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Abstract

Eccentricity of a vertex vis a maximum among the shortest distances
between the vertex v and all other vertices. A set Dis called eccentric
dominating if every vertex in its compliment has an eccentric ver-
tex in the set D.A dominating set is transversal if the intersection
of the set with all the minimum dominating sets is non-empty. In-
spired by both the concepts we introduce transversal eccentric domi-
nating(TED) set. An eccentric dominating set D is called a TED-set
if it intersects with every minimum eccentric dominating set D’. We
find the TED-number γted (G) of family of graphs, theorems related
to their properties are stated and proved.
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1 Introduction

The classical queens problem in chess or the study of networks in electronics
domination finds its application everywhere and plays a pivotal role in modern
day science and technology. Domination is a vast arena in graph theory which is
just not limited to adjacency between vertices belonging to the dominating set and
its compliment. For a graph G(V,E), a set S ⊆ V is said to be a dominating set,
if every vertex in V-S is adjacent to some vertex in S. The domination number γd
(G) of a graph G equals the minimum cardinality of an dominating set. There are
many different invariants of domination. The concept of transversal domination in
graphs was introduced by Nayaka S.R, Anwar Alwardi and Puttaswamy in 2018.
A dominating set Dwhich intersects every minimum dominating set in G is called
a transversal dominating set. The minimum cardinality of a transversal dominat-
ing set is called the transversal domination number denoted by γtd (G). Geodesic
being the shortest distance between any two vertices. The concept of shortest path
has always intrigued the researchers in graph theory, operation research, computer
science and other fields.There are many different types of distances in graphs,
one such distance is eccentricity. The concept of eccentricity incorporated with a
dominating set yields an eccentric dominating set.Eccentric domination was intro-
duced by T. N. Janakiraman et al in 2010. The eccentricitye (v) of v is the distance
to a vertex farthest from v. Thus, e(v) = maxd(u, v) : u ∈ V . For a vertex v, each
vertex at a distancee (v) from v is an eccentric vertex. Eccentric set of a vertex v
is defined as E(v) = u ∈ (G) : d(u, v) = e(v). A set D ⊆ V (G) is an eccentric
dominating set if D is a dominating set of G and for every v ∈ V − D, there
exists at least one eccentric vertex of v in D. The eccentric domination number
γed (G) of a graph G equals the minimum cardinality of an eccentric dominating
set. The main motive of this paper is to hybrid two different types of dominations
and define a new domination variant. Inspired by this idea we combine transver-
sal domination with eccentric domination. In this paper, we introduce transversal
eccentric domination and calculate the TED-number of different graphs. Results
related to TED-number of family of complete, star, path, cycle and wheel graphs
are discussed. The upper TED-set, upper TED-number, lower TED-set and lower
TED-number of different standard graphs are tabulated. For undefined terminolo-
gies refer the book graph theory by frank harary.

2 Transversal eccentric domination in graphs

Definition 2.1. An eccentric dominating(ED) set S ⊆ V (G) is called a transver-
sal eccentric dominating set(TED-set) if it intersects with every minimum ED-set
D′ ie S

⋂
D′ 6= ∅.
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Definition 2.2. A TED-set S is called a minimal TED-set if no proper subset of S
is TED-set.

Definition 2.3. The TED-number γted(G) of a graphG is the minimum cardinality
among the minimal TED-sets of G.

Definition 2.4. The upper TED-number Γted(G) of a graph G is the maximum
cardinality among the minimal TED-sets of G.

Example 2.1. .

℘2

℘3 ℘4

℘1

℘5 ℘6

Figure 2.1: Graph G

Consider the above example where the graph G consists of 6 vertices and 9
edges.
(i) The dominating sets are {℘1, ℘2}, {℘1, ℘3}, {℘1, ℘4}, {℘2, ℘5}, {℘2, ℘6},
{℘3, ℘5}, {℘3, ℘6}, {℘4, ℘5}, {℘4, ℘6}.
(ii) The minimum ED-sets are {℘1, ℘2}, {℘3, ℘5}, {℘4, ℘6}.
(iii) The TED-sets are {℘1, ℘5, ℘6}, {℘2, ℘3, ℘4}.

Observation 2.1. For any graph G,

1. γ(G) ≤ γed(G) ≤ γted(G) ≤ Γted(G).

2. γted(G) ≤ n and Γted(G) ≤ n.

3. V (G) is also a TED-set.

Theorem 2.1. For complete graph Kn, γted(Kn) = n, ∀n ≥ 2.

Proof: Let V (Kn) = {℘1, ℘2, . . . ℘n}. Since deg(℘i) = n− 1 ∀℘i ∈ V (Kn)
the eccentric vertex of ℘i is given by E(℘i) = V − {℘i} and every single vertex
dominates all other vertices. Since every vertex ℘i ∈ V forms an ED-set of the
form D1 = {℘1}, D2 = {℘2}, D3 = {℘3}, . . . Dn = {℘n}. The vertex set V is
the only set which forms a TED-set, since V (Kn)∩Di 6= ∅where i = 1, 2, 3, . . . n
and Di is any ED-set.
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Theorem 2.2. For star graph Sn, γted(Sn) = 2 ∀ n ≥ 3.

Proof: Let V (Sn) = {℘1, . . . ℘i, . . . ℘n} where deg(℘i) = n − 1 where ℘i is
the central vertex and deg(℘j) = 1 where ℘j is a pendant vertex of star graph Sn.
E(℘i) = V − {℘i} and E(℘j) = V − {℘i, ℘j}. The central vertex ℘i forms a
dominating set {℘i} but it is not an ED-set for any ℘j ∈ V − D, E(℘j) /∈ D.
But D = {℘i, ℘j} forms an ED-set, then for S3 we have 3 ED-sets which forms
the minimum ED-sets and for any star graph Sn, ∀ n ≥ 4, we have (n − 1) ED-
sets which forms the minimum ED-sets D1 = {℘i, ℘1}, D2 = {℘i, ℘2}, D3 =
{℘i, ℘3}, . . . Dn = {℘i, ℘n}. Any minimum ED-set D = {℘i, ℘j} also forms a
TED-set, since D ∩ {℘i, ℘j} = {℘i} 6= ∅. Therefore γted(Sn) = 2 ∀n ≥ 3.

Theorem 2.3. For path graph Pn, γted(Pn) = bn+1
3
c+ 1, ∀ n ≥ 2.

Proof: Let the vertices of Pn be given by V (Pn) = {℘1, ℘2, . . . ℘n}. Every
path Pn contains two pendant vertices {℘1, ℘n}. For any vertex ℘i ∈ V (Pn) the
eccentric vertex of ℘i is E(℘i) = {℘1} or {℘n} where n is even. If n is odd then
E(℘i) = {℘1} or {℘n} but if ℘i is a vertex equidistant from both the pendant
vertices then ℘i = ℘n+1

2
, E(℘n+1

2
) = {℘1, ℘n}. For any path Pn, dn

3
e set of

vertices can dominate all the vertices of Pn. Similarly a set D whose cardinality
is bn+1

3
c + 1 will eccentric dominate all the vertices of Pn. By the definition of

TED-set, a set D should intersect all the minimum ED-set. An ED-set D will
intersect all the minimum ED-sets. Therefore every minimum ED-set is a TED-
set. Therefore γed(Pn) = γted = bn+1

3
c+ 1

Theorem 2.4. For cycle graph Cn where n ≥ 3

γted(Cn) =

{
5, for n = 8

dn+1
3
e+ 1, otherwise

Proof: Case(i): For C8, the set D = {℘i, ℘j, ℘k, ℘l} whose cardinality is
dn+1

3
e + 1 = 4 does not form a TED-set which is an exception from case(i).

Adding a vertex to D is of the form {℘i, ℘j, ℘k, ℘l, ℘m} whose cardinality is five
will increasing the cardinality of D. Here every vertex in V (C8) − D has an ec-
centric vertex in D and D is also dominating set which intersects all the minimum
dominating sets of C8. Therefore γted(C8) = 5.
Case(ii): For a cycle graph Cn, if n is even and n 6= 8 then every vertex ℘i ∈
V (Cn) has a unique eccentric vertex ie, E(℘i) = {℘j |℘j ∈ V (Cn)}. E(℘i) is
at a distance of n

2
edges from ℘i for an even cycle. If n is odd then every vertex

℘i has two eccentric vertices. E(℘i) = {℘j, ℘k |℘j, ℘k ∈ V (Cn)}. E(℘i) is at
a distance of bn

2
c edges from ℘i for odd cycle. Every single vertex ℘i can domi-

nate itself and two vertices adjacent to it. Therefore for any cycle Cn, dn
3
e set of

vertices forms the dominating set. Here we see that any set D = {℘1, ℘2, . . . ℘i}
which has the cardinality of the form dn+1

3
e + 1 forms a dominating set as well
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as an ED-set. Since D whose cardinality is dn+1
3
e + 1 intersects every minimum

ED-set of cardinality γed(Cn) =

{
n
2
, if n is even

dn
3
e or dn

3
e+ 1, if n is odd

D forms a TED-set. Hence γted(Cn) = dn+1
3
e+ 1.

Theorem 2.5. For wheel graph Wn where n ≥ 4, a ≥ 1

γted(Wn) =

{
3, for n = (6a− 1), (6a) or (6a+ 1)
4, for n = (6a− 2), (6a+ 2) or (6a+ 3)

Proof: Case(i): If n = 6a − 1, 6a and 6a + 1, the wheel graphs are of the
form W5,W6,W7,W11,W12,W13,W17,W18,W19, . . .W6a−1,W6a,W6a+1. Let ℘c
be the central vertex of wheel graph, deg(℘c) = n − 1. Therefore ℘c has n − 1
eccentric vertices, |E(℘c)| = n−1. Let ℘i be the non-central vertex, deg(℘i) = 3.
Then closed neighbourhood of ℘i ie, N [℘i] = 4. Therefore ℘i has n− 4 eccentric
vertices, |E(℘i)| = n− 4. D = {℘c} forms the only dominating set of cardinality
one, but not an ED-set. Other than W5 and W7 every other wheel graph has an
ED-set D = {℘c, ℘x, ℘y} where ℘c, ℘x, ℘y ∈ V (Wn) forms an ED-set and for
every v ∈ V (Wn)−D there exists a vertex ℘c, ℘x or ℘y in D such that E(v) = ℘c
or ℘x or ℘y and D = {℘c, ℘x, ℘y} forms a TED-set, since D intersects every
minimum ED-set. Therefore |D| = 3, γted(Wn) = 3 for n = 6a− 1, 6a, 6a+ 1.
Case(ii): If (6a− 2), (6a+ 2) and (6a+ 3), then the wheel graphs are of the form
W4,W8,W9,W10,W14,W15,W16, . . .W6a−2,W6a+2,W6a+3. For W4, γted(W4) =
4. SinceW4 isK4 which is complete graph (by theorem-2.1). Similar to case(i), ℘c
is the central vertex of wheel graph and ℘j is the non-central vertex, |E(℘c)| = n−
1 and |E(℘i)| = n−4. Similar to case(i) the only unique dominating setD = {℘c}
whose cardinality is one does not form an ED-set. But a set D = {℘c, ℘x, ℘y}
containing three vertices forms an ED-set, since every vertex ℘i ∈ V (Wn) − D
has an eccentric vertex in D ie, E(℘i) = ℘c, ℘x or ℘y. But D = {℘c, ℘x, ℘y}
whose cardinality is three does not form a TED-set since it does not intersect
every minimum ED-set. But an addition of vertex ℘z to the same set gives us a set
D = {℘c, ℘x, ℘y, ℘z} whose cardinality is four forms an ED-set and it intersects
every minimum ED-set of cardinality three, thus becoming TED-set. Therefore
γted(Wn) = 4 for n = (6a− 2), (6a+ 2) and (6a+ 3).

Proposition 2.1. For any graph G,

1. γted(G) ≥ b (2n−q)
4
c.

2. γted(G) ≥ diam(G)+1
3

.

3. γted(G) ≤ bp ∆(G)
δ
c.
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4. γted(G) ≥ d p
1+∆(G)

e.

5. γted(G) ≤ dn+ ∆(G)−
√

2qe.

The transversal eccentric dominating set, γted(G), upper transversal ec-
centric dominating set and Γted(G) of standard graphs are tabulated.

Graph Figure
D - Minimum

TED set.
|D| = γted(G)

γted(G)
S - Upper
TED set.
|S| = Γted(G)

Γted(G)

Diamond
graph

℘1

℘4

℘2 ℘3 {℘2, ℘3}. 2 {℘2, ℘3}. 2

Tetrahedral
graph ℘2

℘1

℘3 ℘4

{℘1, ℘2, ℘3, ℘4}. 4 {℘1, ℘2, ℘3, ℘4}. 4

Claw
graph

℘2 ℘3

℘1

℘4

{℘1, ℘3},
{℘2, ℘3},
{℘3, ℘4}.

2 {℘1, ℘2, ℘4}. 3

(2,3)-King
graph

℘2 ℘3℘1

℘5℘4 ℘6

{℘1, ℘2, ℘4},
{℘1, ℘3, ℘4},
{℘1, ℘3, ℘6},
{℘1, ℘4, ℘5},
{℘1, ℘4, ℘6},
{℘2, ℘3, ℘6},
{℘3, ℘4, ℘6},
{℘3, ℘5, ℘6}.

3

{℘1, ℘2, ℘4},
{℘1, ℘3, ℘4},
{℘1, ℘3, ℘6},
{℘1, ℘4, ℘5},
{℘1, ℘4, ℘6},
{℘2, ℘3, ℘6},
{℘3, ℘4, ℘6},
{℘3, ℘5, ℘6}.

3

Antenna
graph

℘2

℘1

℘3 ℘4

℘5 ℘6

{℘1, ℘2, ℘5},
{℘1, ℘2, ℘6},
{℘1, ℘3, ℘5},
{℘1, ℘3, ℘6},
{℘1, ℘4, ℘5},
{℘1, ℘4, ℘6},
{℘1, ℘5, ℘6},
{℘2, ℘5, ℘6}.

3 {℘1, ℘2, ℘3, ℘4}. 4
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Graph Figure
D - Minimum

TED set.
|D| = γted(G)

γted(G)
S - Upper
TED set.
|S| = Γted(G)

Γted(G)

Paw
graph

℘2
℘3

℘1

℘4

{℘1, ℘3},
{℘2, ℘3}
{℘3, ℘4}.

2 {℘1, ℘2, ℘4}. 3

Bull
graph

℘3 ℘4

℘5

℘2℘1 {℘1, ℘2, ℘3},
{℘1, ℘2, ℘4},
{℘1, ℘2, ℘5},
{℘1, ℘3, ℘4},
{℘2, ℘3, ℘4}.

3

{℘1, ℘2, ℘3},
{℘1, ℘2, ℘4},
{℘1, ℘2, ℘5},
{℘1, ℘3, ℘4},
{℘2, ℘3, ℘4}.

3

Butterfly
graph

℘3

℘2

℘5

℘1

℘4

{℘1, ℘2, ℘4},
{℘1, ℘2, ℘5},
{℘1, ℘3, ℘4},
{℘1, ℘4, ℘5},
{℘2, ℘3, ℘5},
{℘2, ℘4, ℘5}.

3

{℘1, ℘2, ℘4},
{℘1, ℘2, ℘5},
{℘1, ℘3, ℘4},
{℘1, ℘4, ℘5},
{℘2, ℘3, ℘5},
{℘2, ℘4, ℘5}.

3

Banner
graph

℘3 ℘4

℘1 ℘2

℘5

{℘2, ℘5}. 2 {℘2, ℘5}. 2

Fork
graph

℘2 ℘3

℘1

℘4 ℘5

{℘1, ℘2, ℘5},
{℘1, ℘4, ℘5},
{℘2, ℘3, ℘5},
{℘2, ℘4, ℘5}.

3
{℘1, ℘2, ℘3, ℘4},
{℘1, ℘3, ℘4, ℘5}.

4

(3,2)-Tadpole
graph

℘2 ℘3
℘4

℘1

℘5

{℘1, ℘4},
{℘4, ℘5}.

2 {℘1, ℘2, ℘3, ℘5}. 4

Kite graph
℘3

℘4

℘1

℘5

℘2 {℘2, ℘4}. 2 {℘1, ℘2, ℘3, ℘5}. 4

(4,1)-Lollipop
graph

℘3
℘4

℘1

℘5

℘2

{℘1, ℘4},
{℘2, ℘4},
{℘3, ℘4},
{℘4, ℘5}.

2 {℘1, ℘2, ℘3, ℘5}. 4

30



Riyaz Ur Rehman A and A Mohamed Ismayil

Graph Figure
D - Minimum

TED set.
|D| = γted(G)

γted(G)
S - Upper
TED set.
|S| = Γted(G)

Γted(G)

House
graph ℘2 ℘3

℘1

℘4 ℘5

{℘1, ℘2, ℘3},
{℘1, ℘4, ℘5},
{℘2, ℘3, ℘4},
{℘2, ℘3, ℘5},
{℘2, ℘4, ℘5},
{℘3, ℘4, ℘5}.

3

{℘1, ℘2, ℘3},
{℘1, ℘4, ℘5},
{℘2, ℘3, ℘4},
{℘2, ℘3, ℘5},
{℘2, ℘4, ℘5},
{℘3, ℘4, ℘5}.

3

House X
graph ℘2 ℘3

℘1

℘4 ℘5

{℘1, ℘2},
{℘1, ℘3},
{℘1, ℘4},
{℘1, ℘5}.

2 {℘2, ℘3, ℘4, ℘5}. 4

Gem
graph

℘1 ℘2

℘5

℘3 ℘4

{℘1, ℘2, ℘3},
{℘1, ℘2, ℘4},
{℘1, ℘3, ℘4},
{℘1, ℘3, ℘5}
{℘2, ℘3, ℘4}
{℘2, ℘4, ℘5}.

3

{℘1, ℘2, ℘3},
{℘1, ℘2, ℘4},
{℘1, ℘3, ℘4},
{℘1, ℘3, ℘5},
{℘2, ℘3, ℘4},
{℘2, ℘4, ℘5}.

3

Dart
graph ℘3

℘4

℘1

℘5

℘2
{℘2, ℘3},
{℘2, ℘4}.

2
{℘1, ℘2, ℘5},
{℘1, ℘3, ℘4},
{℘3, ℘4, ℘5}.

3

Cricket
graph ℘4 ℘5℘3

℘1 ℘2

{℘3, ℘4},
{℘4, ℘5}.

2
{℘1, ℘2, ℘4},
{℘1, ℘3, ℘5},
{℘2, ℘3, ℘5}.

3

Pentatope
graph

℘1

℘4 ℘5

℘2 ℘3 {℘1, ℘2, ℘3, ℘4, ℘5}. 5 {℘1, ℘2, ℘3, ℘4, ℘5}. 5

Johnson
solid

skeleton 12
graph

℘2

℘1

℘3

℘4 ℘5

{℘1, ℘3}. 2
{℘1, ℘2, ℘4, ℘5},
{℘2, ℘3, ℘4, ℘5}.

4

Cross
graph

℘3

℘1

℘2 ℘4

℘5

℘6

{℘1, ℘3, ℘6},
{℘2, ℘3, ℘6},
{℘3, ℘4, ℘6},
{℘3, ℘5, ℘6}.

3
{℘1, ℘2, ℘3, ℘4, ℘5},
{℘1, ℘2, ℘4, ℘5, ℘6}.

5
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Graph Figure
D - Minimum

TED set.
|D| = γted(G)

γted(G)
S - Upper
TED set.
|S| = Γted(G)

Γted(G)

Net
graph ℘5

℘6

℘3 ℘4

℘1 ℘2

{℘1, ℘2, ℘5},
{℘1, ℘2, ℘6},
{℘1, ℘4, ℘6},
{℘2, ℘3, ℘6}.

3
{℘1, ℘3, ℘4, ℘5},
{℘2, ℘3, ℘4, ℘5},
{℘3, ℘4, ℘5, ℘6}.

4

Fish
graph

℘4

℘2

℘5

℘1

℘6

℘3
{℘2, ℘3},
{℘3, ℘5}.

2 {℘1, ℘2, ℘4, ℘5, ℘6}. 5

A
graph

℘3 ℘4

℘1

℘5

℘2

℘6

{℘1, ℘5, ℘6},
{℘2, ℘5, ℘6}.

3
{℘1, ℘2, ℘3, ℘4, ℘5},
{℘1, ℘2, ℘3, ℘4, ℘6}.

5

R
graph

℘3 ℘4

℘1

℘5

℘2

℘6

{℘1, ℘2, ℘3},
{℘2, ℘3, ℘4},
{℘2, ℘3, ℘5},
{℘2, ℘3, ℘6},
{℘2, ℘5, ℘6}.

3 {℘1, ℘3, ℘4, ℘5, ℘6}. 5

4-polynomial
graph

℘2 ℘3℘1

℘5℘4 ℘6

{℘3, ℘4}. 2
{℘1, ℘2, ℘3, ℘5, ℘6},
{℘1, ℘2, ℘4, ℘5, ℘6}.

5

Octahedral
graph

℘4

℘3℘2

℘1

℘5 ℘6

{℘1, ℘2, ℘3, ℘4},
{℘1, ℘2, ℘3, ℘5},
{℘1, ℘2, ℘3, ℘6},
{℘1, ℘2, ℘4, ℘5},
{℘1, ℘2, ℘5, ℘6},
{℘1, ℘3, ℘4, ℘6},
{℘1, ℘3, ℘5, ℘6},
{℘1, ℘4, ℘5, ℘6},
{℘2, ℘3, ℘4, ℘5},
{℘2, ℘3, ℘4, ℘6},
{℘2, ℘4, ℘5, ℘6},
{℘3, ℘4, ℘5, ℘6}.

4

{℘1, ℘2, ℘3, ℘4},
{℘1, ℘2, ℘3, ℘5},
{℘1, ℘2, ℘3, ℘6},
{℘1, ℘2, ℘4, ℘5},
{℘1, ℘2, ℘5, ℘6},
{℘1, ℘3, ℘4, ℘6},
{℘1, ℘3, ℘5, ℘6},
{℘1, ℘4, ℘5, ℘6},
{℘2, ℘3, ℘4, ℘5},
{℘2, ℘3, ℘4, ℘6},
{℘2, ℘4, ℘5, ℘6},
{℘3, ℘4, ℘5, ℘6}.

4

3 Conclusions
In this paper TED-set of a graph is defined. Theorems related to find the TED-

number of different family of graphs are stated and proved. The upper and lower
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Graph Figure
D - Minimum

TED set.
|D| = γted(G)

γted(G)
S - Upper
TED set.
|S| = Γted(G)

Γted(G)

3-prism
graph

℘2

℘3 ℘4

℘1

℘5 ℘6

{℘1, ℘5, ℘6},
{℘2, ℘3, ℘4}.

3

{℘1, ℘2, ℘3, ℘6},
{℘1, ℘2, ℘4, ℘5},
{℘1, ℘3, ℘4, ℘5},
{℘1, ℘3, ℘4, ℘6},
{℘2, ℘3, ℘5, ℘6},
{℘2, ℘4, ℘5, ℘6}.

4

TED-number along with their respective sets of different standard graphs are tab-
ulated. In future the comparative study of TED-set with eccentric dominating set
will be done. The properties of a TED-set related to graph operations such as
union, intersection, join and product of graphs will be explored.
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