Odd prime labeling for some arrow related graphs

G. Gajalakshmi*
S. Meena ${ }^{\dagger}$

Abstract

In a graph \mathcal{G} a mapping g is known as odd prime labeling, if g is a bijection from \mathcal{V} to $\{1,3,5, \ldots, 2|\mathcal{V}|-1\}$ satisfying the condition that for each line $x y$ in \mathcal{G} the gcd of the labels of end points $(g(x), g(y))$ is one. In this article we prove that some new arrow related graphs such as $A_{y}^{2}, A_{y}^{3}, A_{y}^{5}$, are all odd prime graphs. Also we prove that double arrow graphs, $\mathcal{D} A_{y}^{2}$ and $\mathcal{D} A_{y}^{3}$ are odd prime graphs.

Keywords: Prime graph, Odd prime graph, Arrow graphs.
2020 AMS subject classifications: $05 \mathrm{C} 78{ }^{1}$

[^0]
G. Gajalakshmi and S. Meena

1 Introduction

In this article by a graph $\mathcal{G}=\langle V(\mathcal{G}), E(\mathcal{G})\rangle$ we mean a simple graph. For graph theoretical notations we refer J.A.Bondy and U .S. R.Murthy [1976] .

Graph labeling has been introduced in mid 1960. For entire survey of graph labeling we refer Gallian [2015].

The concept of prime labeling was established by Roger Entringer and was discussed in a article by Deretsky et al. [1991], Tout et al. [1982]. A graph \mathcal{G} of order p is known as prime graph if it's points can be labeled with distinct positive integers $\{1,2,3, \cdot, p\}$ such that the labels of any two adjacent points are relatively prime Meena and Vaithilingam [2013]. Meena and Kavitha [2014] investigated prime labeling for some butterfly related graphs. Meena et al. [2021] investigated odd prime labeling for some new classes of graph.

The notion of odd prime labeling was established by Prajapati and Shah [2018] and many researchers. Arrow graph was introduced by Kaneria et al. [2015]. Motivated by this study, in this article investigate the existence of odd prime labeling of some graphs related to arrow graphs.

Definition 1.1. Let $\mathcal{H}=\langle\mathcal{V}(\mathcal{H}), \mathcal{E}(\mathcal{H})\rangle$ be a graph. A bijection $g: \mathcal{V}(\mathcal{H}) \rightarrow O_{|V|}$ is know as odd prime labeling if for each line $x y \in \mathcal{E}$, greatest common divisor $\langle g(x), g(y)\rangle=1$. A graph is know as odd prime graph if its admits odd prime labeling.

Definition 1.2. Let $\mathcal{H}_{1}=\left(P_{1}, Q_{1}\right)$ and $\mathcal{H}_{2}=\left(P_{2}, Q_{2}\right)$ be two graphs with $P_{1} \cap P_{2}=\phi$. The cartesian product $\mathcal{H}_{1} \times \mathcal{H}_{2}$ is defined as a graph having $P=P_{1} \times P_{2}$ and $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are adjacent if $x_{1}=y_{1}$ and x_{2} is adjacent to y_{2} in \mathcal{H}_{2} or x_{1} is adjacent to y_{1} in \mathcal{H}_{1} and $x_{2}=y_{2}$. The cartesian product of two paths P_{m} and P_{n} denoted as $P_{m} \times P_{n}$ is known as a grid graph on $n m$ points and $2 n m-(n+m)$.

Definition 1.3. In rectangular grid $P_{m} \times P_{n}$ on mn points the n points $v_{1,1}, v_{2,1}, v_{3,1} \ldots v_{m, n}$ and points $v_{1, n}, v_{2, n}, v_{3, n} \ldots v_{m, n}$ are called an superior points from both the ends.

Definition 1.4. An arrow graph A_{y}^{x} with width x and length y is got by connecting a point v with superior points of $P_{x} \times P_{y}$ by new edges from one end.

Definition 1.5. A double arrow graph $\mathcal{D} A_{y}^{x}$ with width x and length y is got by conecting two points v and w with superior points of $P_{m} \times P_{y}$ by $x+x$ new edges from both the end.

2 Main Results

Theorem 2.1. A_{y}^{2} is an odd prime graph where $y \geq 2$.
Proof. Let $\mathcal{G}=A_{y}^{2}$ be an arrow graph got by connecting a point $g\left(u_{0}\right)$ with superior points of $P_{2} \times P_{y}$ by new lines.
Let $\mathcal{V}(\mathcal{G})=\left\{u_{l} / 0 \leq l \leq y\right\} \cup\left\{v_{l} / 1 \leq l \leq y\right\}$
$\mathcal{E}(\mathcal{G})=\left\{u_{l} u_{l+1} / 1 \leq l \leq y-1\right\} \cup\left\{u_{0} v_{1}\right\} \cup\left\{u_{0} u_{1}\right\}$
$\cup\left\{v_{l} v_{l+1} / 1 \leq l \leq y-1\right\} \cup\left\{u_{l} v_{l} / 1 \leq l \leq y\right\}$.
Now $|\mathcal{V}(\mathcal{G})|=2 \mathrm{y}+1$ and $|\mathcal{E}(\mathcal{G})|=3 \mathrm{y}$
Define a Mapping $f: \mathcal{V} \rightarrow O_{2 y}$ as follows
$g\left(u_{0}\right)=1$
$g\left(u_{l}\right)=4 l-1 \quad$ for $1 \leq l \leq y$
$g\left(v_{l}\right)=4 l+1 \quad$ for $1 \leq l \leq y$
Clearly point labels are distinct.
For each $e \in E$, if $\operatorname{gcd}(g(u), g(v))=1$
(i) $e=u_{0} u_{l}, g c d\left(g\left(u_{0}\right), g\left(u_{l}\right)\right)=\operatorname{gcd}(1,3)=1$
(ii) $e=u_{0} v_{1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(v_{l}\right)\right)=\operatorname{gcd}(1,5)=1$
(iii) $e=u_{l} v_{l}, g c d\left(g\left(u_{l}\right), g\left(v_{l}\right)\right)=g c d(4 l-1,4 l+1)=1$
for $1 \leq l \leq y$
(iv) $e=u_{l} u_{l+1}, g c d\left(g\left(u_{l}\right), g\left(u_{l+1}\right)\right)=g c d(4 l-1,4 l+3)=1$
for $1 \leq l \leq y-1$
(v) $e=v_{i} v_{l+1}, \operatorname{gcd}\left(g\left(v_{l}\right)\right), g\left(v_{l+1}\right)=\operatorname{gcd}(4 l+1,4 l+5)=1$
for $1 \leq l \leq y-1$
Hence A_{y}^{2} is an odd prime graph.

Figure 1: Arrow graph A_{y}^{2} and its odd prime labeling
Theorem 2.2. A_{y}^{3} is an odd prime graph where $y \geq 2$.
Proof. Let $G=A_{y}^{3}$ be an arrow graph got by connecting a point $g\left(u_{0}\right)$ with superior points of $P_{3} \times P_{2}$ by 3 new lines.
$\mathcal{V}(\mathcal{G})=\left\{u_{l}, v_{l}, w_{l}, / 1 \leq l \leq y\right\} \cup\left\{u_{0}\right\}$
$\mathcal{E}(\mathcal{G})=\left\{u_{l} u_{l+1}, v_{l} v_{l+1}, w_{l} w_{l+1} / 1 \leq l \leq y-1\right\} \cup\left\{v_{l} w_{l}, u_{l} v_{l} / 1 \leq l \leq y\right\}$
$\cup\left\{u_{o} u_{1}\right\} \cup\left\{u_{0} v_{1}\right\} \cup\left\{u_{0} w_{1}\right\}$

G. Gajalakshmi and S. Meena

Now $|\mathcal{V}(\mathcal{G})|=3 y+1$ and $|\mathcal{E}(\mathcal{G})|=5 y-1$
Define a mapping $f: \mathcal{V} \rightarrow O_{2 y}$ as follows
$g\left(u_{0}\right)=1$
$g\left(u_{l}\right)=6 l-3 \quad$ for $1 \leq l \leq y, l$ is odd
$g\left(u_{l}\right)=6 l-1 \quad$ for $1 \leq l \leq y, l$ is even
$g\left(v_{l}\right)=6 l-1 \quad$ for $1 \leq l \leq y, l$ is odd
$g\left(v_{l}\right)=6 l-3 \quad$ for $1 \leq l \leq y, l$ is even
$g\left(w_{l}\right)=6 l+1 \quad$ for $1 \leq l \leq y$
Clearly all the point labels are distinct. With this labeling for each $e=u v \in E$ if
(i) $e=u_{0} u_{1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(u_{1}\right)\right)=\operatorname{gcd}(1,3)=1$
for $1 \leq l \leq y$
(ii) $e=u_{0} w_{1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(w_{1}\right)\right)=\operatorname{gcd}(1,7)=1 \quad$ for $1 \leq l \leq y$
(iii) $e=u_{0} v_{1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(v_{1}\right)\right)=\operatorname{gcd}(1,5)=1 \quad$ for $1 \leq l \leq y$
(iv) $e=u_{l} v_{l}, \operatorname{gcd}\left(g\left(u_{l}\right), g\left(v_{l}\right)=\operatorname{gcd}(6 l-3,6 l-1)=1 \quad\right.$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(v) $e=u_{l} v_{l}, g c d\left(g\left(u_{l}\right), g\left(v_{l}\right)\right)=\operatorname{gcd}(6 l-3,6 l-1)=1 \quad$ for $1 \leq l \leq y$ $l \equiv 0(\bmod 2)$
$(\mathrm{vi}) e=v_{l} w_{l}, \operatorname{gcd}\left(g\left(v_{l}\right), g\left(w_{l}\right)\right)=\operatorname{gcd}(6 l-1,6 l+1)=1 \quad$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
$(\mathrm{vii}) e=v_{l} w_{l}, \operatorname{gcd}\left(g\left(u_{l}\right), g\left(v_{l}\right)\right)=\operatorname{gcd}(6 l-1,6 l-3)=1$ for $1 \leq l \leq y$ $l \equiv 0(\bmod 2)$
$\left(\right.$ viii) $e=u_{l} u_{l+1}, g c d\left(g\left(u_{l}\right), g\left(u_{l+1}\right)\right)=\operatorname{gcd}(6 l-3,6 l-5)=1 \quad$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(ix) $e=u_{l} u_{l+1}, g c d\left(g\left(u_{l}\right), g\left(u_{l+1}\right)\right)=g c d(6 l-1,6 l+3)=1 \quad$ for $1 \leq l \leq y$
$l \equiv 0(\bmod 2)$
$(\mathrm{x}) e=v_{l} v l+1, g c d\left(g\left(v_{l}\right), g\left(v_{l+1}\right)\right)=\operatorname{gcd}(6 l-3,6 l-1)=1 \quad$ for $1 \leq l \leq y$
$l \equiv 0(\bmod 2)$
(xi) $e=v_{l} v l+1, \operatorname{gcd}\left(g\left(v_{l}\right), g\left(v_{l+1}\right)\right)=\operatorname{gcd}(6 l-1,6 l-3)=1$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(xii) $e=w_{l} w l+1, \operatorname{gcd}\left(g\left(w_{l}\right), g\left(w_{l+1}\right)\right)=g c d(6 l+1,6 l+7)=1$ for $1 \leq l \leq y$

Hence A_{y}^{3} is an odd prime graph .

Figure 2: Arrow graph A_{y}^{3} and its odd prime labeling
Theorem 2.3. A_{y}^{5} is an odd prime graph where $y \geq 5$.

Odd prime labeling for some arrow related graphs

Proof. Let $\mathcal{G}=A_{y}^{5}$ be an arrow graph got by connecting a point v with superior points $P_{5} \times P_{y}$ by 5 new lines.
$\mathcal{V}(\mathcal{G})=\left\{u_{l}, v_{l}, w_{l} / 1 \leq l \leq y\right\} \cup\left\{u_{0}\right\}$
$\mathcal{E}(\mathcal{G})=\left\{u_{l} v_{l}, v_{l} w_{l} / 1 \leq l \leq y\right\} \cup\left\{\left(u_{l} u_{l+1}\right),\left(v_{l} v_{i+1}\right),\left(w_{l} w_{l+1} / 1 \leq l \leq y-1\right\}\right.$
Now $|\mathcal{V}(\mathcal{G})|=5 y+1$ and $|\mathcal{E}(\mathcal{G})|=9 y$
Define a mapping $f: \mathcal{V} \rightarrow O_{y}$ as follows
$g\left(u_{0}\right)=1$
$g\left(u_{l}\right)=6 l-3 \quad$ for $1 \leq l \leq l, l$ is odd
$g\left(u_{l}\right)=6 l-1 \quad$ for $1 \leq l \leq l, l$ is even
$g\left(v_{l}\right)=6 l-1 \quad$ for $1 \leq l \leq l, l$ is odd
$g\left(v_{l}\right)=6 l-3 \quad$ for $1 \leq l \leq l, l$ is even
$g\left(w_{l}\right)=6 l+1 \quad$ for $1 \leq l \leq l$,
Clearly all the point labels are distinct. With this labeling for each $e \in E$ if $\operatorname{gcd}(g(u), g(v))=1$
(i) $e=u_{0} u_{1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(u_{1}\right)\right)=\operatorname{gcd}(1,3)=1$
(ii) $e=u_{0} u_{l+1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(u_{l+1}\right)\right)=\operatorname{gcd}(1,6 l-3)=1 \quad$ for $1 \leq l \leq y$
(iii) $e=u_{l} v_{l}, g c d\left(g\left(u_{l}\right), g\left(v_{l}\right)=\operatorname{gcd}(6 l-3,6 l-1)=1 \quad\right.$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(iv) $e=u_{l} v_{l}, g c d\left(g\left(u_{l}\right), g\left(v_{l}\right)\right)=g c d(6 l-1,6 l-3)=1 \quad$ for $1 \leq l \leq y$ $l \equiv 0(\bmod 2)$
(v) $e=v_{l} w_{l}, g c d\left(g\left(v_{l}\right), g\left(w_{l}\right)\right)=\operatorname{gcd}(6 l-1,6 l+1)=1 \quad$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(vi) $e=v_{l} w_{l}, g c d\left(g\left(v_{l}\right), g\left(w_{l}\right)\right)=\operatorname{gcd}(6 l-3,6 l+1)=1 \quad$ for $1 \leq l \leq y$ $l \equiv 0(\bmod 2)$
(vii) $e=u_{l} u_{l+1}, g c d\left(g\left(u_{l}\right), g\left(u_{l+1}\right)\right)=\operatorname{gcd}(6 l-3,6 l+5)=1$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(viii) $e=u_{l} u_{l+1}, g c d\left(g\left(u_{l}\right), g\left(u_{l+1}\right)\right)=\operatorname{gcd}(6 l-1,6 l-3)=1$ for $1 \leq l \leq y$
$l \equiv 0(\bmod 2)$
(ix) $e=v_{l} v_{l+1}, \operatorname{gcd}\left(g\left(v_{l}\right), g\left(v_{l+1}\right)\right)=\operatorname{gcd}(6 l-1,6 l+3)=1$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(x) $e=v_{i} v_{i+1}, g c d\left(g\left(v_{l}\right), g\left(v_{l+1}\right)\right)=\operatorname{gcd}(6 l-3,6 l+5)=1$ for $1 \leq l \leq y$ $l \equiv 0(\bmod 2)$
(xi) $e=w_{l} w_{l+1}, \operatorname{gcd}\left(g\left(w_{l}\right), g\left(w_{l+1}\right)\right)=\operatorname{gcd}(6 l+1,6 l+7)=1$ for $1 \leq l \leq y$

Hence A_{y}^{5} is an odd prime graph .

G. Gajalakshmi and S. Meena

Figure 3: Arrow graph A_{y}^{5} and its odd prime labeling
Theorem 2.4. $\mathcal{D} A_{y}^{2}$ is an odd prime graph where $y \geq 2$.
Proof. Let $\mathcal{G}=\mathcal{D} A_{y}^{2}$ be a double arrow graph got by connecting two points u, v with superior points from both the ends of $P_{2} \times P_{y}$ by $2+2$ new lines.
Let $\mathcal{V}(\mathcal{G})=\left\{u_{l} v_{l} / 1 \leq l \leq y\right\} \cup\left\{v, v_{0}\right\}$
$\mathcal{E}(\mathcal{G})=\left\{\left(u_{l} u_{l+1}\right),\left(v_{l} v_{l+1}\right), 1 \leq l \leq y-1\right\} \cup\left\{v_{l} u_{l} / 1 \leq l \leq y\right\} \cup\left\{v v_{1}\right\} \cup\left\{v u_{1}\right\}$
$\cup\left\{u_{y} v_{0}\right\} \cup\left\{v_{y} v_{0}\right\}$
Now $|\mathcal{V}(\mathcal{G})|=2 \mathrm{y}+2$ and $|\mathcal{E}(\mathcal{G})|=3 \mathrm{y}+4$
Define a mapping $f: \mathcal{V} \rightarrow O_{2 y}$ as follows
$g(v)=1$
$g\left(u_{i}\right)=4 l-1 \quad$ for $1 \leq l \leq y$
$g\left(v_{i}\right)=4 l+1 \quad$ for $1 \leq l \leq y$
$g\left(v_{0}\right)=4 y+3$
Clearly point labels are distinct.
For every $e=u v \in E$, if $g c d(g(u), g(v))=1$
(i) $e=v u_{1}, \operatorname{gcd}\left(g(v), g\left(u_{1}\right)\right)=\operatorname{gcd}(1,3)=1$
(ii) $e=v v_{1}, \operatorname{gcd}\left(g(v), g\left(v_{1}\right)\right)=\operatorname{gcd}(1,5)=1$
(iii) $e=u_{l} u_{l+1}, g c d\left(g\left(u_{l}\right), g\left(u_{l+1}\right)\right)=\operatorname{gcd}(4 l-1,4 l+3)=1$ for $1 \leq l \leq y-1$
(iv) $e=v_{l} v_{l+1}, g c d\left(g\left(v_{l}\right)\right), g\left(v_{l+1}\right)=g c d(4 l+1,4 l+5)=1$ for $1 \leq l \leq y-1$
(v) $e=v_{l} u_{l}, \operatorname{gcd}\left(g\left(v_{l}\right), g\left(u_{l}\right)\right)=\operatorname{gcd}(4 l+1,4 l-1)=1 \quad$ for $1 \leq l \leq y$
(vi) $e=v_{y} w, g c d\left(g\left(v_{y}\right), g(w)\right)=g c d(4 y+1,4 y+3)=1$
(vii) $e=u_{y} w, g c d\left(g\left(u_{y}\right), g(w)\right)=\operatorname{gcd}(4 y-1,4 y+3)=1$

Hence $\mathcal{D} A_{y}^{2}$ is an odd prime graph.

Figure 4: Arrow graph $\mathcal{D} A_{y}^{2}$ and its odd prime labeling
Theorem 2.5. $\mathcal{D} A_{y}^{3}$ is an odd prime graph where $y \geq 3$.
Proof. Let $\mathcal{D}=\mathcal{D} A_{y}^{3}$ be an arrow graph got by connecting two point set u_{0} and z_{0} with superior pointss from both the ends of $P_{3} \times P_{2}$ by $3+3$ new lines.
$\mathcal{V}(\mathcal{G})=\left\{u_{l}, v_{l}, w_{l}, / 1 \leq l \leq y\right\} \cup\left\{u_{0}\right\} \cup\left\{z_{0}\right\}$
$\mathcal{E}(\mathcal{G})=\left\{u_{l} u_{l+1}, v_{l} v_{l+1}, w_{l} w_{l+1} / 1 \leq l \leq y-1\right\} \cup\left\{w_{l} v_{l}, v_{l} u_{l} / 1 \leq l \leq y\right\} \cup$
$\left\{u_{0} u_{1}, u_{0} v_{1}, u_{0} w_{1}, z_{0} u_{y}, z_{0} v_{y}, z_{0} w_{y}\right\}$
Now $|\mathcal{V}(\mathcal{G})|=3 y+2$ and $|\mathcal{E}(\mathcal{G})|=5 y+3$
Define a mapping $f: \mathcal{V} \rightarrow O_{y}$ as follows
$g\left(u_{0}\right)=1$
$g\left(u_{l}\right)=6 l-3 \quad$ for $1 \leq l \leq y, l$ is odd
$g\left(u_{l}\right)=6 l-1 \quad$ for $1 \leq l \leq y, l$ is even
$g\left(v_{l}\right)=6 l-1 \quad$ for $1 \leq l \leq y, l$ is odd
$g\left(v_{l}\right)=6 l-3 \quad$ for $1 \leq l \leq y, l$ is even
$g\left(w_{l}\right)=6 l+1 \quad$ for $1 \leq l \leq y$
$g\left(z_{0}\right)=6 y+3 \quad$ for $1 \leq i \leq y$
Clearly all the point values are different. With this labeling for each $e \in E$ if
(i) $e=u_{0} u_{1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(u_{1}\right)\right)=\operatorname{gcd}(1,3)=1$
(ii) $e=u_{0} v_{1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(v_{1}\right)\right)=\operatorname{gcd}(1,5)=1$
(iii) $e=u_{0} w_{1}, \operatorname{gcd}\left(g\left(u_{0}\right), g\left(w_{1}\right)=\operatorname{gcd}(1,7)=1\right.$
(iv) $e=u_{l} v_{l}, \operatorname{gcd}\left(g\left(u_{l}\right), g\left(v_{l}\right)\right)=\operatorname{gcd}(6 l-3,6 l-1)=1$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(v) $e=u_{l} v_{l}, g c d\left(g\left(u_{l}\right), g\left(v_{l}\right)\right)=g c d(6 l-1,6 l-3)=1$ for $1 \leq l \leq y \quad l \equiv$ $0(\bmod 2)$;
(vi) $e=v_{l} w_{l}, \operatorname{gcd}\left(g\left(v_{l}\right), g\left(w_{l}\right)\right)=\operatorname{gcd}(6 l-1,6 l+1)=1$ for $1 \leq l \leq y$ $l \not \equiv 0(\bmod 2)$
(vii) $e=v_{l} w_{l}, g c d\left(g\left(v_{l}\right), g\left(w_{l}\right)\right)=\operatorname{gcd}(6 l-3,6 l-1)=1$ for $1 \leq l \leq y$ $l \equiv 0(\bmod 2)$;
(viii) $e=u_{l} u_{l+1}, g c d\left(g\left(u_{l}\right), g\left(u_{l+1}\right)\right)=\operatorname{gcd}(6 l-3,6 l+5)=1$ for $1 \leq l \leq y-1$ $l \not \equiv 0(\bmod 2)$;
(ix) $e=u_{l} u_{l+1}, g c d\left(g\left(u_{l}\right), g\left(u_{l+1}\right)\right)=\operatorname{gcd}(6 l-1,6 l+3)=1$ for $1 \leq l \leq y-1$ $l \equiv 0(\bmod 2)$;
Hence $\mathcal{D} A_{y}^{3}$ is an odd prime graph .

G. Gajalakshmi and S. Meena

Figure 5: Arrow graph $D A_{n}^{3}$ and its odd prime labeling

3 Conclusions

The odd Prime labeling of various classes of graphs such as A_{y}^{2} where $y \in N$, A_{y}^{3}, A_{y}^{5}, where $y \geq 2$ are odd prime graph and double arrow graphs $\mathcal{D} A_{y}^{2}, \mathcal{D} A_{y}^{3}$ are proved. To derive similar results for other graph families is an open area of research.

References

T. Deretsky, S. Lee, and J. Mitchem. On vertex prime labelings of graphs, in graph theory, combinatorics and applications, j. alavi, g. chartrand, o. oellerman, and a. schwenk, eds.,. Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York), 1:359 - 369, 1991.
J. Gallian. A dynamic survey of graph labeling. DS6, 2015.
J.A.Bondy and U .S. R.Murthy. Graph Theory and Applications. (North-Holland), New York, 1976.
V. Kaneria, M. Jariya, and H. Makadia. Graceful of arrow graphs and double arrow graph. Malaya Journal of Math., 3:382-386, 2015.
S. Meena and P. Kavitha. Prime labeling for some butterfly related graphs. International Journal of Mathematical Archive, 5:15-25, 2014.
S. Meena and K. Vaithilingam. Prime labeling for some crown related graphs. International Journal of Scientific \& Technology Research, 2:92-95, 2013.
S. Meena, G. Gajalakshmi, and P. Kavitha. Odd prime labeling for some new classes of graph (communicated). SEAJM, 2021.

Odd prime labeling for some arrow related graphs
U. Prajapati and K. Shah. On odd prime labeling. International journal of Research and Analytical Reviews, 5:284-294, 2018.
A. Tout, A. Dabboucy, and K. Howalla. Prime labeling of graphs. Nat. Acad. Sci letters, 11:365-368, 1982.

[^0]: *Department of Mathematics, Govt, Arts \& Science College, Chidambaram; gaja61904@gmail.com.
 ${ }^{\dagger}$ Department of Mathematics, Govt, Arts \& Science College, Chidambaram 608 102, India; meenasaravanan14@gmail.com.
 ${ }^{1}$ Received on September 15, 2022. Accepted on December 15, 2022. Published on March 20, 2023. DOI: 10.23755/rm.v46i0.1059. ISSN: 1592-7415. eISSN: 2282-8214. ©G. Gajalakshmi et al. This paper is published under the CC-BY licence agreement.

