}(r)\right), \forall r \in V_{2}, p_{1} q_{1} \in E_{1} \text {. } \\
& \text { 4) }\left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(p_{1}, p_{2}\right)\left(q_{1}, q_{2}\right)=\min \left(\alpha_{X_{2} L}\left(p_{2}\right), \alpha_{X_{2} L}, \alpha_{X_{1} L}\left(p_{1}, q_{1}\right)\right) \text {, } \\
& \left(\alpha_{Y_{1} U} \circ \alpha_{Y_{2} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\alpha_{X_{2} U}\left(p_{2}\right), \alpha_{X_{2} U}\left(q_{2}\right), \alpha_{Y_{1} U}\left(p_{1}, q_{1}\right)\right) \text {, } \\
& \left(\beta_{Y_{1} L} \circ \beta_{Y_{2} L}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\max \left(\beta_{X_{2} L}\left(p_{2}\right), \beta_{X_{2} L}\left(q_{2}\right), \beta_{Y_{1} L}\left(p_{1}, q_{1}\right)\right) \text {, } \\
& \left.\left(\beta_{Y_{1} U} \circ \beta_{Y_{2} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\max \left(\beta_{X_{2} U}\left(p_{2}\right), \beta_{X_{2} U}\left(q_{2}\right), \beta_{Y_{1} U}\right)\left(p_{1}, p_{2}\right)\left(q_{1}, q_{2}\right)\right) \text {, } \\
& \forall\left(p_{1}, p_{2}\right)\left(q_{1}, q_{2}\right) \in E^{\circ}-E \text {. } \\
& \text { where } E^{\circ}=E \cup\left\{\left(p_{1}, p_{2}\right)\left(q_{1}, q_{2}\right) \mid p_{1} q_{1} \in E_{1}, p_{2} \neq q_{2}\right\} \text {. }
\end{aligned}
$$

Definition 3.4. Let $\tilde{\xi}_{1}=\left(\xi_{1}^{*}, X_{1}, Y_{1}, A\right)$ and $\tilde{\xi}_{2}=\left(\xi_{2}^{*}, X_{2}, Y_{2}, B\right)$ be two SIVPF$\underset{\tilde{\sigma_{1}}}{S G s}$ of $\xi_{1}^{*}=\left(X_{1}, Y_{1}\right)$ and $\xi_{2}^{*}=\left(X_{2}, Y_{2}\right)$ accordingly. If $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ is standed by $\tilde{\xi}_{1} \cup \tilde{\xi}_{2}=\left(G^{*}, X, Y, A \cup B\right)$ where $\left(X_{1} \cup X_{2}, Y_{1} \cup Y_{2}\right)$ and is replace 1) (i) $\left.\left.\left(\alpha_{X_{1} L} \cup \alpha_{X_{2} L}\right)(p)=\max \left(\alpha_{X_{1} L}\right)(p), \alpha_{X_{2} L}\right)(p)\right)$ ifp $\in V_{1} \cap V_{2}$ $\left.\left.\left(\alpha_{X_{1} U} \cup \alpha_{X_{2} U}\right)(p)=\max \left(\alpha_{X_{1} U}\right)(p), \alpha_{X_{2} U}\right)(p)\right)$ ifp $\in V_{1} \cap V_{2}$
(ii) $\left.\left.\left(\beta_{X_{1} L} \cup \beta_{X_{2} L}\right)(p)=\max \left(\beta_{X_{1} U}\right)(p), \beta_{X_{2} L}\right)(p)\right)$ ifp $\in V_{1} \cap V_{2}$ $\left.\left.\left(\beta_{X_{1} U} \cup \beta_{X_{2} U}\right)(p)=\max \left(\beta_{X_{1} U}\right)(p), \beta_{X_{2} U}\right)(p)\right) i f p \in V_{1} \cap V_{2}$
2) (i) $\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p, q)=\max \left(\alpha_{X_{1} L}(p, q), \alpha_{X_{2} L}(p, q)\right) i f \quad p q \in E_{1} \cap E_{2}$ $\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(p, q)=\max \left(\alpha_{X_{1} U}(p, q), \alpha_{X_{2} U}(p, q)\right) i f \quad p q \in E_{1} \cap E_{2}$ (ii) $\left(\beta_{Y_{1} L} \cup \beta_{Y_{2} L}\right)(p, q)=\max \left(\beta_{X_{1} L}(p), \beta_{X_{2} L}(q)\right)$ if $\quad p q \in E_{1} \cap E_{2}$ $\left(\beta_{Y_{1} U} \cup \beta_{Y_{2} U}\right)(p, q)=\max \left(\beta_{X_{1} U}(p), \beta_{Y_{2} U}(q)\right) i f \quad p q \in E_{1} \cap E_{2}$

Definition 3.5. Let $\tilde{G}_{1}=\left(\xi_{1}^{*}, X_{1}, Y_{1}, A\right)$ and $\tilde{\xi}_{2}=\left(\xi_{2}^{*}, X_{2}, Y_{2}, B\right)$ be two SIVPF$\tilde{\tilde{\xi}}_{1}^{S G s}$ of $\xi_{1}^{*}=\left(X_{1}, Y_{1}\right)$ and $\xi_{2}^{*}=\left(X_{2}, Y_{2}\right)$ accordingly. If $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ is standed by $\tilde{\xi}_{1}+\tilde{\xi}_{2}=\left(\xi_{1}^{*}, X_{1}, Y_{1}, A+B\right)$. Where $\xi^{*}=\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right)$ and is defined by 1) $\left.\left(\alpha_{X_{1} L}+\alpha_{X_{2} L}\right)(p)=\left(\alpha_{X_{1} L} \cup \alpha_{X_{2} L}\right)\right)(p)$ $\left(\alpha_{X_{1} U}+\alpha_{X_{2} U}\right)(p)=\left(\alpha_{X_{1} U} \cup \alpha_{X_{2} U}\right)(p) i f \quad p \in V_{1} \cup V_{2}$ $\left(\beta_{X_{1} L}+\beta_{X_{2} L}\right)(p)=\left(\beta_{X_{1} L} \cup \beta_{X_{2} L}\right)(p)$ $\left(\beta_{X_{1} U}+\beta_{X_{2} U}\right)(p)=\left(\beta_{X_{1} U} \cup \beta_{X_{2} U}\right)(p)$ if $\quad p \in V_{1} \cup V_{2}$ 2) $\left(\alpha_{Y_{1} L}+\alpha_{Y_{2} L}\right)(p, q)=\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p, q)$
$\left(\alpha_{Y_{1} U}+\alpha_{Y_{2} U}\right)(p, q)=\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(p, q)$ if $\quad p \in E_{1} \cap E_{2}$ $\left(\beta_{Y_{1} L}+\beta_{Y_{2} L}\right)(p, q)=\left(\beta_{Y_{1} L} \cup \beta_{Y_{2} L}\right)(p, q)$
$\left(\beta_{Y_{1} U}+\beta_{Y_{2} U}\right)(p, q)=\left(\beta_{Y_{1} U} \cup \beta_{Y_{2} U}\right)(p, q)$ if $\quad(p, q) \in E_{1} \cap E_{2}$.
3) $\left(\alpha_{Y_{1} L}+\alpha_{Y_{2} L}\right)(p, q)=\min \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}(q)\right)$
$\left(\alpha_{Y_{1} U}+\alpha_{Y_{2} U}\right)(p, q)=\min \left(\alpha_{X_{1} U}(p), \alpha_{X_{2} U}(q)\right)$
$\left(\beta_{Y L}+\beta_{Y_{2} L}\right)(p, q)=\max \left(\beta_{X_{1} L}(p), \beta_{X_{2} L}(q)\right)$
$\left(\beta_{Y_{1} U}+\beta_{Y_{2} U}\right)(p, q)=\max \left(\beta_{X_{1} U}(p), \beta_{X_{2} U}(q)\right) i f \quad p q \in E$
Where E is the set of all edges joining the vertices of V_{1} and V_{2}.
Theorem 3.1. If $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ are SIVPFSGs, then so is $\tilde{\xi}_{1} \times \tilde{\xi}_{2}$.

M. Mohammed Jabarulla and R. Sivasamy

proof Let $\tilde{\xi}_{1}=\left(\xi_{1}^{*}, X_{1}, Y_{1}, A\right)$ and $\tilde{\xi}_{2}=\left(\xi_{1}^{*}, X_{1}, Y_{1}, B\right)$ be two SIVPFSGs of simple graphs $\xi_{1}^{*}=\left(X_{1}, Y_{1}\right)$ and $\xi_{2}^{*}=\left(X_{2}, Y_{2}\right)$ accordingly. for all $e_{1} \in A$ and $e_{2} \in B$, there are some results. Let ξ_{1} and ξ_{2} be SIVPFSGs
Let $E=\left\{\left(p, p_{2}\right)\left(p, q_{2}\right) / p \in V_{1}, p_{2} q_{2} \in E_{2}\right\} \cup\left\{\left(p_{1}, r\right)\left(q_{1}, r\right) / r \in V_{2}, p_{1} q_{1} \in E_{1}\right\}$. Consider $\left(p, p_{2}\right)\left(p, q_{2}\right) \in E$, we have

$$
\begin{aligned}
& \left(\alpha_{Y_{1} L} \times \alpha_{Y_{2} L}\right)\left(p, p_{2}\right)\left(p, q_{2}\right)=\min \left(\alpha_{X_{1} L}(p), \alpha_{Y_{2} L}\left(p_{2} q_{2}\right)\right) \\
= & \min \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}\left(p_{2}\right) \cdot \alpha_{X_{2} L}\left(q_{2}\right)\right) \\
= & \min \left(\min \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}\left(p_{2}\right)\right) \min \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}\left(q_{2}\right)\right)\right) \\
& \left(\alpha_{Y_{1} L} \times \alpha_{Y_{2} L}\right)\left(p, p_{2}\right)\left(p, q_{2}\right)=\min \left(\left(\alpha_{X_{1} L} \times \alpha_{X_{2} L}\right)\left(p, p_{2}\right),\left(\alpha_{X_{1} L} \times \alpha_{X_{2} L}\right)\left(p, q_{2}\right)\right)
\end{aligned}
$$

Similarly,

$$
\left(\alpha_{Y_{1} U} \times \alpha_{Y_{2} U}\right)\left(p, p_{2}\right)\left(p, q_{2}\right)=\min \left(\left(\alpha_{X_{1} U} \times \alpha_{X_{2} U}\right)\left(p, p_{2}\right),\left(\alpha_{Y_{1} U} \times \alpha_{Y_{2} U}\right)\left(p, q_{2}\right)\right)
$$

Now,

$$
\left(\beta_{Y_{1} L} \times \beta_{Y_{2} L}\right)\left(p, p_{2}\right)\left(p, q_{2}\right)=\max \left(\left(\beta_{X_{1} L} \times \beta_{X_{2} L}\right)\left(p, p_{2}\right),\left(\beta_{X_{1} L} \times \beta_{X_{2} L}\right)\left(p, q_{2}\right)\right)
$$

Similarly,

$$
\left(\beta_{Y_{1} U} \times \beta_{Y_{2} U}\right)\left(p, p_{2}\right)\left(p, q_{2}\right)=\max \left(\left(\beta_{X_{1} U} \times \beta_{X_{2} U}\right)\left(p, p_{2}\right),\left(\beta_{X_{1} U} \times \beta_{X_{2} U}\right)\left(p, q_{2}\right)\right)
$$

Consider, $\left(p_{1}, r\right)\left(q_{1}, r\right) \in E$, we have

$$
\begin{gathered}
\left(\alpha_{Y_{1} L} \times \alpha_{Y_{2} L}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\alpha_{Y_{1} L}\left(p_{1} q_{1}\right),\left(\alpha_{X_{2} L}(r)\right)\right. \\
=\min \left(\alpha_{X_{1} L}\left(p_{1}\right), \alpha_{X_{2} L}\left(q_{1}\right) \cdot \alpha_{X_{2} L}(r)\right) \\
=\min \left(\min \left(\alpha_{X_{1} L}\left(p_{1}\right), \alpha_{X_{2} L}(r)\right) \min \left(\alpha_{X_{1} L}\left(y_{1}\right), \alpha_{X_{2} L}(r)\right)\right) \\
\left(\alpha_{Y_{1} L} \times \alpha_{Y_{2} L}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\left(\alpha_{X_{1} L} \times \alpha_{X_{2} L}\right)\left(p_{1}, r\right),\left(\alpha_{X_{1} L} \times \alpha_{X_{2} L}\right)\left(q_{1}, r\right)\right)
\end{gathered}
$$

Similarly,

$$
\left(\alpha_{Y_{1} U} \times \alpha_{Y_{2} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\left(\alpha_{X_{1} U} \times \alpha_{X_{2} U}\right)\left(p_{1}, r\right),\left(\alpha_{X_{1} U} \times \alpha_{X_{2} U}\right)\left(q_{1}, r\right)\right)
$$

Now,

$$
\left(\beta_{Y_{1} L} \times \beta_{Y_{1} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\max \left(\left(\beta_{X_{1} L} \times \beta_{X_{2} L}\right)\left(p_{1}, r\right),\left(\beta_{X_{1} L} \times \beta_{X_{2} L}\right)\left(q_{1}, r\right)\right)
$$

Similarly,

$$
\left(\beta_{Y_{1} U} \times \beta_{Y_{2} U}\right)\left(p_{1}, r\right)\left(q_{1}, r\right)=\max \left(\left(\beta_{X_{1} U} \times \beta_{X_{2} U}\right)\left(p_{1}, r\right),\left(\beta_{X_{1} U} \times \beta_{X_{2} U}\right)\left(q_{1}, r\right)\right)
$$

Hence $\xi_{1} \times \xi_{2}$ is an SIVPFSGs.

Theorem 3.2. If $\tilde{\xi}_{1}\left[\tilde{\xi}_{2}\right]$ be SIVPFSGs $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ of ξ_{1}^{*} and ξ_{2}^{*} is an SIVPFSGs.
Proof Take $\left(p, p_{2}\right)\left(p, q_{2}\right) \in E$, we get

$$
\begin{aligned}
& \left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(\left(p, p_{2}\right)\left(p, q_{2}\right)\right)=\min \left(\left(\alpha_{X_{1} L}(p), \alpha_{Y_{2} L}\right)\left(p_{2} q_{2}\right)\right. \\
= & \min \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}\left(p_{2}\right), \alpha_{X_{2} L}\left(q_{2}\right)\right) \\
= & \min \left(\min \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}\left(p_{2}\right)\right), \min \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}\left(q_{2}\right)\right)\right) \\
& \left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(\left(p, p_{2}\right)\left(p, q_{2}\right)=\min \left(\alpha_{X_{1} L} \circ \alpha_{X_{2} L}\right)\left(p, p_{2}\right),\left(\alpha_{X_{1} L} \circ \alpha_{X_{2} L}\right)\left(p, q_{2}\right)\right) .
\end{aligned}
$$

Similarly,

$$
\left(\alpha_{Y_{1} U} \circ \alpha_{Y_{2} U}\right)\left(\left(p, p_{2}\right)\left(p, q_{2}\right)=\min \left(\alpha_{X_{1} U} \circ \alpha_{X_{2} U}\right)\left(p, p_{2}\right),\left(\alpha_{X_{1} U} \circ \alpha_{X_{2} U}\right)\left(p, q_{2}\right)\right)
$$

Consider $\left(p_{1}, r\right)\left(q_{1}, r\right) \in E$,

$$
\begin{aligned}
& \left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(\left(p_{1}, r\right)\left(q_{1}, r\right)\right)=\min \left(\alpha_{Y_{1} L}\left(p_{1}, q_{1}\right), \alpha_{X_{2} L}(r)\right) \\
= & \min \left(\alpha_{X_{1} L}\left(p_{1}\right), \alpha_{X_{1} L}\left(q_{1}\right), \alpha_{X_{2} L}(r)\right) \\
= & \min \left(\min \left(\alpha_{X_{1} L}\left(p_{1}\right), \alpha_{X_{2} L}(r)\right), \min \left(\alpha_{X_{1} L}\left(q_{1}\right), \alpha_{X_{2} L}(r)\right)\right) \\
& \left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(\left(p_{1}, r\right)\left(q_{1}, r\right)\right)=\min \left(\alpha_{X_{1} L} \circ \alpha_{X_{2} L}\right)\left(p_{1}, r\right),\left(\alpha_{X_{1} L} \circ \alpha_{X_{2} L}\right)\left(\left(q_{1}, r\right)\right)
\end{aligned}
$$

Similarly,

$$
\left(\alpha_{X_{1} U} \circ \alpha_{X_{2} U}\right)\left(\left(p_{1}, r\right)\left(q_{1}, r\right)=\min \left(\alpha_{X_{1} U} \circ \alpha_{X_{2} U}\right)\left(p_{1}, r\right),\left(\alpha_{X_{1} U} \alpha_{X_{2} U}\right)\left(\left(q_{1}, r\right)\right)\right.
$$

Consider $\left(p_{1}, p_{2}\right)\left(q_{1}, q_{2}\right) \in E$,

$$
\begin{aligned}
& \left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(\left(p_{1}, p_{2}\right)\left(q_{1}, q_{2}\right)\right)=\min \left(\alpha_{X_{2} L}\left(p_{2}\right), \alpha_{X_{2} L}\left(q_{2}\right), \alpha_{Y_{1} L}\left(p_{1} q_{1}\right)\right) \\
= & \min \left(\alpha_{X_{2} L}\left(p_{2}\right), \alpha_{X_{2} L}\left(q_{2}\right)\right), \min \left(\alpha_{X_{1} L}\left(p_{1}\right), \alpha_{X_{1} L}\left(q_{1}\right)\right) \\
= & \min \left(\min \left(\alpha_{X_{1} L}\left(p_{1}\right), \alpha_{X_{2} L}\left(p_{2}\right)\right), \min \left(\alpha_{X_{1} L}\left(q_{1}\right), \alpha_{X_{2} L}\left(q_{2}\right)\right)\right) \\
& \left(\alpha_{Y_{1} L} \circ \alpha_{Y_{2} L}\right)\left(\left(p_{1}, p_{2}\right)\left(q_{1}, q_{2}\right)\right)=\min \left(\alpha_{X_{1} L} \circ \alpha_{X_{2} L}\right)\left(p_{1}, p_{2}\right),\left(\alpha_{X_{1} L} \circ \alpha_{X_{2} L}\right) \\
& \left(\left(q_{1}, q_{2}\right)\right)
\end{aligned}
$$

Hence $\tilde{\xi}_{1}\left[\tilde{\xi}_{2}\right]$ be SIVPFSG .
Theorem 3.3. If $\tilde{\xi}_{1} \cup \tilde{\xi}_{2}$ be SIVPFSGs $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ of ξ_{1}^{*} and ξ_{2}^{*} is an SIVPFSGs.
Proof Take $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ be the SIVPFSGs of $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ accordingly. Since all conditions for $X_{1} \cup X_{2}$ are obviously satisfied. It is enough to verify the conditions for $Y_{1} \cup Y_{2}$, Consider $(p, q) \in E_{1} \cup E_{2}$. Then

$$
\begin{aligned}
& \left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p, q)=\max \left(\alpha_{Y_{1} L}(p, q), \alpha_{Y_{2} L}(p, q)\right) \\
= & \max \left(\min \left(\alpha_{X_{1} L}(p), \alpha_{X_{1} L}(q)\right),\left(\min \left(\alpha_{X_{2} L}\right)(p), \alpha_{X_{2} L}(q)\right)\right. \\
= & \min \left(\max \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}(p)\right),\left(\max \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}(q)\right)\right)\right) \\
= & \min \left(\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p),\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(q)\right) \\
& \left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p, q)=\min \left(\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p),\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(q)\right) .
\end{aligned}
$$

Similarly,

$$
\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(p, q)=\min \left(\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(p),\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(q)\right)
$$

If $(x, y) \in E_{1}$ and $(x, y) \notin E_{2}$,

$$
\begin{aligned}
& \left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p, q)=\min \left(\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p),\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(q)\right) \\
& \left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(p, q)=\min \left(\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(p),\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(q)\right) .
\end{aligned}
$$

If $(p, q) \in E_{2}$ and $(p, q) \in E_{1}$,

$$
\begin{aligned}
& \left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p, q)=\min \left(\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(p),\left(\alpha_{Y_{1} L} \cup \alpha_{Y_{2} L}\right)(q)\right) \\
& \left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(p, q)=\min \left(\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(p),\left(\alpha_{Y_{1} U} \cup \alpha_{Y_{2} U}\right)(q)\right) .
\end{aligned}
$$

Theorem 3.4. If $\tilde{\xi}_{1}+\tilde{\xi}_{2}$ be SIVPFSGs $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ of ξ_{1}^{*} and ξ_{2}^{*} is an SIVPFSGs.
Proof Take $\tilde{\xi}_{1}+\tilde{\xi}_{2}$ be the SIVPFSGs of ξ_{1}^{*} and ξ_{2}^{*} accordingly., it is enough to find that $\tilde{\xi}_{1}+\tilde{\xi}_{2}=\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right)$ is an SIVPFSGs. Then Let $(p, q) \in E$

$$
\begin{aligned}
\left(\alpha_{Y_{1} L}+\alpha_{Y_{2} L}\right)(p, q) & =\min \left(\alpha_{X_{1} L}(p), \alpha_{X_{2} L}(q)\right) \\
& =\min \left(\left(\alpha_{X_{1} L} \cup \alpha_{X_{2} L}\right)(p),\left(\left(\alpha_{X_{1} L} \cup \alpha_{X_{2} L}\right)(q)\right)\right) \\
\left(\alpha_{Y_{1} L}+\alpha_{Y_{2} L}\right)(p, q) & =\min \left(\left(\alpha_{X_{1} L}+\alpha_{X_{2} L}\right)(p),\left(\left(\alpha_{X_{1} L}+\alpha_{X_{2} L}\right)(q)\right)\right) .
\end{aligned}
$$

Similarly,

$$
\left(\alpha_{Y_{1} U}+\alpha_{Y_{2} U}\right)(p, q)=\min \left(\left(\alpha_{X_{1} U}+\alpha_{X_{2} U}\right)(p),\left(\left(\alpha_{X_{1} U}+\alpha_{X_{2} U}\right)(q)\right)\right) .
$$

4 Conclusions

Graph theory is a very helpful mathematical tool for tackling challenging issues in a variety of disciplines. The IVPFSs model is appropriate for modeling issues involving uncertainty and inconsistent data when human understanding and evaluation are required. In contrast to IVFS models, IVIFS models, and, IVPFS models provide systems with sensitivity, flexibility, and conformance. SIVPFSGs are a novel idea that is introduced in this work. We also defined for the Cartesian product as well as some information about its composition on SIVPFSGs. We plan to use this data to create some algorithms and models shortly soon.

References

M. Akram. Bipolar fuzzy graphs. inform.sci., 181:5548-5564, 2011.

Strong interval - valued Pythagorean fuzzy soft graphs

K. Atanassov and G. Gargov. Interval- valued intuitionistic fuzzy sets, fuzzy sets and systems. Neural computing and applications, 31:343-349, 1989.
D. Molodstov. Soft set theory- first results. Journal of fuzzy mathematics, 37: 19-31, 1999.
S.Shahzadi and M. Akram. Pythagorean fuzzy soft graphs with applications. Journal of Intelligence and Fuzzy Systems, 5(10):4977-4991, 2020.
L. Zadeh. fuzzy sets. infrom.control, 8(3):338-353, 1965.

[^0]: *PG and Research Department of Mathematics, Jamal Mohamed College(Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India. m.md.jabarulla@gmail.com.
 ${ }^{\dagger}$ PG and Research Department of Mathematics, Jamal Mohamed College(Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India; sivasamyr1998@gmail.com.
 ${ }^{1}$ Received on September 15, 2022. Accepted on December 15, 2022. Published on March 20, 2023. DOI: 10.23755/rm.v46i0.1067. ISSN: 1592-7415. eISSN: 2282-8214. ©M. Mohammed Jabarulla et al. This paper is published under the CC-BY licence agreement.

