Strong forms of b-continuous multifunctions

Suresh R^{*} Pasunkilipandian S[†] Hari Siva Annam G[‡] Selva Banu Priya T [§]

Abstract

In this paper we have introduced strong forms of b-continuous multifunctions namely $b^{\#}$ -multicontinuity and *b-multicontinuity and studied their properties and characterizations. Also investigate the relationship with other type of functions with suitable examples.

Keywords: b-open, multi-function, u.b[#]-c, u.^{*}b-c

2010 AMS subject classification: 54C05, 54C08, 54C60^{**}.

^{*}Research Scholar (19112102091007), Manonmaniam Sundaranar University, Tirunelveli-12, India. rsuresh211089@gmail.com.

[†]Dept. of Mathematics, Aditanar College of Arts and Science, Tiruchendur, affiliated to Manonmaniam Sundaranar University, Tirunelveli-12, India. pasunkilipandian@gmail.com.

[‡]Dept. of Mathematics, Kamaraj College, Tuticorin, affiliated to Manonmaniam Sundaranar University, Tirunelveli-12, Tamilnadu, India. hsannam@yahoo.com.

[§]Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Chennai - 600123, India. Priya8517@gmail.com.

^{**} Received on July 10, 2022. Accepted on October 15, 2022. Published on January 30, 2023. doi: 10.23755/rm.v45i0.1027. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY license agreement.

1. Introduction

Recently topologists concentrate their research in several types of continuous multi functions. A weak form of b-continuous multifunctions was studied in [4]. The variations of multi continuity were discussed in [5]. The weak and strong forms of continuity of multi functions were introduced in [6]. Certain properties of topological spaces preserved under multivalued continuous mappings were investigated in [7]. Certain strong forms of mixed continuous multi functions were characterized in [8] and the upper and lower β -continuous multi functions were studied in [11]. The notions of b[#]-continuity and *b-continuity were respectively discussed and studied in [9] and [3].

In this paper we have introduced strong forms of b-continuous multifunctions namely $b^{\#}$ -multicontinuity and *b-multicontinuity and also studied their properties and characterizations with suitable examples.

2. Preliminaries

Throughout this paper it is assumed that X and Y are non-empty sets and τ and σ are topologies on X and Y respectively and τ' and σ' denote the collections of closed sets in X and Y respectively. The notation P: X \Rightarrow Y is used for a multivalued function. For the notations in multifunction theory, the reader may consult (Thangavelu, Premakumari, 2015). We use the following abbreviations and notations.

"continuous" ="c", "upper continuous" = "u.c" and "lower continuous" = "*l*.c". Further $V \in (\sigma, x, P(x), \subseteq) \Rightarrow V \in \sigma$, $x \in X$ and $P(x) \subseteq V$.

 $U \in [\tau, x, P, V, \subseteq] \Rightarrow U \in \tau, x \in U \text{ and } P(U) \subseteq V.$

 $V \in (\sigma, x, P(x), \emptyset) \Rightarrow V \in \sigma, x \in X \text{ and } P(x) \cap V \neq \emptyset.$

 $U \in [\tau, x, P, V, \emptyset] \Rightarrow U \in \tau, x \in U \text{ and } P(u) \cap V \neq \emptyset \forall u \in U.$

 $\chi \in \{b^{\#}, *b\}.$

Definition 2.1. The set A is called β (resp. b, *b)-open[1] (resp.[2], resp.[3]) if A $\subseteq Cl(Int(Cl(A)))$ (resp. $Cl(Int(A)) \cup Int(Cl(A))$, $Cl(Int(A)) \cap Int(Cl(A))$ and b[#]-open [9,10] if A= $Cl(Int(A)) \cup Int(Cl(A))$. The complements of β (resp. b, *b, b[#])-open sets are β (resp. b, *b, b[#])-closed sets.

Lemma 2.2. The set B is

(i) χ -open \Rightarrow b-open (ii) open \Rightarrow b-open (iii) b-open $\Rightarrow\beta$ -open

Definition 2.3. The multifunction P is u.c [5,6,7] if $\forall V \in (\sigma, x, P(x), \subseteq)$, $\exists U \in [\tau, x, P, V, \subseteq]$ and is *l*.c if $\forall V \in (\sigma, x, P(x), \emptyset)$, $\exists U \in [\tau, x, P, V, \emptyset]$.

Analogously u.b-c [4] and u. β -c [11] may be defined by replacing " τ " in [τ , *x*, P, V, \subseteq] respectively by "bO(X, τ)" and " β O(X, τ)". Also *l*.b-c [4] and *l*. β -c [11] may be defined by replacing " τ " in [τ , *x*, P, V, \emptyset] by "bO(X, τ)" and " β O(X, τ)" respectively.

Definition 2.4. The multifunction P is c if P is u.c and *l*.c. The notions b-c and β -c can be similarly defined.

3. χ -multi continuity where $\chi \in \{*b, b^{\#}\}$

Definition 3.1. The multivalued function P is u.b[#]-c (resp. u.*b-c) if P⁺(V) is b[#]-open (resp. *b-open) $\forall V \in \sigma$.

Proposition 3.2. Consider the following statements.

(i)P is u. χ -c. (ii)P $^{-}(B)$ is χ -closed $\forall B \in \sigma'$. (iii)P $^{-}(Cl(B))$ is χ -closed $\forall B \subseteq Y$. (iv)P⁺ (*Int* (B)) is χ -open $\forall B \subseteq Y$. The implications (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) always hold. **Proof:** Suppose (i) holds. Let $B \in \sigma'$ that implies, P⁺(Y \B) is χ -open so that X \ P⁻(B) = P⁺(Y \B) is χ -open that further shows that P⁻(B) is χ -closed. This proves (i) \Rightarrow (ii).

Now we assume (ii). Let $V \in \sigma$ that implies by (ii), $P^-(Y \setminus V)$ is χ -closed so that $X \setminus P^+(V)$ is χ -closed that further shows that $P^+(V)$ is χ -open. This proves (ii) \Rightarrow (i). Other implications follow easily.

Proposition 3.3. If P is u. χ -c then $\forall V \in (\sigma, x, P(x), \subseteq), \exists U \in [\chi O(X, \tau), x, P, V, \subseteq].$

Proof: Let P be u. χ -c and V \in (σ , x, P(x), \subseteq). Since P(x) \subseteq V, $x \in$ P⁺(V). Since P⁺(V) is χ -open \exists a χ -open set U with $x \in$ U \subseteq P⁺(V). Clearly U \in [χ O(X, τ), x, P, V, \subseteq].

Proposition 3.4. P is $u.\chi$ -c \Rightarrow it is u.b-c and $u.\beta$ -c.

Definition 3.5. The multifunction P is $l.b^{\#}$ -c(resp. l.*b-c) if P⁻(V) is $b^{\#}$ -(resp.*b)-open $\forall V \in \sigma$.

Proposition 3.6. Consider the following statements. (i)P is $l.\chi$ -c. (ii) P⁺ (B) is χ -closed $\forall B \in \sigma'$. (iii) P⁺ (Cl (B)) is χ -closed $\forall B \subseteq Y$. (iv) P⁻ (Int (B)) is χ -open $\forall B \subseteq Y$. The implications (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) always hold. **Proof:** Suppose (i) holds. Let $B \in \sigma'$ that implies $P^-(Y \setminus B)$ is χ -open so that $X \setminus P^+(B)$ is χ -open that further shows that $P^+(B)$ is χ -closed. This proves (i) \Rightarrow (ii). Now we assume (ii). Let $V \in \sigma$ that implies by (ii)), $P^+(Y \setminus V)$ is χ -closed so that $X \setminus P^-(V)$ is χ -closed that further shows that $P^-(V)$ is χ -open. This proves (ii) \Rightarrow (i). The rest follows easily.

Proposition 3.7. If P is *l*. χ -c then $\forall V \in (\sigma, x, F(x), \emptyset), \exists U \in [\chi O(X, \tau), x, P, V, \emptyset].$

Proof: Analogous to Proposition 3.3.

Proposition 3.8. P is $l.\chi$ -c \Rightarrow it is l.b-c and $l.\beta$ -c

Definition 3.9. P is $b^{\#}$ -c (resp.*b-c) if it is u.b[#]-c (resp.u.*b-c) and $l.b^{\#}$ -c(resp. l.*b-c).

The next proposition follows from previous definition, Proposition 3.2 and Proposition 3.6.

Proposition 3.10. Consider the following statements.

(i) P is χ-continuous.
(ii) P⁺ (V) and P⁻ (V) are χ-open ∀ V∈σ.
(iii) P⁺ (B) and P⁻ (B) are χ-closed ∀ B∈σ'.
(iv) P⁺ (*Int* (B)) and P⁻ (*Int* (B)) are χ-open ∀B ⊆ Y.
(v) P⁺ (*Cl* (B)) and P⁻ (*Cl* (B)) are χ-closed ∀B ⊆ Y.
The implications (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) always hold.
The following diagrams always hold.

Diagram 3.11. Let t=u or *l*.

- (i) $t.b^{\#}-c \Rightarrow t.b-c \Leftarrow t.*b-c.$
- (ii) $t.c \Rightarrow t.b-c \Rightarrow t.\beta-c.$

Examples 3.12. In this section some examples are given to illustrate certain results in the third section.

Let X = {p, q r, s}, Y = {1, 2, 3}, $\sigma = \{\phi, \{1\}, Y\}, \tau = \{\emptyset, \{r\}, \{q\}, \{q, r\}, \{p, q\}, \{p, q, r\}, \{q, r, s\}, X\}.$

(i) $F_1(p) = \{1, 2\}, F_1(q) = \{1, 3\} F_1(r) = \{1\}$ and $F_1(s) = \{1\}$ then $F_1^+(\{1\}) = \{r, s\}$ is $b^{\#}$ -open so that F_1 is u. $b^{\#}$ -c.

(ii) If $F_2(p) = \{1, 2\}$, $F_2(q) = \{1\}$, $F_2(r) = \{1, 3\}$ and $F_2(s) = \{3\}$ then $F_2^+(\{1\}) = \{r\}$ is *b-open that implies F_2 is u.*b-c.

(iii) If $F_3(p) = \{1\}$, $F_3(q) = \{1\}$, $F_3(r) = \{1,2\}$ and $F_3(s) = \{1\}$ then $F_3^+(\{1\}) = \{p, q, s\}$ is boopen and β -open and hence F_3 is u.b-c and u. β -c. However F_3 is not u. χ -c as $F_3^+(\{1\}) = \{p, q, s\}$ is not χ -open.

(iv) If $F_4(p) = \{2\}$, $F_4(q) = \{3\}$, $F_4(r) = \{1, 2\}$ and $F_4(s) = \{1, 3\}$ then $F_4^-(\{1\}) = \{r, s\}$ is b[#]-open that implies F_4 is *l*.b[#]-c.

(v) If $F_5(p) = \{1, 2\}$, $F_5(q) = \{1, 3\}$, $F_5(r) = \{2\}$ and $F_5(s) = \{3\}$ then $F_5^-(\{1\}) = \{p, q\}$ is *b-open and hence F_5 is *l*.*b-c.

(vi) If $F_6(p) = \{2\}$, $F_6(q) = \{1, 2\}$, $F_6(r) = \{3\}$ and $F_6(s) = \{1, 3\}$ then $F_6^-(\{1\}) = \{q, s\}$ is b-open and β -open so that F_6 is *l*.b-c and *l*. β -c. However F_6 is not *l*. χ -c as $F_6^-(\{1\}) = \{q, s\}$ is not χ -open.

(vii) If $F_7(p) = Y$, $F_7(q) = \{1, 3\}$, $F_7(r) = \{1\}$ and $F_7(s) = \{1\}$ then $F_7^+(\{1\}) = \{r, s\}$ and $F_7^-(\{1\}) = X$ are b[#]-open we see that F_7 is u.b[#]-c and l.b[#]-c and hence b[#]-c.

(viii) If $G_1(p) = \{2\}$, $G_1(q) = \{1\}$, $G_1(r) = \{1, 2\}$ and $G_1(s) = \{3\}$ then $G_1^+(\{1\}) = \{q\}$ and $G_1^-(\{1\}) = \{q, r\}$ are *b-open so that G_1 is u.*b-c and *l*.*b-c and hence *b-c.

(ix) If $G_2(p) = \{1, 3\}$, $G_2(q) = \{1\}$, $G_2(r) = \{2\}$ and $G_2(s) = \{1\}$ then $G_2^+(\{1\}) = \{q, s\}$ and $G_2^-(\{1\}) = \{p, q, s\}$ are b-open and β -open we see that G_2 is b-c and β -c. However G_2 is not χ -c as $G_2^+(\{1\}) = \{q, s\}$ and $G_2^-(\{1\}) = \{p, q, s\}$ are not χ -open.

(x) If $G_3(p) = \{2, 3\}$, $G_3(q) = \{1\}$, $G_3(r) = \{1\}$ and $G_3(s) = \{1\}$ then $G_3(\{1\}) = \{q, r, s\}$ is open that implies G_3 is u.c. However G_3 is not u.b[#]-c as $G_3^+(\{1\}) = \{q, r, s\}$ is not b[#]-open. If $G_4(p) = \{2, 3\}$, $G_4(q) = \{1, 2\}$, $G_4(r) = \{1\}$ and $G_4(s) = \{1\}$ then $G_4^+(\{1\}) = \{r, s\}$ is b[#]-open so that G_4 is u.b[#].c. However G_4 is not u.c as $G_4^+(\{1\}) = \{r, s\}$ is not open.

(xi) If $G_5(p) = \{2, 3\}$, $G_5(q) = \{1, 2\}$, $G_5(r) = \{1, 3\}$ and $G_5(s) = \{1\}$ then $G_5^-(\{1\}) = \{q, r, s\}$ is open we see that G_5 is *l*.c. However G_5 is not *l*.b[#]-c as $G_5^+(\{1\}) = \{q, r, s\}$ is not b[#]-open. If $G_6(p) = \{3\}$, $G_6(q) = \{2\}$, $G_6(r) = Y$ and $G_6(s) = \{1, 3\}$ then $G_6^-(\{1\}) = \{r, s\}$ is b[#]-open we see that G_6 is *l*.b[#]-c. However G_6 is not *l*.c as $G_6^-(\{1\}) = \{r, s\}$ is not open.

(xii) If $F(p) = \{2, 3\}$, $F(q)=\{1\}$, $F(r) = \{1, 3\}$ and $F(s) = \{1, 2\}$ then $F^+(\{1\})=\{q\}$ and $F^-(\{1\})=\{q, r, s\}$ are open we see that F is u.c and *l*.c so that it is c. However F is neither u.b[#]-c nor *l*.b[#]-c as $F^+(\{1\}) = \{q\}$ and $F^-(\{1\}) = \{q, r, s\}$ are not b[#]-open. If $G(p) = \{3\}$, $G(q)=\{2, 3\}$, $G(r)=\{1\}$ and $G(s) = \{1\}$ then $G^+(\{1\})=\{r, s\}=G^-(\{1\})$ is b[#]-open we see that G is u.b[#]-c and *l*.b[#]-c so that it is b[#]-c. However G is not c as $G^+(\{1\}) = \{r, s\} = G^-(\{1\})$ is not open.

Suresh, Pasunkilipandian, Hari Siva Annam, Selva Banu Priya

4. Conclusions

The concepts of strong forms of b-continuous multifunctions namely $b^{\#}$ -multicontinuous and *b-multicontinuous functions are suitable for future extension research.

Acknowledgements

The authors are grateful and thankful to the reviewers who gave some constructive comments to improve the paper and also to the editorial board for the processing the paper.

References

[1] M.E. Abd El-Monsef, S.N.El-Deeb, R.A.Mahmoud, β -open sets and β -continuous

Mappings, Bull. Fac. Sci. Assiut Univ., 12(1), 77-90, 1983.

[2] D. Andrijevic, on b-open sets, *Mat.* Vesnik, 48(1-2), 59-64, 1996.

[3] T. Indira, K. Rekha, Applications of *b-open sets and **b-open sets in topological Spaces, Annals. Pure. Appl. Maths, 1(1), 44-56, 2012.

[4] A.B. Khalaf, S. N. Dawod, g*bp-Continuous Multifunctions, Int. J. Adv. Math. Sci., 2(1), 8-20, 2014.

[5] A. Kanbir, I.L. Reilly, On some variations of multifunction continuity, applied General Topology, 9(2), 301-310, 2008.

[6] Metin Agdag, Weak and strong forms of continuity of multifunctions, Chaos Solutions and Fractals, 32, 1337-1344, 2007.

[7] V.I. Ponomarev, Properties of topological spaces preserved under multivalued Continuous mappings on compacta, Amer. Math. Soc. Transl., 38(2), 119-140, 1964.

[8] P. Thangavelu, S. Premakumari, Strong forms of mixed continuity, Int. J. Maths. Trds. Tech., 61(1), 43-50, 2018.

[9] R. Usha Parameswari, A study on generalization of b-open sets and related concepts

in topology, Ph. D thesis, Manonmaniam Sundaranar University, India: 2015.

[10] R. Usha Parameswari, P. Thangavelu, On b[#]-Open Sets, Int. J. Maths Trds. Tech., 5(3), 202-218, 2014.

[11] Valeriu Popa, Takashi Noiri, on upper and lower β -continuous multifunctions, Real Analysis Exchange, 22(1), 362-376, 1996.