Some operations on complex fuzzy graphs

Azhagendran.N ${ }^{*}$
Mohamed Ismayil.A $\|^{*}$

Abstract

In this paper we discussed about some types of complex fuzzy graphs which is the extension of fuzzy graph. As the membership value of elements of fuzzy graph is in between 0 and 1 . In complex fuzzy graph it will be extended to unit circle of complex plane. Therefore we have to consider the amplitude value as well as phase term value. We are considering complex fuzzy graphs in polar forms. Some operations on complex fuzzy graphs such as union, intersection, composition, and Cartesian products are introduced.Some basic theorems with respect to the above mentioned operations are proved with examples. 2020 AMS subject classifications:05C62, 05C72, 05C76 ${ }^{11}$

[^0]
1 Introduction

L.A.Zadeh [1965] gave the idea of fuzzy set which is similar to probability function. The idea of complex fuzzy set (CFS) was first given by Ramot et al. [2002]. Accordingly a CFS is an extension of the fuzzy set whose range is extended from $[0,1]$ to a disc of unit radius in complex plane. Xueling et al. [2019] introduced some basic operations on complex fuzzy set. They have developed a new algorithm in signals and system by using complex fuzzy sets. After that some results have been given by P.Bhattacharya [1987] about fuzzy graphs. Thirunavukarasu et al. [2016] extended the fuzzy graph to complex fuzzy graph. Fuzzy graph were narrated by Mordeson and Peng [1994]. Nagoorgani and Latha [2015] gave some operations such as cartesian product, conjuction, disjunction in fuzzy graph. Shannon and Atanassov [1994] defined intuitionistic fuzzy graphs. After that many authors added their ideas to intuitionistic fuzzy graph. Naveed et al. [2019] introduced the complex intuitionistic fuzzy graphs with certain notions of union, join and composition. For Crisp graph we can refer Graph theory by Harary [1969].

In this paper, we introduced some types of complex fuzzy graphs with examples. Also some operations on complex fuzzy graphs such as union, intersection, composition and cartesian product with suitable examples.

2 Premilinaries

Definition 2.1. A complex fuzzy graph $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ is defined on a graph $G=$ (V, E) is a pair of complex functions $\sigma_{c}: V \rightarrow r(z) e^{i \theta(z)}, \mu_{c}: E \subseteq V \times V \rightarrow$ $R(e) e^{i \phi(e)}$ such that $\mu_{c}\left(z_{1}, z_{2}\right)=R(e) e^{i \phi(e)}$, where $R(e) \leq \min \left\{r\left(z_{1}\right), r\left(z_{2}\right)\right\}$ and $\phi(e) \leq \min \left\{\theta\left(z_{1}\right), \theta\left(z_{2}\right)\right\}$ for all $z_{1}, z_{2} \in V$ and $0 \leq r\left(z_{1}\right), r\left(z_{2}\right) \leq 1,0 \leq$ $\theta\left(z_{1}\right), \theta\left(z_{2}\right) \leq 2 \pi$.

Example 2.1. Consider the complex fuzzy graph $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$
where $\sigma_{c}=\left\{z_{1} / 0.2 e^{i \pi}, z_{2} / 0.5 e^{i 0.5 \pi}, z_{3} / 0.7\right\}$,
$\mu_{c}=\left\{\left(z_{1}, z_{2}\right) / 0.1 e^{i 0.5 \pi},\left(z_{1}, z_{3}\right) / 0.1,\left(z_{2}, z_{3}\right) / 0.5\right\}$

Definition 2.2. A complex fuzzy graph $\overline{G_{c}}=\left(\overline{\sigma_{c}}, \overline{\mu_{c}}\right)$ is said to be a complement of $C F G G_{c}$ if
i) $\overline{\sigma_{c}(z)}=\sigma_{c}(z)$ and
ii) $\overline{\mu_{c}\left(z_{1}, z_{2}\right)}=\overline{R(e)} e^{i \overline{\phi(e)}}$, where $\overline{R(e)}=\min \left\{r\left(z_{1}\right), r\left(z_{2}\right)\right\}-R(e)$ and $\overline{\phi(e)}=\min \left\{\theta\left(z_{1}\right), \theta\left(z_{2}\right)\right\}-\phi(e), \forall z_{1}, z_{2} \in V$.

Some operations on complex fuzzy graphs

Figure 1: Complex fuzzy graph

Example 2.2. Consider the example 2.1, The complement of a CFG given in the figure 1 is given by $\overline{\sigma_{c}}=\left\{z_{1} / 0.2 e^{i \pi}, z_{2} / 0.5 e^{i 0.5 \pi}, z_{3} / 0.7\right\}, \overline{\mu_{c}}=\left\{\left(z_{1}, z_{2}\right) / 0.1,\left(z_{1}, z_{3}\right) / 0.1\right\}$

Definition 2.3. The order p and size q of a CFG $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ defined on $G=$ (V, E) are defined by
$p=\sum_{z \in V} r(z) \cdot e^{i \sum_{z \in V} \theta(z)} ; q=\sum_{e=\left(z_{i}, z_{j}\right) \in E} R(e) \cdot e^{i \sum_{e\left(z_{i}, z_{j}\right) \in E} \phi(e)}$,
where $R(e) \leq \min \left\{r\left(z_{i}\right), r\left(z_{j}\right)\right\}$ and $\phi(e) \leq \min \left\{\theta\left(z_{i}\right), \theta\left(z_{j}\right)\right\}$ for all $z_{i}, z_{j} \in$ V.

Example 2.3. Consider the example 2.1, the order of G_{c} is $p=1.4 e^{i 1.5 \pi}$, the size of G_{c} is $q=0.7 e^{i 0.5 \pi}$

Definition 2.4. The degree of a vertex z_{i} in a $\operatorname{CFG} G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ defined on $G=(V, E)$ is defined by $d\left(z_{i}\right)=\sum_{e=\left(z_{i}, z_{j}\right) \in \mu_{c}} R(e) \cdot e^{i \sum_{e=\left(z_{i}, z_{j}\right) \in \mu_{c}} \phi(e)}$ such that $\mu_{c}\left(z_{i}, z_{j}\right)=R(e) \cdot e^{i \phi(e)}$, for all $z_{j} \in \sigma_{c}$.

Example 2.4. Consider the example 2.1, $d\left(z_{1}\right)=0.2 e^{i 0.5 \pi} ; d\left(z_{2}\right)=0.6 e^{i 0.5 \pi}$; $d\left(z_{3}\right)=0.6$

Definition 2.5. A CFG is said to be complete for every pair of vertices $\mu_{c}\left(z_{1}, z_{2}\right)=$ $R(e) e^{i \phi(e)}$ where $R(e)=\min \left\{r\left(z_{1}\right), r\left(z_{2}\right)\right\}$ and $\phi(e)=\min \left\{\theta\left(z_{1}\right), \theta\left(z_{2}\right)\right\}$ for all $z_{1}, z_{2} \in V$

Example 2.5. Let $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ be a $C F G$, where
$\sigma_{c}=\left\{z_{1} / 0.5 e^{i 0.7 \pi}, z_{2} / 0.8 e^{i \pi}, z_{3} / 0.6 e^{i \pi}\right\}$
$\mu_{c}=\left\{\left(z_{1}, z_{2}\right) / 0.5 e^{i 0.7 \pi},\left(z_{1}, z_{3}\right) / 0.5 e^{i 0.7 \pi},\left(z_{2}, z_{3}\right) / 0.6 e^{i \pi}\right\}$
Definition 2.6. A CFG is regular if $d\left(z_{i}\right)=d\left(z_{j}\right)$ for all $z_{i}, z_{j} \in \sigma_{c}$.
Definition 2.7. In a $\operatorname{CFG} G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ for all $z_{i}, z_{j} \in \sigma_{c}$, the neighbourhood of z_{i} is defined by $N\left(z_{i}\right)=\left\{z_{j} \in \sigma_{c} /\left(z_{i}, z_{j}\right) \in \mu_{c}\right\}$

Definition 2.8. A path P in a CFG $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ is a sequence of distinct vertices $z_{0}, z_{1}, z_{2}, \cdots z_{n} \in V$ (except possibly z_{0} and z_{n}) such that $\mu_{c}\left(z_{i-1}, z_{i}\right)=$ $R\left(e_{i}\right) e^{i \phi\left(e_{i}\right)}, R\left(e_{i}\right)>0, \phi\left(e_{i}\right) \geq 0, i=1,2, \ldots, n$. Here n is called the length of the path. The consecutive pairs are called edges of the path. The strength of the path in a CFG is defined by $\mu_{c}\left(z_{i-1}, z_{i}\right)=\min \left\{R\left(e_{i}\right)\right\} e^{i \min \phi\left(e_{i}\right)}$, $i=1,2,3, \ldots, n$. It is denoted by $S(p)$.

Definition 2.9. The strength of connectedness between two vertices z_{i} abd z_{j} which is defined as the maximum amplitude and maximum phase term values of the strength of all paths between z_{i} and z_{j}. In symbol we denote it as $\mu_{c}^{\infty}\left(z_{i}, z_{j}\right)=$ $\operatorname{CON} N_{G_{c}}\left(z_{i}, z_{j}\right), \mu_{c}^{\infty}\left(z_{i}, z_{j}\right)=T(e) e^{i \psi(e)}, 0 \leq T(e) \leq 1,0 \leq \psi(e) \leq 2 \pi$, where $T(e)$ is maximum amplitude value of all paths between z_{i} and z_{j} and $\psi(e)$ is maximum phase term value of all paths between z_{i} and z_{j}.
For any arc $\left(z_{i}, z_{j}\right)$, if $R(e) \geq T(e)$ and $\phi(e) \geq \psi(e)$ then the arc $\left(z_{i}, z_{j}\right)$ is said to be strong.

Definition 2.10. The strong degree of a vertex z in a CFG is defined by sum of membership values of strongarcs incident at z, and it is denoted by $d_{s}(z)$.

Definition 2.11. The strong neighbourhood of z_{i} in a CFG is defined by $N_{s}\left(z_{i}\right)=\left\{z_{j} \in V /\left(z_{i}, z_{j}\right)\right.$ is a strong arc $\}$.
Definition 2.12. A CFG $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ is said to be bipartite if the vertex σ_{c} can be partitioned into two non-empty sets $\sigma_{c 1}$ and $\sigma_{c 2}$ such that $\mu_{c}\left(z_{i}, z_{j}\right)=0$ if $z_{i}, z_{j} \in \sigma_{c 1}$ and $z_{i}, z_{j} \in \sigma_{c 2}$.
Definition 2.13. A CFG $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ is said to be complete bipartite if the vertex σ_{c} can be partitioned into two non-empty sets $\sigma_{c 1}$ and $\sigma_{c 2}$ such that $\mu_{c}\left(z_{i}, z_{j}\right)=$ $R(e) . e^{i \phi(e)}$, where $R(e)=\min \left\{r\left(z_{i}\right), r\left(z_{j}\right)\right\}, \phi(e)=\min \left\{\theta\left(z_{i}\right), \theta\left(z_{j}\right)\right\}$ for $z_{i} \in$ $\sigma_{c 1}$ and $z_{j} \in \sigma_{c 2}$.

Definition 2.14. A vertex z_{i} of a complex fuzzy graph $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ is said to be an isolated vertex if $\mu_{c}\left(z_{i}, z_{j}\right)=0, \forall z_{j} \in V-\left\{z_{i}\right\},(i . e) N\left(z_{i}\right)=\emptyset$.

3 Operations on complex fuzzy graph

In this section the operations union, intersection, composition and cartesian product of CFGs are defined with examples. Some propositions based on the above operations are stated and proved.

Definition 3.1. Let the two complex fuzzy graphs $G_{c_{1}}=\left(\sigma_{c_{1}}, \mu_{c_{1}}\right)$, and $G_{c_{2}}=$ $\left(\sigma_{c_{2}}, \mu_{c_{2}}\right)$ defined on two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ respectively. Let $G_{c_{1}}$ be a pair of complex functions $\sigma_{c_{1}}: V_{1} \rightarrow r_{1}(z) e^{i \theta_{1}(z)}, \mu_{c_{1}}: E_{1} \subseteq$

Some operations on complex fuzzy graphs

$V_{1} \times V_{1} \rightarrow R_{1}(e) \cdot e^{i \phi_{1}(e)}$ such that $\mu_{c}\left(z_{1}, z_{2}\right)=R_{1}(e) e^{i \phi_{1}(e)}$ where $R_{1}(e) \leq$ $\min \left\{r_{1}\left(z_{1}\right), r_{1}\left(z_{2}\right)\right\}, \phi_{1}(e) \leq \min \left\{\theta_{1}\left(z_{1}\right), \theta_{1}\left(z_{2}\right)\right\}$. Also $G_{c_{2}}$ is a pair of complex functions $\sigma_{c_{2}}: V_{2} \rightarrow r_{2}(z) e^{i \theta_{2}(z)}, \mu_{c_{2}}: E_{2} \subseteq V_{2} \times V_{2} \rightarrow R_{2}(e) . e^{i \phi_{2}(e)}$ such that $\mu_{c}\left(z_{1}, z_{2}\right)=R_{2}(e) e^{i \phi_{2}(e)}$ where $R_{2}(e) \leq \min \left\{r_{2}\left(z_{1}\right), r_{2}\left(z_{2}\right)\right\}, \phi_{2}(e) \leq$ $\min \left\{\theta_{2}\left(z_{1}\right), \theta_{2}\left(z_{2}\right)\right\}$. Then the union of two complex fuzzy graphs $G_{c}=\left(\sigma_{c}=\right.$ $\left.\sigma_{c_{1}} \cup \sigma_{c_{2}}, \mu_{c}=\mu_{c_{1}} \cup \mu_{c_{2}}\right)$ on $G=\left(V=V_{1} \cup V_{2}, E=E_{1} \cup E_{2}\right)$ is defined as follows
(i) $\sigma_{c}(z)=\left(\sigma_{c_{1}} \cup \sigma_{c_{2}}\right)(z)=\left\{\begin{array}{l}r_{1}(z) e^{i \theta_{1}(z)}, \forall z \in V_{1} \text { and } z \notin V_{2} \\ r_{2}(z) e^{i \theta_{2}(z)}, \forall z \in V_{2} \text { and } z \notin V_{1} \\ \max \left\{r_{1}(z), r_{2}(z)\right\} e^{i \max \left\{\theta_{1}(z), \theta_{2}(z)\right\}}, z \in V_{1} \cap V_{2}\end{array}\right.$
(ii) $\mu_{c}\left(z_{1}, z_{2}\right)=\left(\mu_{c_{1}} \cup \mu_{c_{2}}\right)\left(z_{1}, z_{2}\right)=$

$$
\left\{\begin{array}{l}
R_{1}(e) e^{i \phi_{1}(e)}, \forall\left(z_{1}, z_{2}\right) \in E_{1} \text { and }\left(z_{1}, z_{2}\right) \notin E_{2} \\
R_{2}(e) e^{i \phi_{2}(e)}, \forall\left(z_{1}, z_{2}\right) \in E_{2} \text { and }\left(z_{1}, z_{2}\right) \notin E_{1} \\
\max \left\{R_{1}(e), R_{2}(e)\right\} e^{i \max \left\{\phi_{1}(e), \phi_{2}(e)\right\}},\left(z_{1}, z_{2}\right) \in E_{1} \cap E_{2}
\end{array}\right.
$$

Proposition 3.1. Prove that the union of two complex fuzzy graph is also a complex fuzzy graph.

Proof. Let $G_{c_{1}}$ and $G_{c_{2}}$ be two CFGs, then the union $G_{c}=G_{c_{1}} \cup G_{c_{2}}$ is discussed in three different case. For vertices,
i) Suppose that $z \in V_{1}$ and $z \notin V_{2}$ then

$$
\begin{aligned}
\left(\sigma_{c_{1}} \cup \sigma_{c_{2}}\right)(z) & =\max \left\{r_{1}(z), r_{2}(z)\right\} \cdot e^{i \max \left\{\theta_{1}(z), \theta_{2}(z)\right\}} \\
& =\max \left\{r_{1}(z), 0\right\} . e^{i \max \left\{\theta_{1}(z), 0\right\}} \\
& =r_{1}(z) \cdot e^{i \theta_{1}(z)}, \forall z \in V_{1} a n d z \notin V_{2} .
\end{aligned}
$$

ii) Similarly we can prove, for $z \notin V_{1}$ and $z \in V_{2}$
iii) Suppose that $z \in V_{1} \cap V_{2}$, then

$$
\begin{aligned}
\left(\sigma_{c_{1}} \cup \sigma_{c_{2}}\right)(z) & =\max \left\{\sigma_{c_{1}}, \sigma_{c_{2}}\right\} \\
& =\max \left\{r_{1}(z) e^{i \theta_{1}(z)} \cdot r_{2}(z) e^{i \theta_{2}(z)}\right\} \\
& =\max \left\{r_{1}(z), r_{2}(z)\right\} . e^{i \max \left\{\theta_{1}(z), \theta_{2}(z)\right\}}, \forall z \in V_{1} \cap V_{2}
\end{aligned}
$$

For edges,
i) Suppose that $\left(z_{1}, z_{2}\right) \in E_{1},\left(z_{1}, z_{2}\right) \notin E_{2}$

$$
\begin{aligned}
& \left(\mu_{c_{1}} \cup \mu_{c_{2}}\right)\left(z_{1}, z_{2}\right)=\max \left\{\mu_{c_{1}}\left(z_{1}, z_{2}\right), \mu_{c_{2}}\left(z_{1}, z_{2}\right)\right\} \\
& \quad \begin{aligned}
& e^{i \max \left\{\min \left\{\theta_{1}\left(z_{1}\right), \theta_{1}\left(z_{2}\right)\right\}, \min \left\{\theta_{2}\left(z_{1}\right), \theta_{2}\left(z_{2}\right)\right\}\right\}}\{ \\
&\left.\left.=\max \left\{R_{1}(e), R_{2}(e)\right\} . e^{i \max \left\{\phi_{1}(e), \phi_{2}(e)\right\}}\left\{r_{2}\left(z_{1}\right), r_{2}\left(z_{2}\right)\right\}\right\}\right\} \\
&=\max \left\{R_{1}(e), 0\right\} . e^{i \max \left\{\phi_{1}(e), 0\right\}} \\
&=R_{1}(e) \cdot e^{i \phi_{1}(e)}, \forall\left(z_{1}, z_{2}\right) \in E_{1},\left(z_{1}, z_{2}\right) \notin E_{2}
\end{aligned}
\end{aligned}
$$

ii) Similarly, we can prove that, $\left(z_{1}, z_{2}\right) \notin E_{1},\left(z_{1}, z_{2}\right) \in E_{2}$
iii) Suppose that $\left(z_{1}, z_{2}\right) \in E_{1} \cap E_{2}$

$$
\begin{aligned}
& \left(\mu_{c_{1}} \cup \mu_{c_{2}}\right)\left(z_{1}, z_{2}\right)=\max \left\{\mu_{c_{1}}\left(z_{1}, z_{2}\right), \mu_{c_{2}}\left(z_{1}, z_{2}\right)\right\} \\
& \quad \leq \max \left\{\min \left\{r_{1}\left(z_{1}\right), r_{1}\left(z_{2}\right)\right\}, \min \left\{r_{2}\left(z_{1}\right), r_{2}\left(z_{2}\right)\right\}\right\} \\
& e^{i \max \left\{\min \left\{\theta_{1}\left(z_{1}\right), \theta_{1}\left(z_{2}\right)\right\}, \min \left\{\theta_{2}\left(z_{1}\right), \theta_{2}\left(z_{2}\right)\right\}\right\}} \\
& \quad=\max \left\{R_{1}(e), R_{2}(e)\right\} \cdot e^{i \max \left\{\phi_{1}(e), \phi_{e}(z)\right\}} \text { for }\left(z_{1}, z_{2}\right) \in E_{1} \cap E_{2}
\end{aligned}
$$

Theref ore the union of two CFGs is also a CFG.
Example 3.1. Consider the two complex fuzzy graphs $G_{c_{1}}=\left(\sigma_{c_{1}}, \mu_{c_{1}}\right)$ and $G_{c_{2}}=$ $\left(\sigma_{c_{2}}, \mu_{c_{2}}\right)$ given below $\sigma_{c_{1}}=\left\{z_{1} / 0.4 e^{i 0.8 \pi}, z_{2} / 0.7 e^{i 2 \pi}, z_{3} / 0.5 e^{i 1.2 \pi}\right\}$, $\mu_{c_{1}}=\left\{\left(z_{1}, z_{2}\right) / 0.4 e^{i 0.8 \pi},\left(z_{2}, z_{3}\right) / 0.4 e^{i \pi}\right\}$ and $\sigma_{c_{2}}=\left\{z_{1} / 0.5 e^{i \pi}, z_{3} / 0.5 e^{i 1.4 \pi}\right.$, $z_{4} / 0.8 e^{i 2 \pi}, \mu_{c_{2}}=\left\{\left(z_{1}, z_{4}\right) / 0.4 e^{i 0.6 \pi},\left(z_{3}, z_{4}\right) / 0.5 e^{i 1.4 \pi}\right\}$ Then the union $G_{c}=$ $\left(\sigma_{c_{1}} \cup \sigma_{c_{2}}=\sigma_{c}, \mu_{c_{1}} \cup \mu_{c_{2}}=\mu_{c}\right)$ on $G=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ can be written as $\sigma_{c}=\left\{z_{1} / 0.5 e^{i \pi}, z_{2} / 0.7 e^{i 2 \pi}, z_{3} / 0.5 e^{i 1.4 \pi}, z_{4} / 0.8 e^{i 2 \pi}\right\}$ $\mu_{c}=\left\{\left(z_{1}, z_{2}\right) / 0.4 e^{i 0.8 \pi},\left(z_{1}, z_{4}\right) / 0.4 e^{i 0.6 \pi},\left(z_{3}, z_{4}\right) / 0.5 e^{i 1.4 \pi},\left(z_{2}, z_{4}\right) / 0.4 e^{i \pi}\right\}$

$$
z_{1}\left(0.4 e^{i 0.8 \pi}\right) \bullet \frac{z_{2}\left(0.7 e^{i 2 \pi}\right)}{0.4 e^{i 0.8 \pi} \bullet 0.4 e^{i \pi}} \bullet z_{3}\left(0.5 e^{i 1.2 \pi}\right)
$$

Figure 2: $G_{c_{1}}$

$$
z_{1}\left(0.5 e^{i \pi}\right) \bullet \frac{z_{4}\left(0.8 e^{i 2 \pi}\right)}{0.4 e^{i 0.6 \pi} \bullet} 0.5 e^{i 1.4 \pi} \bullet z_{3}\left(0.5 e^{i 1.4 \pi}\right)
$$

Figure 3: $G_{c_{2}}$

Figure 4: $G_{c_{1}} \cup G_{c_{2}}$
Remark 3.1. Union of two strong $C F G$ need not be a strong $C F G$.

Example 3.2. Consider the Strong CFGs $G_{c_{1}}=\left(\sigma_{c_{1}}, \mu_{c_{1}}\right)$ and $G_{c_{2}}=\left(\sigma_{c_{2}}, \mu_{c_{2}}\right)$ where $\sigma_{c_{1}}=\left\{z_{1} / 0.4 e^{i 2 \pi}, z_{2} / 0.6 e^{i \pi}\right\}, \mu_{c_{1}}=\left\{\left(z_{1}, z_{2}\right) / 0.4 e^{i \pi}\right\}$ and $\sigma_{c_{2}}=\left\{z_{1} / 0.8 e^{i 0.2 \pi}, z_{2} / 0.2 e^{i \pi}\right\}, \mu_{c_{2}}=\left\{\left(z_{1}, z_{2}\right) / 0.2 e^{i 0.2 \pi}\right\}$ then the union is given by $\sigma_{c}=\left\{z_{1} / 0.8 e^{i 2 \pi}, z_{2} / 0.6 e^{i \pi}\right\}, \mu_{c}=\left\{\left(z_{1}, z_{2}\right) / 0.4 e^{i 0.2 \pi}\right\}$.
However this is not a strong CFG.
Definition 3.2. Let the two complex fuzzy graphs $G_{c_{1}}=\left(\sigma_{c_{1}}, \mu_{c_{1}}\right)$, and $G_{c_{2}}=$ $\left(\sigma_{c_{2}}, \mu_{c_{2}}\right)$ defined on two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ respectively. Let $G_{c_{1}}$ be a pair of complex functions $\sigma_{c_{1}}: V_{1} \rightarrow r_{1}(z) e^{i \theta_{1}(z)}$, $\mu_{c_{1}}: E_{1} \subseteq$ $V_{1} \times V_{1} \rightarrow R_{1}(e) . e^{i \phi_{1}(e)}$ such that $\mu_{c}\left(z_{1}, z_{2}\right)=R_{1}(e) e^{i \phi_{1}(e)}$ where $R_{1}(e) \leq$ $\min \left\{r_{1}\left(z_{1}\right), r_{1}\left(z_{2}\right)\right\}, \phi_{1}(e) \leq \min \left\{\theta_{1}\left(z_{1}\right), \theta_{1}\left(z_{2}\right)\right\}$. Also $G_{c_{2}}$ is a pair of complex functions $\sigma_{c_{2}}: V_{2} \rightarrow r_{2}(z) e^{i \theta_{2}(z)}, \mu_{c_{2}}: E_{2} \subseteq V_{2} \times V_{2} \rightarrow R_{2}(e) . e^{i \phi_{2}(e)}$ such that $\mu_{c}\left(z_{1}, z_{2}\right)=R_{2}(e) e^{i \phi_{2}(e)}$ where $R_{2}(e) \leq \min \left\{r_{2}\left(z_{1}\right), r_{2}\left(z_{2}\right)\right\}, \phi_{2}(e) \leq$ $\min \left\{\theta_{2}\left(z_{1}\right), \theta_{2}\left(z_{2}\right)\right\}$. Then the intersection of two complex fuzzy graphs $G_{c}=$ ($\sigma_{c}=\sigma_{c_{1}} \cap \sigma_{c_{2}}, \mu_{c}=\mu_{c_{1}} \cap \mu_{c_{2}}$) is defined as follows
(i) $\sigma_{c}(z)=\left(\sigma_{c_{1}} \cap \sigma_{c_{2}}\right)(z)=\min \left\{r_{1}(z), r_{2}(z)\right\} e^{i \min \left\{\theta_{1}(z), \theta_{2}(z)\right\}}, z \in V_{1} \cap V_{2}$
(ii) $\mu_{c}\left(z_{1}, z_{2}\right)=\left(\mu_{c_{1}} \cap \mu_{c_{2}}\right)\left(z_{1}, z_{2}\right)=$
$\left\{\begin{array}{l}\min \left\{R_{1}(e), R_{2}(e)\right\} e^{i \min \left\{\phi_{1}(e), \phi_{2}(e)\right\}},\left(z_{1}, z_{2}\right) \in E_{1} \cap E_{2} \\ 0, \text { otherwise }\end{array}\right.$
Proposition 3.2. Prove that the intersection of two complex fuzzy graphs is also a complex fuzzy graph.

Proof. Let $G_{c_{1}}$ and $G_{c_{2}}$ be two complex fuzzy graphs, then
i) $\left(\sigma_{c_{1}} \cap \sigma_{c_{2}}\right)(z)=\min \left\{r_{1}(z), r_{2}(z)\right\} . e^{i \min \left\{\theta_{1}(z), \theta_{2}(z)\right\}}$ Itistrivial.
ii) For $\left(z_{1}, z_{2}\right) \in E_{1} \cap E_{2}$
$\left(\mu_{c_{1}} \cap \mu_{c_{2}}\right)\left(z_{1}, z_{2}\right)=\min \left\{\mu_{c_{1}}\left(z_{1}, z_{2}\right), \mu_{c_{2}}\left(z_{1}, z_{2}\right)\right\} . e^{i \min \left\{\phi_{1}(z), \phi_{2}(z)\right\}}$
$\leq \min \left\{\min \left\{r_{1}\left(z_{1}\right), r_{1}\left(z_{2}\right)\right\}, \min \left\{r_{2}\left(z_{1}\right), r_{2}\left(z_{2}\right)\right\}\right\}$.
$e^{i \min \left\{\min \left\{\theta_{1}\left(z_{1}\right), \theta_{1}\left(z_{2}\right)\right\}, \min \left\{\theta_{2}\left(z_{1}\right), \theta_{2}\left(z_{2}\right)\right\}\right\}}$

$$
=\min \left\{\min \left\{r_{1}\left(z_{1}\right), r_{2}\left(z_{1}\right)\right\}, \min \left\{r_{1}\left(z_{2}\right), r_{2}\left(z_{2}\right)\right\}\right\}
$$

$e^{i \min \left\{\min \left\{\theta_{1}\left(z_{1}\right), \theta_{1}\left(z_{2}\right)\right\}, \min \left\{\theta_{2}\left(z_{1}\right), \theta_{2}\left(z_{2}\right)\right\}\right\}}$

$$
=\min \left\{R_{1}(z), R_{2}(z)\right\} . e^{i \min \left\{\phi_{1}(z), \phi_{2}(z)\right\}}
$$

where $R_{1}(z) \leq \min \left\{r_{1}\left(z_{1}\right), r_{2}\left(z_{1}\right)\right\}, R_{2}(z) \leq \min \left\{r_{1}\left(z_{2}\right), r_{2}\left(z_{2}\right)\right\}$,
$\phi\left(z_{1}\right) \leq \min \left\{\theta_{1}\left(z_{1}\right), \theta_{2}\left(z_{1}\right)\right\}$,
$\phi\left(z_{2}\right) \leq \min \left\{\theta_{2}\left(z_{1}\right), \theta_{2}\left(z_{2}\right)\right\}$
Hence the $G_{c_{1}} \cap G_{c_{2}}$ is a CFG.

Example 3.3. Consider the two complex fuzzy graphs $G_{c_{1}}=\left(\sigma_{c_{1}}, \mu_{c_{1}}\right)$
where $\sigma_{c_{1}}=\left\{z_{1} / 0.5 e^{i 0.7 \pi}, z_{2} / 0.8, z_{3} / 0.7 e^{i 1.5 \pi}\right\} ; \mu_{c_{1}}=\left\{\left(z_{1}, z_{2}\right) / 0.5,\left(z_{2}, z_{3}\right) / 0.7\right\}$
and
$G_{c_{2}}=\left(\sigma_{c_{2}}, \mu_{c_{2}}\right)$ where $\sigma_{c_{2}}=\left\{z_{1} / 0.4 e^{i 2 \pi}, z_{2} / 0.6 e^{i 0.8 \pi}, z_{4} / 0.7 e^{i \pi}\right\}$;
$\mu_{c_{2}}=\left\{\left(z_{1}, z_{4}\right) / 0.4 e^{i \pi},\left(z_{1}, z_{2}\right) / 0.4 e^{i 0.8 \pi}\right\}$
Then the intersection of $G_{c_{1}}$ and $G_{c_{2}}$ on a pair $G=\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)$ is given by $V=\left\{z_{1} / 0.4 e^{i 0.7 \pi}, z_{2} / 0.6\right\}, E=\left\{\left(z_{1}, z_{2}\right) / 0.4\right\}$ where $V=V_{1} \cap V_{2} ; E=E_{1} \cap E_{2}$.

Remark 3.2. Intersection of two strong CFGs is also a strong CFG.
Definition 3.3. Let the two complex fuzzy graphs $G_{c_{1}}=\left(\sigma_{c_{1}}, \mu_{c_{1}}\right)$, and $G_{c_{2}}=$ $\left(\sigma_{c_{2}}, \mu_{c_{2}}\right)$ defined on two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ respectively. Let $G_{c_{1}}$ be a pair of complex functions $\sigma_{c_{1}}: V_{1} \rightarrow r_{1}(a) e^{i \theta_{1}(a)}, \mu_{c_{1}}: E_{1} \subseteq$ $V_{1} \times V_{1} \rightarrow R_{1}(e) . e^{i \phi_{1}(e)}$ such that $\mu_{c}\left(a_{1}, a_{2}\right)=R_{1}(e) e^{i \phi_{1}(e)}$ where $R_{1}(e) \leq$ $\min \left\{r_{1}\left(a_{1}\right), r_{1}\left(a_{2}\right)\right\}, \phi_{1}(e) \leq \min \left\{\theta_{1}\left(a_{1}\right), \theta_{1}\left(a_{2}\right)\right\}$. Also $G_{c_{2}}$ is a pair of complex functions $\sigma_{c_{2}}: V_{2} \rightarrow r_{2}(a) e^{i \theta_{2}(a)}, \mu_{c_{2}}: E_{2} \subseteq V_{2} \times V_{2} \rightarrow R_{2}(e) . e^{i \phi_{2}(e)}$ such that $\mu_{c}\left(a_{1}, a_{2}\right)=R_{2}(e) e^{i \phi_{2}(e)}$ where $R_{2}(e) \leq \min \left\{r_{2}\left(a_{1}\right), r_{2}\left(a_{2}\right)\right\}, \phi_{2}(e) \leq$ $\min \left\{\theta_{2}\left(a_{1}\right), \theta_{2}\left(a_{2}\right)\right\}$. Then the composition of two complex fuzzy graphs is defined as follows
(i) $\left(\sigma_{c_{1}} \circ \sigma_{c_{2}}\right)\left(a_{1}, a_{2}\right)=\min \left\{r_{1}\left(a_{1}\right), r_{2}\left(a_{2}\right)\right\} e^{i \min \left\{\theta_{1}\left(a_{1}\right), \theta_{2}\left(a_{2}\right)\right\}}, \forall a_{1}, a_{2} \in V=$ $V_{1} \circ V_{2}$
(ii) $\left(\mu_{c_{1}} \circ \mu_{c_{2}}\right)\left(\left(a, a_{2}\right),\left(a, b_{2}\right)\right)=\min \left\{r_{1}(a), R_{2}(a)\right\} e^{i \min \left\{\theta_{1}(a), \phi_{2}(a)\right\}}$
where $R_{2}(a) \leq \min \left\{r_{2}\left(a_{2}\right), r_{2}\left(b_{2}\right)\right\} ; \phi_{2}(a) \leq \min \left\{\theta_{2}\left(a_{2}\right), \theta_{2}\left(b_{2}\right)\right\}, \forall a \in$ $V_{1},\left(a_{2}, b_{2}\right) \in E_{2}$
(iii) $\left(\mu_{c_{1}} \circ \mu_{c_{2}}\right)\left(\left(a_{1}, a\right),\left(b_{1}, a\right)\right)=\min \left\{R_{1}(a), r_{2}(a)\right\} e^{i \min \left\{\phi_{1}(a), \theta_{2}(a)\right\}}$
where $R_{1}(a) \leq \min \left\{r_{1}\left(a_{1}\right), r_{1}\left(b_{1}\right)\right\} ; \phi_{1}(a) \leq \min \left\{\theta_{1}\left(a_{1}\right), \theta_{1}\left(b_{1}\right)\right\}, \forall a \in$ $V_{2},\left(a_{1}, b_{1}\right) \in E_{1}$
(iv) $\left(\mu_{c_{1}} \circ \mu_{c_{2}}\right)\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\min \left\{r_{2}\left(a_{2}\right), r_{2}\left(b_{2}\right), R_{1}(a)\right\}$. $e^{i \min \left\{\theta_{2}\left(a_{2}\right), \theta_{2}\left(b_{2}\right), \phi_{1}(a)\right\}}, \forall a_{2}, b_{2} \in V_{2}, a_{2} \neq b_{2},\left(a_{1}, b_{1}\right) \in E_{1}$, where $R_{1}(a) \leq$ $\min \left\{r_{1}\left(a_{1}\right), r_{1}\left(b_{1}\right)\right\} ; \phi_{2}(a) \leq \min \left\{\theta_{1}\left(a_{1}\right), \theta_{1}\left(b_{1}\right)\right\}$,

Proposition 3.3. Prove that the composition of two complex fuzzy graphs is also a complex fuzzy graph.

Proof. Let $G_{c_{1}}$ and $G_{c_{2}}$ be two CFGs then we prove that $G_{C 1} \circ G_{C 2}$ is a CFG.
(i) $\left(\sigma_{c_{1}} \circ \sigma_{c_{2}}\right)=\left(a_{1}, a_{2}\right)=\min \left\{r_{1}\left(a_{1}\right), r_{2}\left(a_{2}\right)\right\} e^{i \min \left\{\theta_{1}\left(a_{1}\right), \theta_{2}\left(a_{2}\right)\right\}}, \forall a_{1}, a_{2} \in$ V. It is trivial.
(ii) $\left(\mu_{c_{1}} \circ \mu_{c_{2}}\right)\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\min \left\{r_{1}(a), R_{2}(a)\right\} e^{i \min \left\{\theta_{1}(a), \theta_{2}(a)\right\}}$
$\leq \min \left\{r_{1}(a), \min \left\{r_{2}\left(a_{2}\right), r_{2}\left(b_{2}\right)\right\}\right\} e^{i \min \left\{\theta_{1}(a), \min \left\{\theta_{2}\left(a_{2}\right), \theta_{2}\left(b_{2}\right)\right\}\right\}}$
$=\min \left\{\min \left\{r_{1}(a), r_{2}\left(a_{2}\right)\right\}, \min \left\{r_{1}(a), r_{2}\left(b_{2}\right)\right\}\right\}$.
$e^{i \min \left\{\min \left\{\theta_{1}(a), \theta_{2}\left(a_{2}\right)\right\}, \min \left\{\theta_{1}(a), \theta_{2}\left(b_{2}\right)\right\}\right\}}$
$=\min \left\{r\left(a_{1}\right), r\left(b_{1}\right)\right\} e^{i \min \left\{\theta\left(a_{1}\right), \theta\left(b_{1}\right)\right\}}$, where $r\left(a_{1}\right)=\min \left\{r_{1}(a), r_{2}\left(a_{2}\right)\right\}$, $r\left(b_{1}\right)=\min \left\{r_{1}(a), r_{2}\left(b_{2}\right)\right\}, \theta\left(a_{1}\right)=\min \left\{\theta_{1}(a), \theta_{2}\left(a_{2}\right)\right\}$,
$\theta\left(b_{1}\right)=\min \left\{\theta_{1}(a), \theta_{2}\left(b_{2}\right)\right\}$ for all $a \in V_{1} \operatorname{and}\left(a_{2}, b_{2}\right) \in E_{2}$.
(iii) $\left(\mu_{c_{1}} \circ \mu_{c_{2}}\right)\left(\left(a_{1}, b\right)\left(b_{1}, b\right)\right)=\min \left\{R_{1}(a), r_{2}(b)\right\} e^{i \min \left\{\theta_{1}(a), \theta_{2}(b)\right\}}$
$\leq \min \left\{\min \left\{r_{1}\left(a_{1}\right), r_{1}\left(b_{1}\right)\right\}, r_{2}(b)\right\} e^{i \min \left\{\min \left\{\theta_{1}\left(a_{1}\right), \theta_{1}\left(b_{1}\right)\right\}, \theta_{2}(b)\right\}}$
$=\min \left\{\min \left\{r_{1}\left(a_{1}\right), r_{2}(b)\right\}, \min \left\{r_{1}\left(b_{1}\right), r_{2}(b)\right\}\right\}$.
$e^{i \min \left\{\min \left\{\theta_{1}\left(a_{1}\right), \theta_{2}(b)\right\}, \min \left\{\theta_{1}\left(b_{1}\right), \theta_{2}(b)\right\}\right\}}$
$=\min \left\{r\left(a_{2}\right), r\left(b_{2}\right)\right\} e^{i \min \left\{\theta\left(a_{2}\right), \theta\left(b_{2}\right)\right\}}$, where $r\left(a_{2}\right)=\min \left\{r_{1}\left(a_{1}\right), r_{2}(b)\right\}$,
$r\left(b_{2}\right)=\min \left\{r_{1}\left(b_{1}\right), r_{2}(b)\right\}, \theta\left(a_{2}\right)=\min \left\{\theta_{1}\left(a_{1}\right), \theta_{2}(b)\right\}$,
$\theta\left(b_{2}\right)=\min \left\{\theta_{1}\left(b_{1}\right), \theta_{2}(b)\right\}$ for all $b \in V_{2}$ and $\left(a_{1}, b_{1}\right) \in E_{1}$.
(iv) For all $a_{2}, b_{2} \in V_{2}, a_{2} \neq b_{2},\left(a_{1}, b_{1}\right) \in E_{1}$
$\left(\mu_{c_{1}} \circ \mu_{c_{2}}\right)\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\min \left\{r_{2}\left(a_{2}\right), r_{2}\left(b_{2}\right), R_{1}(a)\right\}$.
$e^{i \min \left\{\theta_{2}\left(a_{2}\right), \theta_{2}\left(b_{2}\right), \phi(a)\right\}}$
$\leq \min \left\{r_{2}\left(a_{2}\right), r_{2}\left(b_{2}\right), \min \left\{r_{1}\left(a_{1}\right), r_{1}\left(b_{1}\right)\right\}\right\}$.
$e^{i \min \left\{\theta_{2}\left(a_{2}\right), \theta_{2}\left(b_{2}\right), \min \left\{\theta_{1}\left(a_{1}\right), \theta_{1}\left(b_{1}\right)\right\}\right\}}$
$=\min \left\{r_{2}\left(a_{2}\right), r_{2}\left(b_{2}\right), r_{1}\left(a_{1}\right), r_{1}\left(b_{1}\right)\right\} . e^{i \min \left\{\theta_{2}\left(a_{2}\right), \theta_{2}\left(b_{2}\right), \theta_{1}\left(a_{1}\right), \theta_{1}\left(b_{1}\right)\right\}}$
$=\min \{r(a), r(b)\} . e^{i \min \{\theta(a), \theta(b)\}}$.
where $r(a)=\min \left\{r_{1}\left(a_{1}\right), r_{2}\left(a_{2}\right)\right\}, r(b)=\min \left\{r_{1}\left(b_{1}\right), r_{2}\left(b_{2}\right)\right\}$
$\theta(a)=\min \left\{\theta_{1}\left(a_{1}\right), \theta_{2}\left(a_{2}\right)\right\}, \theta(b)=\min \left\{\theta_{1}\left(b_{1}\right), \theta_{2}\left(b_{2}\right)\right\}$.
Hence $G_{C 1} \circ G_{C 2}$ is a CFG.
Example 3.4. Consider the CFGs, $G_{c_{1}}=\left(\sigma_{c_{1}}, \mu_{c_{1}}\right)$
where $\sigma_{c_{1}}=\left\{z_{1} / 0.4 e^{i 0.7 \pi}, z_{2} / 0.6 e^{i 2 \pi}\right\} ; \mu_{c_{1}}=\left\{\left(z_{1}, z_{2}\right) / 0.4 e^{i 0.5 \pi}\right\}$ and $G_{c_{2}}=$ $\left(\sigma_{c_{2}}, \mu_{c_{2}}\right)$ where $\sigma_{c_{2}}=\left\{z_{3} / 0.5 e^{i 1.2 \pi}, z_{4} / 0.6 e^{i 0.7 \pi}\right\} ; \mu_{c_{2}}=\left\{\left(z_{3}, z_{4}\right) / 0.5 e^{i 0.7 \pi}\right\}$. Then the composition of $G_{c_{1}}$ and $G_{c_{2}}$ is given by $G_{c}=\left(\sigma_{c}, \mu_{c}\right)$ where $\sigma_{c}=$ $\left\{z_{1} z_{3} / 0.4 e^{i 0.7 \pi}, z_{1} z_{4} / 0.4 e^{i 0.7 \pi}, z_{2} z_{3} / 0.5 e^{i 1.2 \pi}, z_{2} z_{4} / 0.6 e^{i 0.7 \pi}\right\}$, $\mu_{c}=\left\{\left(z_{1} z_{3}, z_{1} z_{4}\right) / 0.4 e^{i 0.7 \pi},\left(z_{1} z_{4}, z_{2} z_{4}\right) / 0.4 e^{i 0.5 \pi},\left(z_{2} z_{3}, z_{2} z_{4}\right) / 0.5 e^{i 0.7 \pi}\right.$, $\left.\left(z_{1} z_{3}, z_{2} z_{3}\right) / 0.4 e^{i 0.5 \pi},\left(z_{1} z_{3}, z_{2} z_{4}\right) / 0.4 e^{i 0.5 \pi},\left(z_{1} z_{4}, z_{2} z_{3}\right) / 0.4 e^{i 0.5 \pi}\right\}$

Remark 3.3. The Composition of two strong CFG is need not be a strong CFG.
Definition 3.4. Let the two complex fuzzy graphs $G_{c_{1}}=\left(\sigma_{c_{1}}, \mu_{c_{1}}\right)$, and $G_{c_{2}}=$ $\left(\sigma_{c_{2}}, \mu_{c_{2}}\right)$ defined on two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ respectively. Let $G_{c_{1}}$ be a pair of complex functions $\sigma_{c_{1}}: V_{1} \rightarrow r_{1}(a) e^{i \theta_{1}(a)}, \mu_{c_{1}}: E_{1} \subseteq$ $V_{1} \times V_{1} \rightarrow R_{1}(e) \cdot e^{i \phi_{1}(e)}$ such that $\mu_{c}\left(a_{1}, a_{2}\right)=R_{1}(e) e^{i \phi_{1}(e)}$ where $R_{1}(e) \leq$
$\min \left\{r_{1}\left(a_{1}\right), r_{1}\left(a_{2}\right)\right\}, \phi_{1}(e) \leq \min \left\{\theta_{1}\left(a_{1}\right), \theta_{1}\left(a_{2}\right)\right\}$. Also $G_{c_{2}}$ is a pair of complex functions $\sigma_{c_{2}}: V_{2} \rightarrow r_{2}(a) e^{i \theta_{2}(a)}, \mu_{c_{2}}: E_{2} \subseteq V_{2} \times V_{2} \rightarrow R_{2}(e) . e^{i \phi_{2}(e)}$ such that $\mu_{c}\left(a_{1}, a_{2}\right)=R_{2}(e) e^{i \phi_{2}(e)}$ where $R_{2}(e) \leq \min \left\{r_{2}\left(a_{1}\right), r_{2}\left(a_{2}\right)\right\}, \phi_{2}(e) \leq$ $\min \left\{\theta_{2}\left(a_{1}\right), \theta_{2}\left(a_{2}\right)\right\}$.
Then the Cartesian product of two complex fuzzy graphs is defined as follows
(i) $\left(\sigma_{c_{1}} \times \sigma_{c_{2}}\right)\left(a_{1}, a_{2}\right)=\min \left\{r_{1}\left(a_{1}\right), r_{2}\left(a_{2}\right)\right\} e^{\min \left\{\theta_{1}\left(a_{1}\right), \theta_{2}\left(a_{2}\right)\right\}}$, for $a_{1}, a_{2} \in V$
(ii) $\left(\mu_{c_{1}} \times \mu_{c_{2}}\right)\left(\left(a, a_{2}\right),\left(a, b_{2}\right)\right)=\min \left\{r_{1}(a), R_{2}(a)\right\} . e^{\min \left\{\theta_{1}(a), \phi_{2}(a)\right\}}$
where $R_{2}(a) \leq \min \left\{r_{2}\left(a_{2}\right), r_{2}\left(b_{2}\right)\right\} ; \phi_{2}(a) \leq\left\{\theta_{2}\left(a_{2}\right), \theta_{2}\left(b_{2}\right)\right\}$ for all $a \in$ V_{1} and $\left(a_{2}, b_{2}\right) \in E_{2}$
(iii) $\left(\mu_{c_{1}} \times \mu_{c_{2}}\right)\left(\left(a_{1}, a\right),\left(b_{1}, a\right)\right)=\min \left\{R_{1}(a), r_{2}(a)\right\} . e^{\min \left\{\phi_{1}(a), \theta_{2}(a)\right\}}$ where $R_{1}(a) \leq \min \left\{r_{1}\left(a_{1}\right), r_{1}\left(b_{1}\right)\right\} ; \phi_{2}(a) \leq\left\{\theta_{1}\left(a_{1}\right), \theta_{1}\left(b_{1}\right)\right\}$ for all $a \in$ V_{2} and $\left(a_{1}, b_{1}\right) \in E_{1}$

Proposition 3.4. The cartesian product of two complex fuzzy graphs is also a complex fuzzy graph.

Proof. Let $G_{c_{1}}$ and $G_{c_{2}}$ be two complex fuzzy graphs, then we prove that $G_{c 1} \times$ $G_{c 2}$ is a CFG.
(i) $\sigma_{c_{1}} \times \sigma_{c_{2}}\left(a_{1}, a_{2}\right)=\min \left\{r_{1}\left(a_{1}\right), r_{2}\left(a_{2}\right)\right\} . e^{i \min \left\{\theta_{1}\left(a_{1}, \theta_{2}\left(a_{2}\right)\right)\right\}}, \forall a_{1}, a_{2} \in V_{1} \times$ V_{2}. It is trivial, we have to verify the conditions only for $E_{1} \times E_{2}$
(ii) $\left(\mu_{c_{1}} \times \mu_{c_{2}}\right)\left(\left(a, a_{2}\right),\left(a, b_{2}\right)\right)=\min \left\{r_{1}(a), R_{2}(a)\right\} \cdot e^{i \min \left\{\theta_{1}(a), \phi_{2}(a)\right\}}$
$\leq \min \left\{r_{1}(a), \min \left\{r_{2}\left(a_{2}\right), r_{2}\left(b_{2}\right)\right\}\right\} . e^{i \min \left\{\theta_{1}(a), \min \left\{\theta_{2}\left(a_{2}\right), \theta_{2}\left(b_{2}\right)\right\}\right\}}$
$=\min \left\{\min \left\{r_{1}(a), r_{2}\left(a_{2}\right)\right\}, \min \left\{r_{1}(a), r_{2}\left(b_{2}\right)\right\}\right\}$.
$e^{i \min \left\{\min \left\{\theta_{1}(a), \theta_{2}\left(a_{2}\right)\right\}, \min \left\{\theta_{1}(a), \theta_{2}\left(b_{2}\right)\right\}\right\}}$
$=\min \left\{r\left(a_{1}\right), r\left(b_{1}\right)\right\} . e^{i \min \left\{\theta\left(a_{1}\right), \theta\left(b_{1}\right)\right\}}$
where $r\left(a_{1}\right)=\min \left\{r_{1}(a), r_{2}\left(a_{2}\right)\right\}, r\left(b_{1}\right)=\min \left\{r_{1}(a), r_{2}\left(b_{2}\right)\right\}$,
$\theta\left(a_{1}\right)=\min \left\{\theta_{1}(a), \theta_{2}\left(a_{2}\right)\right\}, \theta\left(b_{1}\right)=\min \left\{\theta_{1}(a), \theta_{2}\left(b_{2}\right)\right\}$
forall $a \in V_{1},\left(a_{2}, b_{2}\right) \in E_{2}$
(iii) $\left(\mu_{c_{1}} \times \mu_{c_{2}}\right)\left(\left(a_{1}, a\right),\left(b_{1}, a\right)\right)=\min \left\{R_{1}(a), r_{2}(a)\right\} \cdot e^{i \min \left\{\phi_{1}(a), \theta_{2}(a)\right\}}$
$\leq \min \left\{\min \left\{r_{1}\left(a_{1}\right), r_{1}\left(b_{1}\right)\right\}, r_{2}(a)\right\} . e^{i \min \left\{\min \left\{\theta_{1}\left(a_{1}\right), \theta_{1}\left(b_{1}\right)\right\}, \theta_{2}(a)\right\}}$
$\left.=\min \left\{\min \left\{r_{1}\left(a_{1}\right), r_{2}(a)\right\}, \min \left\{r_{1}\left(b_{1}\right), r_{2}\right)\right\}\right\}$.
$e^{i \min \left\{\min \left\{\theta_{1}\left(a_{1}\right), \theta_{2}(a)\right\}, \min \left\{\theta_{1}\left(b_{1}\right), \theta_{2}(a)\right\}\right\}}$
$=\min \left\{r\left(a_{2}\right), r\left(b_{2}\right)\right\} \cdot e^{i \min \left\{\theta\left(a_{2}\right), \theta\left(b_{2}\right)\right\}}$
where $r\left(a_{2}\right)=\min \left\{r_{1}\left(a_{1}\right), r_{2}(a)\right\}, r\left(b_{2}\right)=\min \left\{r_{1}\left(b_{1}\right), r_{2}(a)\right\}$,
$\theta\left(a_{2}\right)=\min \left\{\theta_{1}\left(a_{1}\right), \theta_{2}(a)\right\}, \theta\left(b_{2}\right)=\min \left\{\theta_{1}\left(b_{1}\right), \theta_{2}(a)\right\}$
forall $a \in V_{2},\left(a_{1}, b_{1}\right) \in E_{1}$
Hence $G_{c 1} \times G_{c 2}$ is a CFG.

Example 3.5. Let $G_{c_{1}}$ and $G_{c_{2}}$ be two complex fuzzy graphs.
$\sigma_{c_{1}}=\left\{z_{1} / 0.4 e^{i 2 \pi}, z_{2} / 0.5 e^{i 1.2 \pi}\right\}, \mu_{c_{1}}=\left\{\left(z_{1}, z_{2}\right) / 0.4 e^{i 1.2 \pi}\right\}$,
$\sigma_{c_{2}}=\left\{z_{3} / 0.5 e^{i 0.7 \pi}, z_{4} / 0.8 e^{i \pi}, z_{5} / 0.4 e^{i 1.7 \pi}\right.$,
$\mu_{c_{2}}=\left\{\left(z_{3}, z_{4}\right) / 0.4 e^{i 0.7 \pi},\left(z_{4}, z_{5}\right) / 0.4 e^{i \pi}\right\}$. Then the cartesian product is given $b y$ $\sigma_{c_{1}} \times \sigma_{c_{2}}=\left\{z_{1} z_{3} / 0.4 e^{i 0.7 \pi}, z_{1} z_{4} / 0.4 e^{i \pi}, z_{1} z_{5} / 0.4 e^{i 1.7 \pi}\right.$, $\left.z_{2} z_{3} / 0.5 e^{i 0.7 \pi}, z_{2} z_{4} / 0.5 e^{i \pi}, z_{2} z_{5} / 0.4 e^{i 1.2 \pi}\right\} \mu_{c_{1}} \times \mu_{c_{2}}=\left\{\left(z_{1} z_{3}, z_{1} z_{4}\right) / 0.4 e^{i 0.7 \pi}\right.$, $\left(z_{1} z_{4}, z_{1} z_{5}\right) / 0.4 e^{i \pi},\left(z_{1} z_{3}, z_{2} z_{3}\right) / 0.4 e^{i 0.7 \pi},\left(z_{2} z_{3}, z_{2} z_{4}\right) / 0.5 e^{i 0.7 \pi}$,
$\left.\left(z_{2} z_{4}, z_{2} z_{5}\right) / 0.4 e^{i 1.2 \pi},\left(z_{1} z_{4}, z_{2} z_{4}\right) / 0.4 e^{i \pi},\left(z_{1} z_{5}, z_{2} z_{5}\right) / 0.4 e^{i 1.2 \pi}\right\}$

$$
z_{1}\left(0.4 e^{i 1.2 \pi}\right) \bullet 0.4 e^{i 1.2 \pi} \bullet z_{2}\left(0.5 e^{i 1.2 \pi}\right)
$$

Figure 5: $G_{c 1}$

$$
z_{3}\left(0.5 e^{i 0.7 \pi}\right) \bullet \frac{0.4 e^{i 0.7 \pi}}{z_{4}\left(0.8 e^{i \pi}\right)} \cdot 0.4 e^{i \pi}, z_{5}\left(0.4 e^{i 1.7 \pi}\right)
$$

Figure 6: $G_{c 2}$

Figure 7: $G_{c 1} \times G_{c 2}$

Remark 3.4. Cartesian product of two strong $C F G$ is also a strong $C F G$.

4 Conclusions

In this paper, we discussed about some operations on complex fuzzy graphs such as union, intersection, composition and Cartesian product with examples.

N.Azhagendran and A.Mohamed Ismayil

Complex fuzzy graph is an extension of a fuzzy graph. We are working to extend the algorithms applied to complex fuzzy graphs are i) Domination on complex fuzzy graphs ii) Connectivity of complex fuzzy graphs and more operations on Complex fuzzy graphs

References

Harary. Graph Theory. Addition wesley, London, 1969.
L.A.Zadeh. Fuzzy sets. Information and control, 8(3):338-353, 1965.
J. Mordeson and C. Peng. Operations on fuzzy graphs. Information Sci., 79: 159-170, 1994.
A. Nagoorgani and R. Latha. Some properties on operations of fuzzy graphs. Advances in Fuzzy sets and Systems, 19(1):1-24, 2015.
Y. Naveed, G. Muhammad, K. Seifedine, and A. W. Hafiz. Complex intuitionistic fuzzy graphs with applications in cellular network provider companies. Mathematics, 7(35):1-18, 2019.
P.Bhattacharya. Some remarks on fuzzy graphs. Pattern recognition Lett.6, pages 297-302, 1987.
D. Ramot, M.Friedma, G.Langholz, R. Milo, and K. A. Complex fuzzy sets. IEEE transactions on fuzzy systems, 10(2):171-186, 2002.
A. Shannon and K. Atanassov. A first step to a theory of the intuitionistic fuzzy graph. In The First workshop on Fuzzy Based Expert system (D.Lakov, Ed.), pages 59-61, 1994.
P. Thirunavukarasu, R. Suresh, and K. Viswanathan. Energy of a complex fuzzy graph. International journal of math. science and Engg. Appls (IJMSEA), 10 (1):243-248, 2016.
M. Xueling, Z. Jianming, K. Madad, Z. Muhammad, A. Saima, and S. A. Abdul. Complex fuzzy sets with applications in signals. computational and applied mathematics, 38(150):1-34, 2019.

[^0]: *Jamal Mohamed College (Autonomous),Bharathidasan University, Trichy, India; email@address.azhagendran87@gmail.com
 ${ }^{\dagger}$ Jamal Mohamed College (Autonomous),Bharathidasan University, Trichy, India; email@address.amismayil1973@yahoo.co.in
 ${ }^{1}$ Received on September 15, 2022. Accepted on December 15, 2022. Published on March 20, 2023. DOI: 10.23755/rm.v46i0.1060. ISSN: 1592-7415. eISSN: 2282-8214. ©N.Azhagendran et al. This paper is published under the CC-BY licence agreement.

