Forcing vertex square free detour number of a graph

G. Priscilla Pacifica *
K. Christy Rani ${ }^{\dagger}$

Abstract

Let G be a connected graph and S a square free detour basis of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique square free detour basis of S containing T. A forcing subset for S of minimum order is a minimum forcing subset of G . The forcing square free detour number of G is $f d n_{\square f_{u}}(G)=\min \left\{f d n_{\square f_{u}}\left(S_{u}\right)\right\}$, where the minimum is taken over all square free detour bases S in G. In this paper, we introduce the forcing vertex square free detour sets. The general properties satisfied by these forcing subsets are discussed and the forcing square free detour number for a certain class of standard graphs are determined. We show that the two parameters $d n_{\square f_{u}}(G)$ and $f d n_{\square f_{u}}(G)$ satisfy the relationship $0 \leq f d n_{\square f_{u}}(G) \leq d n_{\square f_{u}}(G)$. Also, we prove the existence of a graph G with $f d n_{\square f_{u}}(G)=\alpha$ and $d n_{\square f_{u}}(G)=\beta$, where $0 \leq \alpha \leq \beta$ and $\beta \geq 2$ for some vertex u in G.

 Keywords: forcing square free detour number; forcing vertex square free detour set; forcing vertex square free detour number.2020 AMS subject classifications: $05 \mathrm{C} 12,05 \mathrm{C} 69^{1}$

[^0]G. Priscilla Pacifica and K. Christy Rani

1 Introduction

In a simple connected graph $G=(V, E)$ of order at least two, a longest $x y$ path is called an $x-y$ detour path for any two vertices x and y in G. A set S of vertices of G is a detour set of G if each vertex v of G lies on an $x-y$ detour path for some elements x and y in S. The minimum cardinality of a detour set of G is the detour number of G and is denoted by $d n(G)$. A subset T of a minimum detour set S of G is a forcing detour subset for S if S is the unique detour basis containing T. A forcing detour subset for S of minimum cardinality is a minimum forcing detour subset of S. The forcing detour number $f d n(S)$ of S, is the minimum cardinality of a forcing detour subset for S. The forcing detour number $f d n(G)$ of G, is $\min \{f d n(S)\}$, where the minimum is taken over all detour bases S in G. This notion of forcing detour number was initiated by Chartrand et al. [2003]. From then onwards there have been many relevant studies about the forcing detour concept in the past few decades. The connected detour parameter was defined by Santhakumaran and Athisayanathan [2009]. Also, Santhakumaran and Athisayanathan [2010] focussed on edge of a graph and introduced forcing edge detour number and the forcing weak edge detour number. Further results on connected detour number was studied by Ali and Ali [2019]. Titus and Balakrishnan [2016] concentrated on a vertex of a graph and compiled the findings on forcing vertex detour monophonic number arising from the chordless path. Ramalingam et al. [2016] extended this concept to triangle free and extracted forcing results. The square free detour concept was introduced by Rani and Pacifica [2022]. Though there are several novel forcing parameters, this paper aims at filling some significant research gaps and brings forth the results on the forcing vertex square free detour number of a graph. We determine the bounds for it and compare the relationship with the vertex square free detour number of a graph. These ideas have interesting application in channel assignment problem and in radio technologies. Moreover, this concept can be applied in security based community design. For the basic terminologies we refer to Chartrand et al. [1993].

2 Preliminaries

Theorem 2.1. Let u be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex u (whether u is an end-vertex or not) belongs to every u-square free detour set.
(ii) No cut-vertex of G belongs to any $d n_{\square f_{u}}$-set.

Theorem 2.2. For any vertex u in a non-trivial connected graph G of order $n, 1 \leq$ $d n_{\square f_{u}}(G) \leq n-1$.

Theorem 2.3. Let G be a connected graph.
(i) If G is the complete graph K_{n}, then $d n_{\square f_{u}}(G)=1$ for every vertex u in K_{n}.
(ii) If G is the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$ with partitions X and Y, then

$$
d n_{\square f_{u}}(G)= \begin{cases}m-1 & \text { if } u \in X \\ n-1 & \text { if } u \in Y\end{cases}
$$

(iii) If G is the cycle C_{n}, then $d n_{\square f_{u}}(G)=1$ for every vertex u in C_{n}.
(iv) For a wheel $W_{n}(n \geq 4)$,

$$
d n_{\square f_{u}}\left(W_{n}\right)=\left\{\begin{array}{cl}
\left\lceil\frac{n-1}{3}\right\rceil & \text { if } u \in K_{1} \cdot n \geq 4 \\
2 & \text { if } u \in C_{n-1}, n \geq 6 \\
1 & \text { if } u \in C_{n-1}, 4 \leq n \leq 5
\end{array}\right.
$$

3 Forcing vertex square free detour number of a graph

Even though every connected graph contains a vertex square free detour set, some connected graph may contain several vertex square free detour sets. For each minimum vertex square free detour set S_{u} in a connected graph there is always some subset T of S_{u} that uniquely determines S_{u} as the minimum vertex square free detour set containing T such forcing subsets are considered in this section.

Definition 3.1. Let u be any vertex of a connected graph G and S_{u} be a dn $n_{\square f_{u}}$ -set of G. A subset $F_{u} \subseteq S_{u}$ is called a u-forcing subset for S_{u} if S_{u} is the unique $d n_{\square f_{u}}$-set consisting of F_{u}. The u-forcing subset for S_{u} of minimum cardinality is a minimum u-forcing subset of S_{u}. The forcing u-square free detour number of S_{u}, denoted by $f d n_{\square f_{u}}\left(S_{u}\right)$ is the order of a minimum u-forcing subset for S_{u}. The forcing u-square free detour number of G is $f d n_{\square f_{u}}(G)=\operatorname{minf} d n_{\square f_{u}}\left(S_{u}\right)$ where the minimum is considered over all $d n_{\square f_{u}}$-sets S_{u} in G.

Example 3.1. For the graph G shown in Figure 1, the only $d n_{\square f_{v_{1}}}$-sets are $\left\{v_{2}, v_{4}\right\}$, $\left\{v_{2}, v_{5}\right\},\left\{v_{3}, v_{4}\right\}$ and $\left\{v_{3}, v_{5}\right\}$. Hence $f d n_{\square f_{u}}(G)=2$. Also $d n_{\square f_{u}}(G)=2$ and $f d n_{\square f_{u}}(G)=1$ for $u=v_{3}$ and v_{4} in G. Moreover v_{5} and v_{4} are the unique vertex square free detour sets for vertices v_{2} and v_{5} respectively and so $f d n_{\square f_{u}}(G)=0$ for $u=v_{2}, v_{5}$.

G. Priscilla Pacifica and K. Christy Rani

Figure 1: G

The following theorem follows from the definitions of vertex square free detour number and forcing vertex square free detour number of a graph G.

Theorem 3.1. For any vertex u in a connected graph $G, 0 \leq f d n_{\square f_{u}}(G) \leq$ $d n_{\square f_{u}}(G)$.

Proof. Let u be any vertex of G. From the definition of $f d n_{\square f_{u}}(G)$, we find that $f d n_{\square f_{u}}(G) \geq 0$, consider a $d n_{\square f_{u}}$-set S_{u} in G. We have $f d n_{\square f_{u}}(G)=$ $\min \left\{f d n_{\square f_{u}}\left(S_{u}\right): S_{u}\right.$ is a $d n_{\square f_{u}}$-set in $\left.G\right\}$ and so $f d n_{\square f_{u}}(G) \leq d n_{\square f_{u}}(G)$. Hence $0 \leq f d n_{\square f_{u}}(G) \leq d n_{\square f_{u}}(G)$.

Now, we characterize the graph G for which the bounds in Theorem 3.1 are reached and the graph for which $f d n_{\square f_{u}}(G)=1$.

Theorem 3.2. Let u be any vertex of a connected graph G. Then
(i) $f d n_{\square f_{u}}(G)=0$ if and only if G has a unique $d n_{\square f_{u}}$-set,
(ii) $f d n_{\square f_{u}}(G)=1$ if and only if G has at least two dn $n_{\square f_{u}}$-sets one of which is a unique $d n_{\square f_{u}}$-set containing any one of its elements,
(iii) $f d n_{\square f_{u}}(G)=d n_{\square f_{u}}(G)$ if and only if no $d n_{\square f_{u}}$-set of G is the unique $d n_{\square f_{u}}$ set containing any of its proper subsets.

Proof. (i) Let $f d n_{\square f_{u}}(G)=0$. Then, $f d n_{\square f_{u}}\left(S_{u}\right)=0$ where S_{u} is any $d n_{\square f_{u}}$ set by definition and so the empty set is the minimum u-forcing subset for S_{u}. Since the empty set ϕ is a subset of every set we have S_{u} is the unique minimum u-forcing subset of G. The converse of this Theorem is obvious.
(ii) Let $f d n_{\square f_{u}}(G)=1$. Then by $(i), G$ has at least two $f d n_{\square f_{u}}$-sets. Also, since $f d n_{\square f_{u}}(G)=1$, there is a singleton subset F of a $d n_{\square f_{u}}$-set S_{u} of G such that F is not a subset of any other $d n_{\square f_{u}}$-set of G. Thus S_{u} is the unique $d n_{\square f_{u}}$-set containing one of its elements. The converse is obvious.
(iii) Let $f d n_{\square f_{u}}(G)=d n_{\square f_{u}}$. Then $f d n_{\square f_{u}}\left(S_{u}\right)=d n_{\square f_{u}}(G)$ for every $d n_{\square f_{u}}$-set S_{u} in G. By Theorem 2.1, $d n_{\square f_{u}}(G) \geq 1$ and so $f d n_{\square f_{u}}(G)=1$. Also by (i), G has at least two $d n_{\square f_{u}}$-sets and hence the empty set ϕ is not a u-forcing subset of any $d n_{\square f_{u}}$-set S_{u} of G is unique $d n_{\square f_{u}}$-set which consists of its proper subsets.

Theorem 3.3. Let $G=(V, E)$ be a connected graph and let S_{u}^{*} be the set of all u-square free detour vertices of G. Then $f d n_{\square f_{u}}(G) \leq d n_{\square f_{u}}(G)-\left|S_{u}^{*}\right|$.

Proof. Let S_{u} be any square free detour basis of G. Then $d n_{\square f_{u}}\left(S_{u}\right)=\left|S_{u}\right|, S_{u}^{*} \subseteq$ S_{u} and S_{u} is the unique square free detour basis containing $S_{u}-S_{u}^{*}$. Thus $f d n_{\square f_{u}}(G) \leq\left|S_{u}-S_{u}^{*}\right|=\left|S_{u}\right|-\left|S_{u}^{*}\right|=d n_{\square f_{u}}(G)-\left|S_{u}^{*}\right|$.

Remark 3.1. The bound in Theorem 3.3 is sharp. For the graph G given in Figure 2 , $f d n_{\square f_{v_{1}}}(G)=0,\left|S_{v_{1}}^{*}\right|=2$ and $d n_{\square f_{v_{1}}}(G)=2$. Also, the inequality in Theorem 3.3, can be strict. For the graph G given in Figure 1, $f d n_{\square f_{v_{3}}}(G)=1,\left|S_{v_{3}}^{*}\right|=0$ and $d n_{\square f_{v_{3}}}(G)=2$. Thus $f d n_{\square f_{v_{3}}}(G)<d n_{\square f_{v_{3}}}(G)-\left|S_{v_{3}}^{*}\right|$.

Figure 2: G

Theorem 3.4. Let G be a connected graph and let \Im be the set of relative complements of the minimum u-forcing subsets in their respective minimum u-square free detour sets in G. Then $\cap_{F \in \Im} F$ is the set of all u-square free detour vertices of G.

Proof. Let S_{u}^{*} be the set of all u-square free detour vertices of G. We claim that $S_{u}^{*} \subseteq \cap_{F \in \Im} F$. Let $x \in S_{u}^{*}$. Then x is a u-square free detour vertex of G so that x belongs to every u-square free detour set S_{u} of G. Let $T \subseteq S_{u}$ be any minimum u-forcing subset for any u-square free detour basis S_{u} of G. We claim that $x \notin T$.

G. Priscilla Pacifica and K. Christy Rani

If $x \in T$, then $T^{\prime}=T-\{x\}$ is a proper subset of S_{u} is the unique u-square free detour containing T^{\prime} so that T^{\prime} is a u-forcing subset for S_{u} with $\left|T^{\prime}\right|<|T|$, which is a contradiction to T is a minimum u-forcing subset for S_{u}. Thus $x \notin T$ and so $x \in F$, where F is the relative complement of T in S_{u}. Hence $x \in \cap_{F \in \Im} F$ so that $S_{u}^{*} \subseteq \cap_{F \in \Im} F$.
Conversely, let $x \in \cap_{F \in \Im} F$. Then x belongs to the relative complement of T in S_{u} for every T for every S_{u} such that $T \subset S_{u}$, where T is a minimum u-forcing subset for S_{u}. Since F is the relative complement of T in $S_{u}, F \subset S_{u}$ and so $x \in S_{u}$ for every S_{u} so that is a u-square free detour vertex of G. Thus $x \in S_{u}^{*}$ and so $\cap_{F \in \Im} F \subset S_{u}^{*}$. Hence $S_{u}^{*} \cap_{F \in \Im} F$.

Theorem 3.5. Let u be any vertex of a connected graph G and let S_{u} be any $d n_{\square f_{u}}$ -set of G. Then
(i) No u-square free detour vertex belongs to any minimum u-forcing subset of S_{u}.
(ii) No cut-vertex of G belongs to any minimum u-forcing subset of S_{u}.

Proof. (i) The proof follows from the first part of Theorem 3.4.
(ii) Since any minimum u-forcing subset of S_{u} is a subset of S_{u}, the proof follows from Theorem 2.1(ii).

Corolary 3.1. Let u be any vertex of a connected graph G. If G contains l endvertices, then $f d n_{\square f_{u}}(G) \leq d n_{\square f_{u}}(G)-l+1$.

Proof. This follows from Theorems 2.1(i) and 3.5(i).
Remark 3.2. The bound in Corollary 3.1 is sharp. For a tree T with l endvertices, $f d n_{\square f_{u}}(G)=d n_{\square f_{u}}(G)-l+1$ for any end-vertex u in T.

Theorem 3.6. Let G be any connected graph of order n. Then
(i) If G is a tree with l end-vertices, then $f d n_{\square f_{u}}(G)=0$ for every vertex l in G.
(ii) If G is the complete graph K_{n}, then

$$
f d n_{\square f_{u}}(G)= \begin{cases}0 & \text { if } n=4 \\ n & \text { otherwise }\end{cases}
$$

(iii) If G is the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$, with partitions X and $Y, d n_{\square f_{u}}\left(K_{m, n}\right)=0$ for every vertex u in $K_{m, n}$.
(iv) If G is the cycle C_{n}, then

$$
f d n_{\square f_{u}}(G)=\left\{\begin{array}{lc}
0 & \text { if } n=4 \\
1 & \text { otherwise }
\end{array}\right.
$$

(v) If G is the wheel W_{n}, then

$$
f d n_{\square f_{u}}\left(W_{n}\right)=\left\{\begin{array}{cl}
0 & \text { if } n=5, u \in K_{1} \\
1 & \text { if } n=4, u \in W_{n} \text { and } n \geq 6, u \in C_{n-1} \\
\left\lceil\frac{n-1}{3}\right\rceil & \text { if } n \geq 6, u \in K_{1} .
\end{array}\right.
$$

Proof. (i) By the fact that $d n_{\square f_{u}}(G)=l-1$ or $d n_{\square f_{u}}(G)=l$ when u is an endvertex or not an end-vertex. Since the set of all end-vertices of a tree is the unique $d n_{\square f_{u}}$-set, the result follows from Theorem 3.2(i) that $f d n_{\square f_{u}}(G)=$ 0 .
(ii) By Theorem 2.3(i) for the complete graph K_{4}, S_{u} consists of the antipodal vertex of u. Since the set of antipodal vertex is unique for K_{4}, the result follows from Theorem 3.2(i) that $f d n_{\square f_{u}}(G)=0$. For $K_{n}(n \neq 4)$ it follows from Theorem 2.3(i), that S_{u} consists of exactly one vertex of $V-\{u\}$. Thus there exist $n-1$ distinct vertices other than u in K_{n}. Then the result follows from Theorem 3.2(ii) that $f d n_{\square f_{u}}(G)=1$.
(iii) By Theorem 2.3(ii), for $K_{m, n}(2 \leq m \leq n)$ with partitions X, Y with $|X|=$ m and $|Y|=n$, we have $d n_{\square f_{u}}(G)=m-1$ or $d n_{\square f_{u}}(G)=n-1$ according to whether the vertex u lies in X or Y. Since the $d n_{\square f_{u}}$-set S_{u} is unique in both the cases, the result follows from Theorem 3.2(i) that $f d n_{\square f_{u}}(G)=0$.
(iv) By Theorem 2.3(iii) for $C_{4}, d n_{\square f_{u}}$-set S_{u} consists of the antipodal vertex of u. Thus we observe that S_{u} is unique and so $f d n_{\square f_{u}}(G)=0$ by Theorem 3.2(i). By Theorem 2.3(iii), for an even cycle $C_{n}(n \neq 4), S_{u}$ consists of exactly one vertex which is antipodal or adjacent to u. Also, for an odd cycle $C_{n}(n \geq 3) d n_{\square f_{u}}$-set S_{u} contains exactly one vertex which is adjacent to u. Since there exist two adjacent vertices for an odd cycle and in addition an antipodal vertex for an even cycle we have $f d n_{\square f_{u}}(G)=1$.

G. Priscilla Pacifica and K. Christy Rani

(v) By Theorem 2.3(iv), for $W_{n}=K_{1}+C_{n-1}(n \geq 5)$ a $d n_{\square f_{u}}$-set S_{u} consists of $\left\lceil\frac{n-1}{3}\right\rceil$ vertices of the rim C_{n-1} of W_{n}, where u is a central vertex of W_{n} that is in K_{1} called as hub. Thus there exist three different $d n_{\square f_{u}}$-sets with $\left\lceil\frac{n-1}{3}\right\rceil$ vertices. Therefore, from Theorem 3.2(ii) the result follows that $f d n_{\square f_{u}}(G)=\left\lceil\frac{n-1}{3}\right\rceil$ for the central vertex of $W_{n}(n \geq 5)$.
When u is a vertex on C_{n-1} of W_{n} by Theorem 2.3(iv), S_{u} contains exactly one adjacent or antipodal vertex on C_{n-1} with the hub of the wheel, according as $n-1$ is odd or $n-1$ is even. Thus there are two adjacent vertices for a vertex on an odd cycle and an antipodal vertex besides two adjacent vertices for a vertex on even cycle. Hence the result follows from Theorem 3.2(ii) that $f d n_{\square f_{u}}(G)=1$ for $u \in C_{n-1}(n \geq 6)$.

By Theorem 2.3(iv) for W_{4}, S_{u} consists of exactly one adjacent vertex for every $u \in W_{4}$. Thus there are $n-1$ such $d n_{\square f_{u}}$-sets, for the vertices of W_{4} are adjacent to each other. Hence by Theorem 3.2(ii), we have $f d n_{\square f_{u}}(G)=$ 1.

Also, for W_{5}, S_{u} contains two antipodal vertices of C_{4} where u is the central vertex of W_{5}. Since there exist two different S_{u} with distinct pair of antipodal vertices of C_{4}, from Theorem 3.2(iii), the result follows that $f d n_{\square f_{u}}(G)=$ $d n_{\square f_{u}}(G)=2$. Furthermore, when u is a vertex on the rim of W_{5}, S_{u} consists of the antipodal vertex of u. Since there is only one antipodal vertex for any vertex u on C_{4} of W_{5}, we have unique S_{u} for all vertices on the rim of W_{5}. Hence the result follows from Theorem 3.2(i) that $f d n_{\square f_{u}}(G)=0$.

Theorem 3.7. For every pair α, β of positive integers with $0 \leq \alpha \leq \beta$ and $\beta \geq 2$, there exists a connected graph G with $f d n_{\square f_{u}}(G)=\alpha$ and $d n_{\square f_{u}}(G)=\beta$ for some vertex u in G.

Proof. We consider two cases.
Case 1: Let $\alpha=0$. Let G be any tree with $\beta+1$ end-vertices. Then for an endvertex u in $G, f d n_{\square f_{u}}(G)=0$ by Theorems 3.2(i) and 3.5(i).

Case 2: Let $\alpha \geq 1$. For each $i(1 \leq i \leq \alpha)$, let D_{6}^{i} be a Dutch Windmill graph consisting of i copies of $C_{6}: u, p_{i}, q_{i}, r_{i}, s_{i}, t_{i}, u$. Let H be a graph obtained by adding α new vertices $r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{\alpha}^{\prime}$ and joining each $r_{i}^{\prime}(1 \leq i \leq \alpha)$ to both the vertices q_{i} and s_{i} of $D_{6}^{i}(1 \leq i \leq \alpha)$.

Let $K_{1, \beta-\alpha}$ be the star with common vertex w_{o} and let $W=\left\{w_{1}, w_{2}, \ldots, w_{\beta-\alpha}\right\}$ be the set of all end-vertices of $K_{1, \beta-\alpha}$. Let G be the required graph produced by identifying the vertex u of D_{6}^{i} with the common vertex w_{o} of $K_{1, \beta-\alpha}$ as pictured in Figure 3.

Figure 3: G

First we show that $d n_{\square f_{u}}(G)=\beta$ for some vertex u in G. By the fact that every $d n_{\square f_{u}}$-set of G contains W and exactly one vertex from each C_{6} of $D_{6}^{i}(1 \leq i \leq \alpha)$. Then $d n_{\square f_{u}}(G)(\beta-\alpha)+\alpha$ and so $d n_{\square f_{u}}(G)=\beta$. Let $S_{u}=W \cup\left\{x_{1}, x_{2}, \ldots, x_{\alpha}\right\}$, where $x_{j}=p_{j}$ or t_{j} of $C_{6}^{i}(1 \leq i \leq \alpha)$. Clearly S_{u} is a $d n_{\square f_{u}}$-set of G and so $(G) \leq\left|S_{u}\right|=(\beta-\alpha)+\alpha=\beta$. Thus $d n_{\square f_{u}}(G)=\beta$.

Next we show that $f d n_{\square f_{u}}(G)=\alpha$. Since $d n_{\square f_{u}}(G)=\beta$, we find that every $d n_{\square f_{u}}$-set of G consists of W and exactly one vertex from each C_{6} of $D_{6}^{i}(1 \leq$ $i \leq \alpha)$. Let $F \subseteq S_{u}$ be any minimum u-forcing subset of S_{u}. Then By Theorem $3.5(i i), F \subseteq S_{u}-W$ and so $|F| \leq \alpha$. If $|F|<\alpha$ then there is a vertex y_{j} of $C_{6}^{i}(1 \leq i \leq \alpha)$ distinct from $x_{j}(1 \leq i, j \leq \alpha)$. Then $S_{u}^{\prime}=\left(S_{u}-x_{j}\right) \cup y_{j}$ is also a minimum u-forcing subset containing F such that $x_{j} \notin F$. Thus S_{u} is not a unique u-square free detour set which consists of F and so F is not a minimum u-forcing subset of S_{u}. Thus $f d n_{\square f_{u}}(G)=\alpha$.

G. Priscilla Pacifica and K. Christy Rani

4 Conclusion

In this paper, we computed the forcing vertex square free detour number of some standard graphs. We discussed the characteristics of the forcing vertex square free detour sets. Also, the relationship between the vertex square free detour number and the forcing vertex square free detour number has been exhibited. In future, this concept can be extended to edge related parameter. To derive similar results in the context of some other variants of detour number is the open area of research.

References

A. M. Ali and A. A. Ali. The connected detour numbers of special classes of connected graphs. Journal of Mathematics, 2019, 2019.
G. Chartrand, G. L. Johns, and S. Tian. Detour distance in graphs. In Annals of discrete mathematics, volume 55, pages 127-136. Elsevier, 1993.
G. Chartrand, G. L. Johns, and P. Zhang. The detour number of a graph. Utilitas mathematica, 64, 2003.
S. S. Ramalingam, I. K. Asir, and S. Athisayanathan. Vertex triangle free detour number of a graph. Mapana Journal of Sciences, 15(3):9-24, 2016.
K. C. Rani and G. P. Pacifica. Outer independent square free detour number of a graph. Ratio Mathematica, 44:309-315, 2022.
A. Santhakumaran and S. Athisayanathan. On the connected detour number of a graph. Journal of Prime research in Mathematics, 5:149-170, 2009.
A. Santhakumaran and S. Athisayanathan. Forcing edge detour number of an edge detour graph. Journal of Prime Research in Mathematics, 6:13-21, 2010.
P. Titus and P. Balakrishnan. The forcing vertex detour monophonic number of a graph. AKCE International Journal of Graphs and Combinatorics, 13(1): 76-84, 2016.

[^0]: *Assistant Professor, Department of mathematics, St. Mary's College(Autonomous), Thoothukudi - 628 001; priscillamelwyn@gmail.com; e-mail@ address.
 ${ }^{\dagger}$ Research Scholar, Reg. No.: 20122212092002, Department of Mathematics, St. Mary’s College(Autonomous), Thoothukudi - 628 001, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamilnadu, India ; christy.agnes @ gmail.com
 ${ }^{1}$ Received on June 5, 2022. Accepted on August 25, 2022. Published on January 30, 2023. DOI: $10.23755 / \mathrm{rm} . \mathrm{v} 45 \mathrm{i} 0.1030$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

