Some new odd prime graphs

S. Meena*
G. Gajalakshmi ${ }^{\dagger}$

Abstract

For a graph G, a bijection f is called an odd prime labeling, if f from V to $\{1,3,5, \ldots, 2|V|-1\}$ for each edge $u v$ in G the greatest common divisor of the labels of end vertices $(f(u), f(v))$ is one. In this paper we investigate the existence of odd prime labeling of some new classes of graphs and we prove that the graphs such as the $Z-P_{n}$ graph, Fish graph, Umbrella graph, Cocount tree, F-tree, Y-tree and Double Sunflower graph are odd prime graphs.

Keywords: Odd prime graph, $Z-P_{n}$ graph, Fish graph, Umbrella graph,Cocount tree, F-tree, Y-tree, Double Sunflower graph.
2020 AMS subject classifications: $05 \mathrm{C} 78^{1}$

[^0]
S. Meena and G. Gajalakshmi

1 Introduction

In this paper by a graph $G=\langle V(G), E(G)\rangle$ we mean a simple graph. For graph theoretical terminologies we refer J .A.Bondy and U .S. R.Murthy [1976].

A graph labeling is an assignment of integers to the vertices or edges or both subject to some constraints. For entire survey of graph labeling we refer Gallian [2009]. The concept of prime labeling was introduced by Roger Etringer and was studied further by many researchers Deretsky et al. [1991], Tout et al. [1982].Meena and Vaithilingam [2013] proved that crown related graphs are prime graphs. Meena and Naveen [2018] investigated about the prime labeling of graphs related to bicyclic graphs. Prime labeling in the concept of graph operation was discussed by Meena and Kavitha [2015]. The Existence of odd prime labeling for some new classes of graph was discussed by Meena et al. [2021].

The notion of odd prime labeling was introduced by Prajapati and Shah [2018] and they have proved many researchers. We give some families of odd prime graphs and some necessary condition for a graph to be odd prime graph.

Motivated by this study, further studied by in this paper we investigate the existence of odd prime labeling of some new classes of odd prime graphs.

Definition 1.1. Let $G=\langle V(G), E(G)\rangle$ be a graph. A bijection $f: V(G) \rightarrow O_{|V|}$ is called an odd prime labeling if for each edge $u v \in E$, greatest common divisor $\langle f(u), f(v)\rangle$ is1. A graph is called an odd prime graph if its admits odd prime labeling.
Here $O_{|V|}=\{1,3,5, \ldots 2|V|-n\}$
Definition 1.2. $Z-P_{n}$ is a graph obtained from a pair of P_{1} and P_{2} of path of length n in which the $i^{\text {th }}$ vertex of a path P_{1} is joined with $(i+1)^{\text {th }}$ vertex of a path P_{2}.

Definition 1.3. Fish graph is a graph obtained by attaching one of the vertex of K_{3} to any one of the vertex of C_{n}.It is denoted by $C_{n} @ K_{3}$.

Definition 1.4. For any integers $m>2, n>1$.An umbrella graph $U(m, n)$ is the graph obtained by identifying the end vertex of path P_{n} with the central vertex of a Fan graph F_{m}.

Definition 1.5. Coconut tree graph is obtained by identifying the central vertex of $K_{1, m}$ with a pendant vertex of the path P_{n}.

Definition 1.6. F - tree on $n+2$ vertices, denoted by F_{n} is obtained from a path P_{n} by attaching exactly two pendant vertices of the $n-1$ and $n^{\text {th }}$ vertex of P_{n}.

Definition 1.7. Y - tree on $n+1$ vertices, denoted by Y_{n} is obtained from a path P_{n} by attaching a pendant vertex of the $n^{\text {th }}$ vertex of P_{n}.

Definition 1.8. A double sunflower graph order n, denoted by $D S F_{n}$, is a graph obtained from the graph $S F_{n}$ by intserting a new vertex C_{i} on each edges $a_{i} a_{i+1}$ and adding edges for each i.

2 Main results

Theorem 2.1. $Z-\left(P_{n}\right)$ is an odd prime graph for all integers $n \geq 3$.
Proof. Let $G=Z-\left(P_{n}\right)$ be the graph
$V(G)=\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$
$E(G)=\left\{\left(u_{i} u_{i+1}\right),\left(v_{i} v_{i+1}\right) / 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i} u_{i+1}\right) / 1 \leq i \leq n-1\right\}$
Now $|V(G)|=2 \mathrm{n}$ and $|E(G)|=3(\mathrm{n}-1)$
Define a labeling $f: V \rightarrow O_{2 n}$ as follows
$f\left(u_{i}\right)=4 \mathrm{i}-5 \quad$ for $1 \leq i \leq n$
$f\left(v_{i}\right)=4 \mathrm{i}+1 \quad$ for $1 \leq i \leq n$
Clearly vertex labels are distinct.
For each $e=u v \in E$, if $\operatorname{gcd}(f(u), f(v))=1$
(i) $e=u_{1} u_{2}, g c d\left(f\left(u_{1}\right), f\left(u_{2}\right)\right)=\operatorname{gcd}(1,3)=1$
(ii) $e=u_{i} u_{i+1}, \operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(4 i-5,4 i-1)=1 \quad$ for $1 \leq i \leq n$
(iii) $e=v_{i} v_{i+1}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(4 i+1,4 i+5)=1 \quad$ for $1 \leq i \leq n$
(iv) $e=v_{i} u_{i+1}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(4 i+1,4 i-5)=1 \quad$ for $1 \leq i \leq n$
(v) $e=v_{n-1} v_{n}, \operatorname{gcd}\left(f\left(v_{n-1}\right)\right), f\left(v_{n}\right)=\operatorname{gcd}(4 n-3,4 n-1)=1$ for $1 \leq i \leq n$

Thus f admits odd prime labeling on $Z-\left(P_{n}\right)$ and hence $Z-\left(P_{n}\right)$ is an odd prime graph.

Figure 1: $Z-\left(P_{n}\right)$ and its odd prime labeling
Theorem 2.2. Fish graph is an odd prime graph for $n \geq 3$.
Proof. Let $G=C_{n} @ K_{3}$ be the graph
$V(G)=\left\{u_{i} / 1 \leq i \leq n\right\} \cup\left\{\left(v_{1} v_{2}\right)\right\}$
$E(G)=\left\{\left(u_{i} u_{i+1}\right) / 1 \leq i \leq n-1\right\} \cup\left\{\left(u_{1} u_{n}\right)\right\} \cup\left\{u_{1} v_{i} / 1 \leq i \leq 2\right\} \cup\left\{\left(v_{1}, v_{2}\right)\right\}$

S. Meena and G. Gajalakshmi

Now $|V(G)|=n+2$ and $|E(G)|=n+3$
Define a labeling $f: V \rightarrow O_{n+2}$ as follows.
$f\left(u_{1}\right)=1$
$f\left(v_{1}\right)=3$
$f\left(v_{2}\right)=5$
$f\left(u_{i}\right)=2 i+3$ for $2 \leq i \leq n$
Clearly vertex labels are distinct.
For each $e=u v \in E$, if $\operatorname{gcd}(f(u), f(v))=1$
(i) $e=v_{1} v_{2}, g c d\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)=\operatorname{gcd}(3,5)=1$
(ii) $e=u_{1} v_{1}, \operatorname{gcd}\left(f\left(u_{1}\right), f\left(v_{1}\right)\right)=\operatorname{gcd}(1,3)=1$ for $1 \leq i \leq n$
(iii) $e=u_{1} v_{2}, g c d\left(f\left(u_{1}\right), f\left(v_{2}\right)\right)=\operatorname{gcd}(1,5)=1$ for $1 \leq i \leq n$
(iv) $e=u_{i} u_{i+1}, \operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)=\operatorname{gcd}(2 i+3,2 i+5)=1\right.$ for $2 \leq i \leq n-1$
(v) $e=u_{1} u_{2}, \operatorname{gcd}\left(f\left(u_{1}\right), f\left(u_{2}\right)=\operatorname{gcd}\left(1, f\left(u_{2}\right)=1\right.\right.$
(vi) $e=u_{1} u_{n}, \operatorname{gcd}\left(f\left(u_{1}\right), f\left(u_{n}\right)=\operatorname{gcd}\left(1, f\left(u_{n}\right)=1\right.\right.$

Thus f admits odd prime labeling on $C_{n} @ K_{3}$ and hence Fish graph is an odd prime graph.

Figure 2: Fish graph $C_{n} @ K_{3}$ and its odd prime labeling
Theorem 2.3. The Umbrella graph $U(m, n)$ is an odd prime graph.
Proof. Consider the umbrella graph $U(m, n)$ with vertex set.
$V(U(m, n))=\left\{x_{i}, y_{i} / 1 \leq i \leq m, 1 \leq i \leq n\right\}$
$E(U(m, n))=\left\{x_{i} x_{i+1} / 1 \leq i \leq m-1\right\}$
$\cup\left\{x_{i} y_{1} / 1 \leq i \leq m\right\} \cup\left\{y_{i} y_{i+1} / 1 \leq i \leq n-1\right\}$
Now $|V(U(m, n))|=m+n$ and $|E(U(m, n))|=2 m+n-2$
Define $f: V \rightarrow O_{m+n}$ as follows.
$f\left(x_{i}\right)=2 i+1 \quad$ for $1 \leq i \leq m$
$f\left(y_{1}\right)=1$
$f\left(y_{i}\right)=2(i+m)-1 \quad$ for $2 \leq i \leq n$
Clearly vertex labels are distinct. With this labeling for each $e=u v \in E$, if $\operatorname{gcd}(f(u), f(v))=1$.
(i) $e=x_{i} x_{i+1}, \operatorname{gcd}\left(f\left(x_{i}\right), f\left(x_{i+1}\right)\right)=\operatorname{gcd}(2 i+1,2 i+3)=1 \quad$ for $1 \leq i \leq m-1$
(ii) $e=x_{i} y_{1}, \operatorname{gcd}\left(f\left(x_{i}\right), f\left(y_{1}\right)\right)=\operatorname{gcd}(2 i+1,1)=1 \quad$ for $1 \leq i \leq m$
(iii) $e=y_{1} y_{2}, \operatorname{gcd}\left(f\left(y_{1}\right), f\left(y_{2}\right)\right)=\operatorname{gcd}(1,2 m+3)=1$
(iv) $e=y_{i} y_{i+1}, g c d\left(f\left(y_{i}\right), f\left(y_{i+1}\right)=\operatorname{gcd}(2(i+m)-1,2(i+m)+1)=1\right.$ for $2 \leq i \leq n-1$
as they are consecutive odd integers.
This f is a odd prime labeling on $U(m, n)$ and hence it is an odd prime graph.

Figure 3: $U(m, n)$ and its odd prime labeling
Theorem 2.4. Cocount tree $C T(m, n)$ is an odd prime graph.
Proof. $V(G)=\left\{u_{i}, v_{i} / 1 \leq i \leq m, 1 \leq i \leq n\right\}$ and edge set
$E(G)=\left\{u_{i} v_{1} / 1 \leq i \leq m\right\} \cup\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\}$
Now $|V(C T(m, n))|=m+n$ and $|E(C T(m, n))|=m+n-1$
Define a labeling $f: V(G) \rightarrow\{1,3,5, \ldots .2 m+2 n-1\}$ as follows
$f\left(u_{i}\right)=2(n+i)-1$ for $1 \leq i \leq m$
$f\left(v_{i}\right)=2 i-1 \quad$ for $1 \leq i \leq n$
Clearly vertex labels are distinct.
For each $e=u v \in E$, if $\operatorname{gcd}(f(u), f(v))=1$
(i) $e=u_{i} v_{1}, \operatorname{gcd}\left(f\left(u_{i}\right), f\left(v_{1}\right)\right)=\operatorname{gcd}(2(n+1)-1,1)=1 \quad$ for $1 \leq i \leq n$;
(ii) $e=v_{i} v_{i+1}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(2 i-1,2 i+1)=1 \quad$ for $1 \leq j \leq m-1$.

Thus f admits odd prime labeling on $C T(m, n)$ and hence $C T(m, n)$ is an odd prime graph.

S. Meena and G. Gajalakshmi

Figure 4: $C T(m, n)$ and its odd prime labeling
Theorem 2.5. Let G be the graph obtained by identifying a pendant vertex of P_{m} with a leaf of $K_{1, n}$ then G is an odd prime graph for all m and n.

Proof. $V(G)=\left\{u, u_{i}, v_{j} / 1 \leq i \leq n, 2 \leq i \leq m\right\}$ and the edge set $E(G)=\left\{u v_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{j} v_{j+1} / 2 \leq j \leq m-1\right\} \cup\left\{u v_{2}\right\}$
Here $u=v_{1}$
Now $|V(G)|=\mathrm{m}+\mathrm{n}$ and $|E(G)|=m+n-1$
Define a labeling $f: V(G) \rightarrow\{1,3,5, \ldots .2 m+2 n-1\}$ as follows
$f(u)=1$
$f\left(u_{i}\right)=2 i+1 \quad$ for $1 \leq i \leq n$
$f\left(v_{i}\right)=2(n+i)-1$ for $2 \leq i \leq n$
Clearly the vertex labels are distinct.
For each $e=u v \in E$ if $g c d(f(u), f(v))=1$
(i) $e=u u_{i}, g c d\left(f(u), f\left(u_{i}\right)\right)=\operatorname{gcd}(1,2 i+1)=1 \quad$ for $1 \leq i \leq n$;
(ii) $e=u v_{2}, g c d\left(f(u), f\left(v_{2}\right)\right)=\operatorname{gcd}(1,2 n+3)=1$ for $1 \leq i \leq n$;
(iii) $e=v_{i} v_{i+1}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(2(n+i)-1,2(i+n)+1)=1$ for $2 \leq$ $i \leq n$;
Thus f admits odd prime labeling on G and hence G is an odd prime graph.

Figure 5: G and its odd prime labeling
Theorem 2.6. F - tree $F P_{n} n \geq 3$ is an odd prime graph.
Proof. Let $V(G)=\left\{u, v, v_{i}, / 1 \leq i \leq n-1\right\}$
$E(G)=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u v_{2}, v v_{1}\right\}$
be the vertex set and edge set of $F P_{n}$
Now $\left|V\left(F P_{n}\right)\right|=n+2$ and $\left|E\left(F P_{n}\right)\right|=n+1$
Define a labeling $f: V(G) \rightarrow\{1,3,5, \ldots .2 n+3\}$ as follows
$f(u)=3$
$f(v)=1$
$f\left(v_{i}\right)=2 \mathbf{i}+3$ for $1 \leq i \leq n$
Clearly vertex labels are distinct.
For each $e=u v \in E$ if $\operatorname{gcd}(f(u), f(v))=1$
(i) $e=v v_{1}, g c d\left(f(v), f\left(v_{1}\right)\right)=\operatorname{gcd}(1,5)=1$
(ii) $e=u v_{2}, g c d\left(f(u), f\left(v_{2}\right)\right)=\operatorname{gcd}(3,7)=1$
(iii) $e=v_{i} v_{i+1}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(2 i+3,2 i+5)=1$

Thus f admits odd prime labeling on $F P_{n}$ and hence F - tree $F P_{n}$ is an odd prime graph.

Figure 6: $F P_{n}$ and its odd prime labeling
Theorem 2.7. Y-tree is an odd prime graph.
Proof. Let $V(G)=\left\{u v_{i}, / 1 \leq i \leq n\right\}$
$E(G)=\left\{v_{i} v_{i+1}, v_{n-1} u / 1 \leq i \leq n-1\right\}$ be the vertex set and edge set of y-tree Now $|V(G)|=n+1$ and $|E(G)|=n$

S. Meena and G. Gajalakshmi

Define a labeling $f: V(G) \rightarrow\{1,3,5, \ldots .2 n+1\}$ as follows
$f(u)=2 \mathrm{n}+1$
$f\left(v_{i}\right)=2 \mathrm{i}-1$ for $1 \leq i \leq n$
Clearly vertex labels are distinct.
For each $e=u v \in E$ if $\operatorname{gcd}(f(u), f(v))=1$
(i) $e=u v_{n-1}, g c d\left(f(u), f\left(v_{n-1}\right)\right)=g c d(2 n+1,2 n-1)=1$
(iii) $e=v_{i} v_{i+1}, \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(2 i-1,, 2 i+1)=1$ for $1 \leq i \leq n-1$

Thus f admits odd prime labeling on Y-tree and hence Y - tree is an odd prime graph.

Figure 7: Y-tree and its odd prime labeling

Theorem 2.8. For any natural numbers $k \geq 3$ graph $D S F_{n}$ is an odd prime graph.

Proof. The vertex set and edge set of $D S F_{n}$ of order K respectively are
$V\left(D S F_{n}\right)=\left\{l_{i}, m_{i}, n_{i} / 1 \leq i \leq k\right\}$
$E\left(D S F_{n}\right)=\left\{l_{i} m_{i}, l_{i} n_{i}, m_{i} n_{i}, m_{i} l_{i+1}, l_{k} m_{k}, l_{k} n_{n}, l_{1} n_{k} / 1 \leq i \leq n-1\right\}$
Now $\left|V\left(D S F_{n}\right)\right|=3 k$ and $\left|E\left(D S F_{n}\right)\right|=5 k$
Define a labeling $f: V\left(D S F_{n}\right) \rightarrow\{1,3,5, \ldots .6 n-1\}$ as follows
$f\left(l_{i}\right)=6 i-5 \quad$ for $1 \leq i \leq n$
$f\left(m_{i}\right)=6 i-3$ for $1 \leq i \leq n$
$f\left(n_{i}\right)=6 i-1$ for $1 \leq i \leq n$
Clearly all the vertex labels are distinct. With this labeling for each $e=u v \in E$ if $\operatorname{gcd}(f(u), f(v))=1$
(i) $e=l_{i} m_{i}, g c d\left(f\left(l_{i}\right), f\left(m_{i}\right)\right)=\operatorname{gcd}(6 i-5,6 i-3)=1 \quad$ for $1 \leq i \leq n$
(ii) $e=l_{i} n_{i}, \operatorname{gcd}\left(f\left(l_{i}\right), f\left(n_{i}\right)\right)=\operatorname{gcd}(6 i-5,6 i-1)=1 \quad$ for $1 \leq i \leq n$
(iii) $e=m_{i} n_{i}, \operatorname{gcd}\left(f\left(m_{i}\right), f\left(n_{i}\right)=\operatorname{gcd}(6 i-3,6 i-1)=1 \quad\right.$ for $1 \leq i \leq n$
(iv) $e=m_{i} l_{i+1}, \operatorname{gcd}\left(f\left(m_{i}\right), f\left(l_{i+1}\right)\right)=\operatorname{gcd}(6 i-3,6 i-5)=1$ for $1 \leq i \leq n-1$
(v) $e=m_{k} l_{1}, \operatorname{gcd}\left(f\left(m_{k}\right), f\left(l_{1}\right)\right)=\operatorname{gcd}\left(f\left(m_{k}\right), f\left(l_{1}\right)\right)=1$

Thus f is a odd prime labeling on $D S F_{n}$ and hence $D S F_{n}$ is an odd prime graph.

Figure 8: $D S F_{n}$ and its odd prime labeling

3 Conclusions

Odd Prime labelings of various classes of graphs such as $Z-P_{n}$ graph, Fish graph, Umbrella graph, Cocount tree, F-tree, Y-tree and Double Sunflower graph are investigated. To derive similar results for other graph families is an open area of research.

References

T. Deretsky, S. Lee, and J. Mitchem. On vertex prime labelings of graphs, in graph theory, combinatorics and applications, j. alavi, g. chartrand, o. oellerman, and a. schwenk, eds.,. Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York), 1:359 - 369, 1991.
J. Gallian. A dynamic survey of graph labeling. DS6, 2009.

J .A.Bondy and U .S. R.Murthy. Graph Theory and Applications. (NorthHolland), New York, 1976.

S. Meena and G. Gajalakshmi

S. Meena and P. Kavitha. Prime labeling of duplication of some star related graphs. International Journal of Mathematics Trends and Technology, 23:26 - 32, 2015.
S. Meena and J. Naveen. On prime vertex labeling of corona product of bicyclic graphs. Journal of Computer and Mathematical Sciences, 9:1512-1526, 2018.
S. Meena and K. Vaithilingam. Prime labeling for some crown related graphs. International Journal of Scientific \& Technology Research, 2:92-95, 2013.
S. Meena, P. Kavitha, and G. Gajalakshmi. Prime labeling of h super subdivision of cycle related graph. AIP Conference Proceedings (communicated).
S. Meena, G. Gajalakshmi, and P. Kavitha. Odd prime labeling for some new classes of graph (communicated). SEAJM, 2021.
U. Prajapati and K. Shah. On odd prime labeling. International journal of Research and Analytical Reviews, 5:284-294, 2018.
A. Tout, A. Dabboucy, and K. Howalla. Prime labeling of graphs. Nat. Acad. Sci letters, 11:365-368, 1982.

[^0]: *Department Of Mathematics, Govt, Arts \& Science College, Chidambaram 608 102, India; meenasaravanan14@gmail.com.
 ${ }^{\dagger}$ Department Of Mathematics, Govt, Arts \& Science College, Chidambaram; gaja61904@gmail.com.
 ${ }^{1}$ Received on September 15, 2022. Accepted on December 15, 2022. Published on March 20, 2023. DOI: $10.23755 / \mathrm{rm} . \mathrm{v} 46 \mathrm{i} 0.1056$. ISSN: 1592-7415. eISSN: 2282-8214. ©S. Meena et al. This paper is published under the CC-BY licence agreement.

